首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 157 毫秒
1.
A challenge for studies involving microglia cultures is obtaining sufficient cells for downstream experiments. Macrophage colony-stimulating factor (M-CSF) has been used to improve yield of microglia in culture. However, the effects of M-CSF on activation profiles of microglia cultures are still unclear. Microglia activation is characterised by upregulation of co-stimulatory molecules and an inflammatory phenotype. The aim of this study is to demonstrate whether M-CSF supplementation alters microglial responses in resting and activated conditions. Microglia derived from mixed glia cultures and the BV-2 microglia cell line were cultivated with/without M-CSF and activated with lipopolysaccharide (LPS) and beta amyloid (Aβ). We show M-CSF expands primary microglia without affecting microglial responses to LPS and Aβ, as shown by the comparable expression of MHC class II and CD40 to microglia grown without this growth factor. M-CSF supplementation in BV-2 cells had no effect on nitric oxide (NO) production. Therefore, M-CSF can be considered for improving microglia yield in culture without introducing activation artefacts.  相似文献   

2.
Glial activation and neuroinflammatory processes play an important role in the pathogenesis of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and HIV dementia. Activated glia cells can secrete various proinflammatory cytokines and neurotoxic mediators, which may influence neuronal cell survival. Recent studies have demonstrated that glia cell-mediated neuroinflammation is also related to the pathophysiology of schizophrenia. In the present study, anti-inflammatory and neuroprotective effects of antipsychotics were investigated using cultured brain cells as a model. The results showed that spiperone significantly decreased the production of nitric oxide in lipopolysaccharide-stimulated BV-2 microglia cells, primary microglia and primary astrocyte cultures. Spiperone also significantly inhibited nitric oxide production in adenosine 5'-triphosphate (ATP)-stimulated primary microglia cultures. Spiperone markedly decreased the production of tumor necrosis factor-alpha in BV-2 microglia cells. Spiperone attenuated the expression of inducible nitric oxide synthase and proinflammatory cytokines such as interleukin-1beta and tumor necrosis factor-alpha at mRNA levels in BV-2 microglia cells. Spiperone inhibited nuclear translocation and DNA binding of the p65 subunit of nuclear factor kappa B (NF-kappaB), inhibitor of kappa B (IkappaB) degradation, and phosphorylation of p38 mitogen-activated protein kinase in the lipopolysaccharide-stimulated BV-2 microglia cells. Moreover, spiperone was neuroprotective, as the drug reduced microglia-mediated neuroblastoma cell death in the microglia/neuron co-culture. These results imply that the antipsychotic spiperone has anti-inflammatory and neuroprotective effects in the central nervous system by modulating glial activation.  相似文献   

3.
Ha SK  Moon E  Lee P  Ryu JH  Oh MS  Kim SY 《Neurochemical research》2012,37(7):1560-1567
Under normal conditions in the brain, microglia play roles in homeostasis regulation and defense against injury. However, over-activated microglia secrete proinflammatory and cytotoxic factors that can induce progressive brain disorders, including Alzheimer's disease, Parkinson's disease and ischemia. Therefore, regulation of microglial activation contributes to the suppression of neuronal diseases via neuroinflammatory regulation. In this study, we investigated the effects of acacetin (5,7-dihydroxy-4'-methoxyflavone), which is derived from Robinia pseudoacacia, on neuroinflammation in lipopolysaccharide (LPS)-stimulated BV-2 cells and in animal models of neuroinflammation and ischemia. Acacetin significantly inhibited the release of nitric oxide (NO) and prostaglandin E(2) and the expression of inducible NO synthase and cyclooxygenase-2 in LPS-stimulated BV-2 cells. The compound also reduced proinflammatory cytokines, tumor necrosis factor-α and interleukin-1β, and inhibited the activation of nuclear factor-κB and p38 mitogen-activated protein kinase. In an LPS-induced neuroinflammation mouse model, acacetin significantly suppressed microglial activation. Moreover, acacetin reduced neuronal cell death in an animal model of ischemia. These results suggest that acacetin may act as a potential therapeutic agent for brain diseases involving neuroinflammation.  相似文献   

4.
Microglia play a prominent role in the brain's inflammatory response to injury or infection by migrating to affected locations, secreting inflammatory molecules, and phagocytosing damaged tissue. However, because severe or chronic neuroinflammation exacerbates many neurological conditions, controlling microglia actions may provide therapeutic benefits in a diverse array of diseases. Since glycogen synthase kinase-3 (GSK3) promotes inflammatory responses in peripheral immune cells, we investigated if inhibitors of GSK3 attenuated microglia responses to inflammatory stimuli. Treatment of BV-2 microglia with GSK3 inhibitors greatly reduced the migration of microglia in both a scratch assay and in a transwell migration assay. Treatment of BV-2 microglia with lipopolysaccharide (LPS) stimulated the production of interleukin-6 and increased the expression of inducible nitric oxide synthase (iNOS) and NO production. Each of these microglia responses to inflammatory stimulation were greatly attenuated by GSK3 inhibitors. However, GSK3 inhibitors did not cause a general impairment of microglia functions, as the LPS-induced stimulated expression of cylcooxygenase-2 was unaltered. Regulation of microglia functions were also evident in cultured mouse hippocampal slices where GSK3 inhibitors reduced cytokine production and microglial migration, and provided protection from inflammation-induced neuronal toxicity. These findings demonstrate that GSK3 promotes microglial responses to inflammation and that the utilization of GSK3 inhibitors provides a means to limit the inflammatory actions of microglia.  相似文献   

5.
Microglial activation has been implicated in neurodegenerative diseases. Therefore, inhibition of inflammation mediated by microglia is a strategy in neurodegenerative disease therapy. In this study, we isolated cryptotanshinone and 15,16-dihydrotanshinone I from Salvia miltiorrhiza, a traditional Korean herb medicine, by bioactivity-guided fractionation based on inhibitory effect on nitric oxide in a lipopolysaccharide-stimulated BV-2 cells, a murine microglial cell line. 15,16-Dihydotanshinoe I suppressed the expression of not only inducible nitric oxide synthase but also of interleukin-1beta, tumor necrosis factor-alpha, and of TNF-alpha converting enzyme.  相似文献   

6.
Amphotericin B (AmB) is a polyene antibiotic and reported to have therapeutic effects on prion diseases, in which the microglial activation has been suggested to play important roles by proliferating and producing various factors such as nitric oxide, proinflammatory cytokines, and so on. However, the therapeutic mechanism of AmB on prion diseases remains elusive. In the present study, we investigated the effects of AmB on cellular functions of rat primary cultured microglia. We found that AmB, similarly as lipopolysaccharide (LPS), could activate microglia to produce nitric oxide via inducible nitric oxide synthase. Both AmB and LPS also induced mRNA expressions of interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha in microglia. AmB also changed the expression levels of neurotrophic factors mRNAs. AmB and LPS significantly down-regulated the level of ciliary neurotrophic factor mRNA. However, AmB, but not LPS, significantly up-regulated the level of glial cell-line derived neurotrophic factor mRNA in microglia. In addition, brain-derived neurotrophic factor mRNA expression level was tending upward by treatment with AmB, but not with LPS. Taken together, these results suggest that AmB regulates the microglial activation in different manner from LPS and that microglia may participate in the therapeutic effects of AmB on prion diseases by controlling the expression and production of such mediators.  相似文献   

7.
In contrast to the role of lipopolysaccharide from Gram-negative bacteria, the role of Gram-positive bacterial components in inducing inflammation in the CNS remains controversial. We studied the potency of highly purified lipoteichoic acid and muramyl dipeptide isolated from Staphylococcus aureus to activate primary cultures of rat microglia. Exposure of pure microglial cultures to lipoteichoic acid triggered a significant time- and dose-dependent production of pro-inflammatory cytokines (tumour-necrosis factor-alpha, interleukin-1beta, interleukin-6) and nitric oxide. Muramyl dipeptide strongly and selectively potentiated lipoteichoic acid-induced inducible nitric oxide synthase expression and nitric oxide production. However, it did not have any significant influence on the production of pro-inflammatory cytokines. As bacterial components are recognised by the innate immunity through Toll-like receptors (TLRs) we showed that lipoteichoic acid was recognised in microglia by the TLR2 and lipopolysaccharide by the TLR4, as cells isolated from mice lacking TLR2 or TLR4 did not produce pro-inflammatory cytokines and nitric oxide upon lipoteichoic acid or lipopolysaccharide stimulation, respectively. Lipoteichoic acid-induced glia activation was mediated by p38 and ERK1/2 MAP kinases, as pretreatment with inhibitor of p38 or ERK1/2 decreased lipoteichoic acid-induced cytokine release, iNOS mRNA expression and nitric oxide production. The observed pro-inflammatory response induced by lipoteichoic acid-activated microglia could play a major role in the inflammatory response of CNS induced by Gram-positive bacteria.  相似文献   

8.
Although there is known to be a marked concentration of reactive microglia in the substantia nigra pars compacta (SNpc) of patients with Parkinson's disease (PD), a disorder in which α-synuclein plays a key pathogenic role, the specific roles of α-synuclein and microglia remains poorly understood. In this study, we investigated the effects of α-synuclein and the mechanisms of invasive microglial migration into the SNpc. We show that α-synuclein up-regulates the expressions of the cell adhesion molecule CD44 and the cell surface protease membrane-type 1 matrix metalloproteinase through the extracellular regulated kinases 1/2 pathway. These concurrent inductions increased the generation of soluble CD44 to liberate microglia from the surrounding extracellular matrix for migration. The effects of α-synuclein were identical in BV-2 murine microglial cells subjected to cDNA transfection and extracellular treatment. These inductions in primary microglial cultures of C57Bl/6 mice were identical to those in BV-2 cells. α-Synuclein-induced microglial migration into the SNpc was confirmed in vivo using a 6-hydroxydopamine mouse model of PD. Our data demonstrate a correlation between α-synuclein-induced phenotypic changes and microglial migration. With the recruitment of the microglial population into the SNpc during dopaminergic neurodegeneration, α-synuclein may play a role in accelerating the pathogenesis of PD.  相似文献   

9.
Microglia-mediated cytotoxicity has been implicated in models of neurodegenerative diseases, such as amyotrophic lateral sclerosis, Parkinson's disease and Alzheimer's disease, but few studies have documented how neuroprotective signals might mitigate such cytotoxicity. To explore the neuroprotective mechanism of anti-inflammatory cytokines, we applied interleukin-4 (IL-4) to primary microglial cultures activated by lipopolysaccharide as well as to activated microglia cocultured with primary motoneurons. lipopolysaccharide increased nitric oxide and superoxide (O(2) (.-)) and decreased insulin-like growth factor-1 (IGF-1) release from microglial cultures, and induced motoneuron injury in microglia-motoneuron cocultures. However, lipopolysaccharide had minimal effects on isolated motoneuron cultures. IL-4 interaction with microglial IL-4 receptors suppressed and nitric oxide release, and lessened lipopolysaccharide-induced microglia-mediated motoneuron injury. The extent of nitric oxide suppression correlated directly with the extent of motoneuron survival. Although IL-4 enhanced release of free IGF-1 from microglia in the absence of lipopolysaccharide, it did not enhance free IGF-1 release in the presence of lipopolysaccharide. These data suggest that IL-4 may provide a significant immunomodulatory signal which can protect against microglia-mediated neurotoxicity by suppressing the production and release of free radicals.  相似文献   

10.
Levels of dehydroepiandrosterone (DHEA) and its sulfated derivative (DHEAS) decline during aging and reach even lower levels in Alzheimer's disease (AD). DHEA is known to exhibit a variety of functional activities in the CNS, including an increase of memory and learning, neurotrophic and neuroprotective effects, and the reduction of risk of age-related neurodegenerative disorders. However, the influence of DHEA on the immune functions of glial cells is poorly understood. In this study, we investigated the effect of DHEA on activated glia. The production of inducible nitric oxide synthase (iNOS) was studied in lipopolysaccharide (LPS)-stimulated BV-2 microglia, as a model of glial activation. The results showed that DHEA but not DHEAS significantly inhibited the production of nitrite in the LPS-stimulated BV-2 cell cultures. Pretreatment of BV-2 cells with DHEA reduced the LPS-induced iNOS mRNA and protein levels in a dose-dependent manner. The LPS-induced iNOS activity in BV-2 cells was decreased by the exposure of 100 microM DHEA. Moreover, DHEA suppressed iNOS gene expression in LPS-stimulated BV-2 cells did not require de novo synthesis of new proteins or destabilize of iNOS mRNA. Since DHEA is biosynthesized by astrocytes and neurons, our findings suggest that it might have an important regulatory function on microglia.  相似文献   

11.
Senile plaques of Alzheimer's brain are characterized by activated microglia and immunoreactivity for the peptide chromogranin A. We have investigated the mechanisms by which chromogranin A activates microglia, producing modulators of neuronal survival. Primary cultures of rat brain-derived microglia display a reactive phenotype within 24 h of exposure to 10 nM chromogranin A, culminating in microglial death via apoptotic mechanisms mediated by interleukin-1beta converting enzyme. The signalling cascade initiated by chromogranin A triggers nitric oxide production followed by enhanced microglial glutamate release, inhibition of which prevents microglial death. The plasma membrane carrier inhibitor aminoadipate and the type II/III metabotropic glutamate receptor antagonist (RS)-alpha-methyl-4-sulphonophenylglycine are equally protective. A significant amount of the released glutamate occurs from bafilomycin-sensitive stores, suggesting a vesicular mode of release. Inhibition of this component of release affords significant microglial protection. Conditioned medium from activated microglia kills cerebellar granule cells by inducing caspase-3-dependent neuronal apoptosis. Brain-derived neurotrophic factor is partially neuroprotective, as are ionotropic glutamate receptor antagonists, and, when combined with boiling of conditioned medium, full protection is achieved; nitric oxide synthase inhibitors are ineffective.  相似文献   

12.
The generation of intense inflammation in the subarachnoid space in response to meningitis-causing bacteria contributes to brain dysfunction and neuronal injury in bacterial meningitis. Microglia, the major immune effector cells in the central nervous system (CNS), become activated by bacterial components to produce proinflammatory immune mediators. In this study, we showed that FimH adhesin, a tip component of type 1 fimbriae of meningitis-causing Escherichia coli K1, activated the murine microglial cell line, BV-2, which resulted in the production of nitric oxide and the release of tumor necrosis factor-alpha. Mitogen-activated protein kinases, ERK and p-38, and nuclear factor-kappaB were involved in FimH adhesin-mediated microglial activation. These findings suggest that FimH adhesin contributes to the CNS inflammatory response by virtue of activating microglia in E. coli meningitis.  相似文献   

13.
Much attention has been paid to the ability of glial cell line-derived neurotrophic factor (GDNF) to protect neurons from neurotoxic insults in the central nervous system (CNS). However, little is known about GDNF action on CNS glia that also can express GDNF receptor systems. In this study, we examined the effects of GDNF on primary rat microglia that function as resident macrophages in the CNS and as the source of proinflammatory mediators upon activation. We found that treatment of primary rat microglia with GDNF had no effect on the secretion of the proinflammatory cytokines, tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta), but it increased the nitric oxide (NO) production to some extent. In addition, GDNF increased the enzymatic activity of superoxide dismutase (SOD), the gene expression of surface antigen intercellular adhesion molecule-1 (ICAM-1), the production of the integrin alpha5 subunit, and the phagocytotic capability in primary rat microglia. Furthermore, inhibition of mitogen-activated protein kinase (Erk-MAPK) in the mouse microglial cell line BV2 by U0126 indicated that the MAP kinase signaling pathway may be involved in the regulation of NO and integrin alpha5 production by GDNF. In vivo evidence also showed that amoeboid cells with integrin alpha5 or with ED1 immunoreactivity appeared in GDNF-treated spinal cord tissues at the lesion site 1 week post spinal cord injury (SCI). Furthermore, inhibition of Erk-MAPK in the mouse microglial cell line BV2 by U0126 indicated that the MAP kinase signaling pathway may be involved in the regulation of NO and integrin alpha5 production by GDNF. Taken together, our results indicate that GDNF has a positive regulatory effect on microglial activities, such as phagocytosis and the upregulation of adhesion molecules.  相似文献   

14.
Astrocyte and microglia cells play an important role in the central nervous system (CNS). They react to various external aggressions by becoming reactive and releasing neurotrophic and/or neurotoxic factors. Rutin is a flavonoid found in many plants and has been shown to have some biological activities, but its direct effects on cells of the CNS have not been well studied. To investigate its potential effects on CNS glial cells, we used both astrocyte primary cultures and astrocyte/microglia mixed primary cell cultures derived from newborn rat cortical brain. The cultures were treated for 24 h with rutin (50 or 100 μmol/L) or vehicle (0.5% dimethyl sulfoxide). Mitochondrial function on glial cells was not evidenced by the MTT test. However, an increased lactate dehydrogenase activity was detected in the culture medium of both culture systems when treated with 100 μmol/L rutin, suggesting loss of cell membrane integrity. Astrocytes exposed to 50 μmol/L rutin became reactive as revealed by glial fibrillary acidic protein (GFAP) overexpression and showed a star-like phenotype revealed by Rosenfeld’s staining. The number of activated microglia expressing OX-42 increased in the presence of rutin. A significant increase of nitric oxide (NO) was observed only in mixed cultures exposed to 100 μmol/L rutin. Enhanced TNFα release was observed in astrocyte primary cultures treated with 100 μmol/L rutin and in mixed primary cultures treated with 50 and 100 μmol/L, suggesting different sensitivity of both activated cell types. These results demonstrated that rutin affects astrocytes and microglial cells in culture and has the capacity to induce NO and TNFα production in these cells. Hence, the impact of these effects on neurons in vitro and in vivo needs to be studied.  相似文献   

15.
Endotoxin (lipopolysaccharide, LPS) is a component of the outer membrane of Gram-negative bacteria and promotes the activation of macrophages and microglia. Although these cells are highly LPS-responsive, they serve unique tissue-specific functions and exhibit different LPS sensitivities. Accordingly, it was of interest to evaluate whether these biological differences reside in variations within LPS signaling pathways between these two cell types. Because the mitogen-activated protein kinases ERK-1 and ERK-2 have been implicated in the control of many immune responses, we tested the concept that they are a key indicator for differences in cellular LPS sensitivity. We observed that murine RAW 264.7 macrophages and murine BV-2 microglial cells both respond to LPS by exhibiting increased IkappaBalpha degradation, enhanced NF-kappaB DNA binding activity, and elevated nitric oxide and interleukin-1beta production. Although LPS potently stimulates ERK activation in RAW 264.7 macrophages, it does not activate ERK-1/-2 in BV-2 microglia. Moreover, antagonism of the MEK/ERK pathway potentiates LPS-stimulated nitric oxide production, suggesting that LPS-stimulated ERK activation can exert inhibitory effects in macrophage-like cells. These data support the idea that ERK activation is not a required function of LPS-mediated signaling events and illustrate that alternative/additional pathways for LPS action exist in these cell types.  相似文献   

16.
The present study attempts to investigate the effect of H(2)S on lipopolysaccharide (LPS)-induced inflammation in both primary cultured microglia and immortalized murine BV-2 microglial cells. We found that exogenous application of sodium hydrosulfide (NaHS) (a H(2)S donor, 10-300 micro mol/L) attenuated LPS-stimulated nitric oxide (NO) in a concentration-dependent manner. Stimulating endogenous H(2)S production decreased LPS-stimulated NO production, whereas lowering endogenous H(2)S level increased basal NO production. Western blot analysis showed that both exogenous and endogenous H(2)S significantly attenuated the stimulatory effect of LPS on inducible nitric oxide synthase expression, which is mimicked by SB 203580, a specific p38 mitogen-activated protein kinase (MAPK) inhibitor. Exogenously applied NaHS significantly attenuated LPS-induced p38 MAPK phosphorylation in BV-2 microglial cells. Moreover, both NaHS (300 micro mol/L) and SB 203580 (1 micro mol/L) significantly attenuated LPS-induced tumor necrosis factor-alpha secretion, another inflammatory indicator. In addition, NaHS (10-300 micro mol/L) dose-dependently decreased LPS-stimulated NO production in primary cultured astrocytes, suggesting that the anti-neuroinflammatory effect of H(2)S is not specific to microglial cells alone. Taken together, H(2)S produced an anti-inflammatory effect in LPS-stimulated microglia and astrocytes, which may be due to inhibition of inducible nitric oxide synthase and p38 MAPK signaling pathways. These findings may have important implications in the treatment of neuroinflammation-related diseases.  相似文献   

17.
18.
Migration and accumulation of microglial cells at sites of injury are important for nerve repair. Recent studies on the leech central nervous system (CNS), in which synapse regeneration is successful, have shown that nitric oxide (NO) generated immediately after injury by endothelial nitric oxide synthase (eNOS) stops migrating microglia at the lesion. The present study obtained results indicating that NO may act earlier, on microglia migration, and aimed to determine mechanisms underlying NO's effects. Injury induced cGMP immunoreactivity at the lesion in a pattern similar to that of eNOS activity, immunoreactivity, and microglial cell accumulation, which were all focused there. The soluble guanylate cyclase (sGC) inhibitor methylene blue (MB) at 60 microM abolished cGMP immunoreactivity at lesions and blocked microglial cell migration and accumulation without interfering with axon conduction. Time-lapse video microscopy of microglia in living nerve cords showed MB did not reduce cell movement but reduced directed movement, with significantly more cells moving away from the lesion or reversing direction and fewer cells moving toward the lesion. The results indicate a new role for NO, directing the microglial cell migration as well as stopping it, and show that NO's action may be mediated by cGMP.  相似文献   

19.
Kinins are important biologically active peptides that are up-regulated after lesions in both the peripheral and central (CNS) nervous systems. Microglia are immune cells in the CNS and play an important role in the defense of the neuronal parenchyma. In cultured murine microglia, bradykinin (BK) induces mobilization of intracellular Ca2+, microglial migration, and increases the release of nitric oxide and prostaglandin E2. On the other hand, BK attenuates lipopolysaccharide-activated TNF-alpha and IL-1beta release. These results suggest that BK functions as a signal in brain trauma and may have an anti-inflammatory role in the CNS.  相似文献   

20.
Microglia, the resident macrophages of the central nervous system (CNS), are activated by a myriad of signaling molecules including ATP, an excitatory neurotransmitter and neuron-glial signal with both neuroprotective and neurotoxic effects. The “microglial dysfunction hypothesis” of neurodegeneration posits that overactivated microglia have a reduced neuroprotective capacity and instead promote neurotoxicity. The chemokine fractalkine (FKN), one of only two chemokines constitutively expressed in the CNS, is neuroprotective in several in vivo and in vitro models of CNS pathology. It is possible, but not yet demonstrated, that high ATP concentrations induce microglial overactivation and apoptosis while FKN reduces ATP-mediated microglial overactivation and cytotoxicity. In the current study, we examined the effects of FKN on ATP-induced microglial apoptosis and the underlying mechanisms in the BV-2 microglial cell line. Exposure to ATP induced a dose-dependent reduction in BV-2 cell viability. Prolonged exposure to a high ATP concentration (3 mM for 2 h) transformed ramified (quiescent) BV-2 cells to the amoebic state, induced apoptosis, and reduced Akt phosphorylation. Pretreatment with FKN significantly inhibited ATP-induced microglial apoptosis and transformed amoebic microglia to ramified quiescent cells. These protective effects were blocked by chemical inhibition of PI3 K, strongly implicating the PI3 K/Akt signaling pathway in FKN-mediated protection of BV-2 cells from cytotoxic ATP concentrations. Prevention of ATP-induced microglial overactivation and apoptosis may enhance the neuroprotective capacity of these cells against both acute insults and chronic CNS diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号