首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hsp60 is an abundant and highly conserved family of intracellular molecules. Increased levels of this family of proteins have been observed in the extracellular compartment in chronic inflammation. Administration of M. leprae Hsp65 [WT] in [NZBxNZW]F(1) mice accelerates the Systemic Lupus Erythematosus [SLE] progression whereas the point mutated K(409)A Hsp65 protein delays the disease. Here, the biological effects of M. leprae Hsp65 Leader pep and K(409)A pep synthetic peptides, which cover residues 352-371, are presented. Peptides had immunomodulatory effects similar to that observed with their respective proteins on survival and the combined administration of K(409)A+Leader pep or K(409)A pep+WT showed that the mutant forms were able to inhibit the deleterious effect of WT on mortality, indicating the neutralizing potential of the mutant molecules in SLE progression. Molecular modeling showed that replacing Lysine by Alanine affects the electrostatic potential of the 352-371 region. The number of interactions observed for WT is much higher than for Hsp65 K(409)A and mouse Hsp60. The immunomodulatory effects of the point-mutated protein and peptide occurred regardless of the catalytic activity. These findings may be related to the lack of effect on survival when F(1) mice were inoculated with Hsp60 or K(409)A pep. Our findings indicate the use of point-mutated Hsp65 molecules, such as the K(409)A protein and its corresponding peptide, that may minimize or delay the onset of SLE, representing a new approach to the treatment of autoimmune diseases.  相似文献   

2.
IFN-α is a potent activator of innate and adaptive immunity, and its administration to preautoimmune (NZB×NZW)F1 mice promotes virulent systemic lupus erythematosus (SLE) disease. Given the known contributions of B cells and BAFF to SLE, we evaluated the ability of IFN-α administration to induce disease in wild-type (WT), B cell-deficient, and BAFF-deficient NZM 2328 mice. Whereas WT mice rapidly developed proliferative glomerulonephritis, marked proteinuria, and increased mortality in response to IFN-α administration, B cell-deficient mice developed neither renal pathology nor clinical disease. Moreover, BAFF-deficient mice, despite developing limited glomerular IgG and C3 deposition, also remained free of histological glomerulonephritis and clinical disease. Strikingly, similar T cell expansion and serum IgG responses were observed in adenovirus (Adv)-IFN-treated WT and BAFF-deficient mice despite their disparate pathological and clinical responses, whereas numbers of activated B cells increased in WT mice but not in BAFF-deficient mice. Nonetheless, B cell, plasma cell, and T cell infiltration of the kidneys in Adv-IFN-treated WT mice was similar to that in WT mice treated with Adv-control. Its ability to promote SLE disease in WT mice notwithstanding, IFN-α administration failed to drive the preferential expansion of CD4(+) memory T cells that occurs during the natural course of disease, and glomerular infiltration of macrophages failed to associate with development of disease. These results collectively suggest that therapeutic targeting in SLE of BAFF and/or B cells in SLE could be successful even in states of IFN-α overexpression. Moreover, our results document important biological differences between IFN-α-driven and spontaneous natural SLE disease.  相似文献   

3.
The heat shock protein Hsp65 has been characterized previously in several mycobacterial species. This is the first report of the complete sequence of the coding region of the Mycobacterium avium homologue. The sequence was highly homologous to the Hsp65 of other mycobacterial species, as well as being related closely to the murine and human homologues. Recombinant Hsp65 (rHsp65) was expressed in Escherichia coli to high levels and the recombinant protein tested for its immunogenicity in a murine model of M. avium infection. Although mice infected with M. avium produced antibodies that reacted with rHsp65, they showed low proliferative T-cell responses and no cytokine production in response to the same antigen. However, immunization with rHsp65 in the adjuvant dimethydioctadecylammonium bromide (DDA), induced T cells that responded to native Hsp65 with proliferation and IFN-gamma production, indicating that the recombinant and native forms of the protein were antigenically similar. Therefore, the findings indicate that Hsp65 is not a dominant T-cell antigen during M. avium infection.  相似文献   

4.
The 65 kilodalton heat shock protein (Hsp65) from mycobacterial species elicits immune responses and in some cases protective immunity. Here we have used a DNA sublibrary approach to identify antigenic fragments of Mycobacterium avium Hsp65 and a synthetic peptide approach to delineate CD4+ T cell determinants. A panel of Hsp65 reactive CD4+ T cell clones was established from lymph node cells obtained from BALB/c mice immunized with recombinant Hsp65. The clones were tested for proliferative reactivity against the products of the DNA sublibrary of the hsp65 gene. A T cell epitope, restricted by the I-Ad molecule, was identified within the C-terminal region of Hsp65 and the minimal epitope (amino acid residues 489-503) delineated using overlapping peptides spanning the C-terminal fragment. Additionally, the CD4+ T cell clone recognizing this epitope also responded to native Hsp65 present in M. avium lysates by both proliferation and cytokine production, indicating that the epitope was present and processed similarly both in the native and the recombinant forms of Hsp65. This sequence identified in BALB/c mice (Hsp65 489-503) is identical in other mycobacteria, notably M. tuberculosis, M. bovis and M. leprae, suggesting the epitope may have wider application in murine models of other mycobacterial infections.  相似文献   

5.
ADP mediates platelet-induced relaxation of blood vessels and may function as an important intercellular signaling molecule in the brain. We used pharmacological and genetic approaches to examine mechanisms that mediate responses of cerebral arterioles to ADP, including the role of endothelial nitric oxide synthase (eNOS). We examined responses of cerebral arterioles (control diameter approximately 30 microm) in anesthetized wild-type (WT, eNOS+/+) and eNOS-deficient (eNOS-/-) mice using a cranial window. In WT mice, local application of ADP produced vasodilation that was not altered by indomethacin but was reduced by approximately 50% by NG-nitro-L-arginine (L-NNA) or 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) (inhibitors of NOS and soluble guanylate cyclase, respectively). In eNOS-/- mice, responses to ADP were largely preserved, and a significant component of the response was resistant to L-NNA (a finding similar to that in WT mice treated with L-NNA). In the absence of L-NNA, responses to ADP were markedly reduced by charybdotoxin plus apamin [inhibitors of Ca2+-dependent K+ channels and responses mediated by endothelium-derived hyperpolarizing factor (EDHF)] in both WT and eNOS-/- mice. Thus pharmacological and genetic evidence suggests that a significant portion of the response to ADP in cerebral microvessels is mediated by a mechanism independent of eNOS. The eNOS-independent mechanism is functional in the absence of inhibited eNOS and most likely is mediated by an EDHF.  相似文献   

6.
7.
Although wild-type Hsp70 (Hsp70WT) inhibits procaspase-3 processing by preventing apoptosome formation, Hsp70WT does not block active caspase-3. Because all caspase-3 inhibitors bear canonical DXXD caspase-3 recognition motifs, we determined whether mutated Hsp70s with caspase-binding motifs act as direct caspase-3 inhibitors. Based on Hsp70 molecular modeling, the DNQP, DEVQ, and EEVD regions localized on the surface of Hsp70WT were chosen, allowing us to design mutants while trying to avoid disrupting the global fold of the molecule and losing the possibility of protein-protein interactions. We replaced DNQP with DQMD, and DEVQ and EEVD with DEVD residues that should be optimal substrates for caspase-3. The resultant Hsp70 mutants directly interacted with active caspase-3 and blocked its proteolytic activity while retaining the ability to reverse protein denaturation and disrupt the interaction between Apaf-1 and procaspase-9. The Hsp70C-terminal mutants interacted with Apaf-1 and active caspase-3 significantly longer than Hsp70WT. The Hsp70 DXXD mutants protected neuron and teratocarcinoma (NT) cells against cell death much better than Hsp70WT whether given before or after serum withdrawal. Hsp70 mutants represent a possible approach to antiapoptotic biotherapeutics. Similar rational designs could be used to engineer inhibitors of additional caspase family members.  相似文献   

8.
Chaperonin CCT containing t-complex polypeptide 1 is a cytosolic molecular chaperone that assists in the folding of actin, tubulin, and other proteins and is a member of the 60-kDa heat shock protein (Hsp60) family. We examined antibody titers against human CCT and other Hsp60 family members in the sera of patients with rheumatic autoimmune diseases, including rheumatoid arthritis, systemic lupus erythematodes, Sj?gren syndrome, and mixed connective tissue disease. Autoantibody titers against not only human mitochondrial Hsp60 but also CCT were significantly higher in the sera of patients with rheumatic autoimmune diseases than in healthy control sera. Although immunoglobulin G (IgG) titers against Escherichia coli GroEL were high in all the groups of sera tested, no significant differences in anti-GroEL responses were detected between patients and healthy controls. IgG titers against mycobacterial Hsp65 showed a similar pattern to titers of autoantibodies recognizing GroEL. Immunoabsorption experiments demonstrated that most of the autoantibodies recognizing CCT were cross-reactive with mitochondrial Hsp60, E coli GroEL, and mycobacterial Hsp65. Although most of the anti-Hsp60 IgG recognized CCT, anti-GroEL (or antimycobacterial Hsp65) IgG contained antibodies specific for GroEL (or mycobacterial Hsp65) in addition to antibodies cross-reactive with CCT and Hsp60. Results from immunoblot analyses, together with weak (15% to 20%) amino acid sequence identities between CCT and the other Hsp60 family members, suggested that CCT-reactive autoantibodies recognize conformational epitopes that are conserved among CCT and other Hsp60 family members.  相似文献   

9.
Anti-Sm and anti-ribosomal P protein antibodies show a high degree of specificity for the disease SLE. To determine whether a relationship between these two autoantibodies existed, the frequency of anti-P was determined in sera with and without anti-Sm activity. Of sera from lupus patients with anti-Sm 18/65 (28%), and 6/55 (11%) of sera without anti-Sm had anti-P as determined by an ELISA using a recombinant P2-beta-galactosidase fusion protein as Ag (p less than 0.05). The levels of anti-P were significantly higher in sera containing anti-Sm (0.37 +/- 0.45) than in sera without anti-Sm antibodies (0.18 +/- 0.20) (p less than 0.01). Similarly, a significantly higher proportion of anti-P positivity was found in autoimmune MRL/Mp-lpr/lpr mice positive for anti-Sm (11/53 = 21%) compared to age- and sex-matched mice without anti-Sm (3/53 = 6%) (p less than 0.05). The IgG subclass distributions for anti-Sm and anti-P antibodies were similar in the MRL mice (IgG2a greater than IgG2b greater than IgG3 greater than IgG1). The association did not reflect polyclonal B cell activation in a proportion of MRL mice because no significant differences were observed in anti-DNA, antichromatin or total serum IgG levels in mice with and without anti-Sm or, in mice positive for both anti-P and anti-Sm compared to mice positive for anti-Sm alone. Cross-inhibition experiments excluded the possibility that the Sm and P protein Ag shared a common epitope. Longitudinal measurement of anti-P and anti-Sm antibody levels by ELISA in three mice indicated that both antibodies first appeared at about 3 to 4 mo of age and fluctuated two- to threefold over 3 to 8 mo with independent peaks of activity. Recent observations regarding a relationship between anti-Sm and autoantibodies to other ribosomal proteins suggest that the association may be explained by an immune response to epitopes coassociated on the ribosome.  相似文献   

10.
Bullous pemphigoid (BP) is an autoimmune skin-blistering disease characterized by the presence of autoantibodies against the hemidesmosomal proteins BP230 and BP180. In the IgG passive transfer mouse model of BP, subepidermal blistering is triggered by anti-BP180 antibodies and depends on the complement system, mast cell (MC) degranulation, and neutrophil infiltration. In this study, we have identified the signaling events that connect the activation of the complement system and MC degranulation. We found that mice deficient in MCs or the C5a receptor (C5aR) injected with pathogenic anti-BP180 IgG failed to develop subepidermal blisters and exhibited a drastic reduction in p38 MAPK phosphorylation compared with WT mice. Local reconstitution with MCs from WT but not C5aR-deficient mice restored high levels of p38 MAPK phosphorylation and subepidermal blistering in MC-deficient mice. Local injection of recombinant C5a induced phosphorylation of p38 MAPK in WT but not MC-deficient mice. Cultured mouse MCs treated with recombinant C5a exhibited a significant increase in p38 MAPK phosphorylation and MC degranulation. Taken together, these data demonstrate that C5a interacts with C5aR on MCs and that this C5a-C5aR interaction triggers activation of the p38 MAPK pathway, subsequent MC degranulation, and ultimately BP blistering.  相似文献   

11.
Although mice from almost all inbred strains produce IgM anti-DNA antibody in response to B cell mitogens, only (NZB x NZW)F1 mice and mice from other strains that are genetically predisposed to autoimmunity spontaneously produce anti-DNA antibody of the IgG isotype. Because (NZB x NZW)F1 mice display marked B cell hyperactivity, anti-DNA antibody production in these mice has been thought to result from spontaneous, polyclonal B cell activation. Although this may be true for IgM anti-DNA antibodies, our results demonstrate that IgG anti-DNA antibodies are not polyclonal. Rather, IgG anti-DNA autoantibodies within an individual autoimmune mouse are oligoclonal and somatically mutated. These results demonstrate that IgG anti-DNA autoantibodies are the products of clonally selective B cell stimulation and exhibit the same characteristics as secondary immune antibodies to conventional immunogens: they are IgG, they are clonally restricted, and they are somatically mutated.  相似文献   

12.
Heat shock protein (Hsp)70 is one of the most important stress-inducible proteins. Intracellular Hsp70 not only mediates chaperone-cytoprotective functions but can also block multiple steps in the apoptosis pathway. In addition, Hsp70 is actively released into the extracellular milieu, thereby promoting innate and adaptive immune responses. Thus, Hsp70 may be a critical molecule in multiple sclerosis (MS) pathogenesis and a potential target in this disease due to its immunological and cytoprotective functions. To investigate the role of Hsp70 in MS pathogenesis, we examined its immune and cytoprotective roles using both in vitro and in vivo experimental procedures. We found that Hsp70.1-deficient mice were more resistant to developing experimental autoimmune encephalomyelitis (EAE) compared with their wild-type (WT) littermates, suggesting that Hsp70.1 plays a critical role in promoting an effective myelin oligodendrocyte glycoprotein (MOG)-specific T cell response. Conversely, Hsp70.1-deficient mice that developed EAE showed an increased level of autoreactive T cells to achieve the same production of cytokines compared with the WT mice. Although a neuroprotective role of HSP70 has been suggested, Hsp70.1-deficient mice that developed EAE did not exhibit increased demyelination compared with the control mice. Accordingly, Hsp70 deficiency did not influence the vulnerability to apoptosis of oligodendrocyte precursor cells (OPCs) in culture. Thus, the immunological role of Hsp70 may be relevant in EAE, and specific therapies down-regulating Hsp70 expression may be a promising approach to reduce the early autoimmune response in MS patients.  相似文献   

13.
The role of W74 in stabilization of the binding of omega-amino acids to the recombinant (r) kringle 2 domain (residues 180-261) of tissue-type plasminogen activator ([K2tPA]) has been assessed by examination of the binding (dissociation) constants (Kd) of epsilon-aminocaproic acid (EACA) and one of its structural analogues, 7-aminoheptanoic acid (7-AHpA), to variants of r-[K2tPA] generated by site-directed mutagenesis of the wild-type kringle domain. Two nonconservative mutations at W74 of r-[K2tPA] have been constructed, expressed, and purified, resulting in one variant molecule containing a W74L mutation (r-[K2tPA/W74L]) and another containing a W74S mutation (r-[K2tPA/W74S]). In both cases, binding of EACA and 7-AHpA was virtually eliminated in the mutated kringles. Two additional conservative mutations at W74 of r-[K2tPA] have been similarly generated, resulting in r-[K2tPA/W74F] and r-[K2tPA/W74Y]. For these mutants, binding of the same ligands to the variant recombinant kringle domain is retained, although it is significantly weaker in nature. The 1H-NMR spectra of each of the variant kringles demonstrates that all retain the general gross conformations of their wild-type counterpart but that some environmental changes of proton resonances occur at particular aromatic amino acid residues that may be involved in omega-amino acid binding. Differential scanning calorimetric analyses of each of the variant kringles suggest that none of the mutations led to substantial destabilization of their structures, again suggestive of gross conformational similarities in all r-[K2tPA] molecules constructed. We conclude that the aromatic character present at position 74 of wild-type r-[K2tPA] is of great importance to its ability to interact with omega-amino acid ligands, with tryptophan being the most effective amino acid at that position.  相似文献   

14.
Increasing the expression of Hsp70 (heat-shock protein 70) can inhibit sensory neuron degeneration after axotomy. Since the onset of DPN (diabetic peripheral neuropathy) is associated with the gradual decline of sensory neuron function, we evaluated whether increasing Hsp70 was sufficient to improve several indices of neuronal function. Hsp90 is the master regulator of the heat-shock response and its inhibition can up-regulate Hsp70. KU-32 (N-{7-[(2R,3R,4S,5R)-3,4-dihydroxy-5-methoxy-6,6-dimethyl-tetrahydro-2H-pyran-2-yloxy]-8-methyl-2-oxo-2H-chromen-3-yl}acetamide) was developed as a novel, novobiocin-based, C-terminal inhibitor of Hsp90 whose ability to increase Hsp70 expression is linked to the presence of an acetamide substitution of the prenylated benzamide moiety of novobiocin. KU-32 protected against glucose-induced death of embryonic DRG (dorsal root ganglia) neurons cultured for 3 days in vitro. Similarly, KU-32 significantly decreased neuregulin 1-induced degeneration of myelinated Schwann cell DRG neuron co-cultures prepared from WT (wild-type) mice. This protection was lost if the co-cultures were prepared from Hsp70.1 and Hsp70.3 KO (knockout) mice. KU-32 is readily bioavailable and was administered once a week for 6 weeks at a dose of 20 mg/kg to WT and Hsp70 KO mice that had been rendered diabetic with streptozotocin for 12 weeks. After 12 weeks of diabetes, both WT and Hsp70 KO mice developed deficits in NCV (nerve conduction velocity) and a sensory hypoalgesia. Although KU-32 did not improve glucose levels, HbA1c (glycated haemoglobin) or insulin levels, it reversed the NCV and sensory deficits in WT but not Hsp70 KO mice. These studies provide the first evidence that targeting molecular chaperones reverses the sensory hypoalgesia associated with DPN.  相似文献   

15.
Deoxyribonucleases (DNases) are key enzymes for digesting DNA. Abnormalities in the function of these enzymes may contribute to the development of anti-DNA antibodies in systemic lupus erythematosus (SLE). In this study, we used bovine DNase 1-coated ELISA plates to screen anti-DNase antibodies in SLE patients. About 62% of the sera of SLE patients (63/101) were positive for anti-DNase antibodies compared to only 8% of normal controls (8/98). A positive correlation was also found between the concentrations of anti-DNase and anti-DNA antibodies in sera of SLE patients. Affinity-purified anti-DNase immunoglobulin G (IgG) from pooled sera of SLE patients bound to bovine DNase as well as DNA. A synthetic peptide, corresponding to the catalytic site of DNase, was able to completely inhibit the binding of anti-DNase IgG to DNase. In addition to bovine DNase, the anti-DNase IgG also bound to and inhibited the enzymatic activities of DNase present in streptococcal supernatants and human urine. Immunization of lupus-prone NZB/NZW mice with bovine DNase enhanced the production of anti-DNase and DNA antibodies, and accelerated the occurrence of proteinuria. Taken together, these results suggest that DNase-inhibitory antibodies which recognize a conserved epitope near the catalytic site of DNase may act in the pathogenesis of SLE.  相似文献   

16.
Cultured mammalian cells, particularly Chinese hamster ovary (CHO) cells, are widely exploited as hosts for the production of recombinant proteins, but often yields are limiting. Such limitations may be due in part to the misfolding and subsequent degradation of the heterologous proteins. Consequently we have determined whether transiently co‐expressing yeast and/or mammalian chaperones that act to disaggregate proteins, in CHO cell lines, improve the levels of either a cytoplasmic (Fluc) or secreted (Gluc) form of luciferase or an immunoglobulin IgG4 molecule. Over‐expression of the yeast ‘protein disaggregase’ Hsp104 in a CHO cell line increased the levels of Fluc more significantly than for Gluc although levels were not further elevated by over‐expression of the yeast or mammalian Hsp70/40 chaperones. Over‐expression of TorsinA, a mammalian protein related in sequence to yeast Hsp104, but located in the ER, significantly increased the level of secreted Gluc from CHO cells by 2.5‐fold and to a lesser extent the secreted levels of a recombinant IgG4 molecule. These observations indicate that the over‐expression of yeast Hsp104 in mammalian cells can improve recombinant protein yield and that over‐expression of TorsinA in the ER can promote secretion of heterologous proteins from mammalian cells. Biotechnol. Bioeng. 2010; 105: 556–566. © 2009 Wiley Periodicals, Inc.  相似文献   

17.
Although thymus-independent type 2 antigens generally do not undergo Ig class switching from IgM to IgG, pneumococcal polysaccharide vaccine (PPV) induces the production of serotype-specific IgG. How this happens remains unclear, however. In the present study, PPV immunization induced production of IgG as well as IgM specific for a serotype 3-pneumococcal polysaccharide in the sera of wild-type (WT) mice, but this phenomenon was significantly reduced in Dectin-2 knockout (KO) mice. Immunization with PPV caused IL-12p40 production in WT mice, but this response was significantly reduced in Dectin-2KO mice. Likewise, immunization with PPV activated natural killer T (NKT) cells in WT mice but not in Dectin-2KO mice. Furthermore, administration of α-galactosylceramide, recombinant (r)IL-12 or rIFN-γ improved the reduced IgG levels in Dectin-2KO mice, and treatment with neutralizing anti-IFN-γ mAb resulted in the reduction of IgG synthesis in PPV-immunized WT mice. Transfer of spleen cells from PPV-immunized WT mice conferred protection against pneumococcal infection on recipient mice, whereas this effect was cancelled when the transferred spleen cells were harvested from PPV-immunized Dectin-2KO mice. These results suggest that the detection of PPV antigens via Dectin-2 triggers IL-12 production, which induces IFN-γ synthesis by NKT cells and subsequently the production of serotype-specific IgG.  相似文献   

18.
19.
Heat shock proteins are generally regarded as intracellular proteins acting as molecular chaperones; however, Hsp72 is also detected in the extracellular compartment. Hsp72 has been identified in the bronchoalveolar lavage fluid (BALF) of patients with acute lung injury. To address whether Hsp72 directly activated airway epithelium, human bronchial epithelial cells (16HBE14o-) were treated with recombinant Hsp72. Hsp72 induced a dose-dependent increase in IL-8 expression, which was inhibited by the NF-kappaB inhibitor parthenolide. Hsp72 induced activation of NF-kappaB, as evidenced by NF-kappaB trans-activation and by p65 RelA and p50 NF-kappaB1 binding to DNA. Endotoxin contamination of the Hsp72 preparation was not responsible for these effects. Next, BALB/c mice were challenged with a single intratracheal inhalation of Hsp72 and killed 4 h later. Hsp72 induced significant up-regulation of KC, TNF-alpha, neutrophil recruitment, and myeloperoxidase in the BALF. A similar challenge with Hsp72 in TLR4 mutant mice did not stimulate the inflammatory response, stressing the importance of TLR4 in Hsp72-mediated lung inflammation. Last, cultured mouse tracheal epithelial cells (MTEC) from BALB/c and TLR4 mutant and wild-type mice were treated ex vivo with Hsp72. Hsp72 induced a significant increase in KC expression from BALB/c and wild-type MTEC in an NF-kappaB-dependent manner; however, TLR4 mutant MTEC had minimal cytokine release. Taken together, these data suggest that Hsp72 is released and biologically active in the BALF and can regulate airway epithelial cell cytokine expression in a TLR4 and NF-kappaB-dependent mechanism.  相似文献   

20.
Gonadotrophin-releasing hormone (GnRH) is the prime decapeptide hormone in the regulation of mammalian reproduction. Active immunization against GnRH has been a good treatment option to fight against hormone-dependent disease such as breast cancer. We designed and purified a novel protein vaccine Hsp65–GnRH6 containing heat shock protein 65 (Hsp65) and six copies of GnRH in linear alignment. Immunization with Hsp65–GnRH6 evoked strong humoral response in female mice. The generation of specific anti-GnRH antibodies was detected by ELISA and verified by western blot. In addition, anti-GnRH antibodies effectively neutralized endogenous GnRH activity in vivo, as demonstrated by the degeneration of the ovaries and uteri in the vaccinated mice. Moreover, the growth of EMT-6 mammary tumor allografts was inhibited by anti-GnRH antibodies. Histological examinations have shown that there was increased focal necrosis in tumors. Taken together, our results showed that immunization with Hsp65–GnRH6 elicited high titer of specific anti-GnRH antibodies and further led to atrophy of reproductive organs. The specific antibodies could inhibit the growth of EMT-6 murine mammary tumor probably via an indirect mechanism that includes the depletion of estrogen. In view of these results, the protein vaccine Hsp65–GnRH6 appears to be a promising candidate vaccine for hormone-dependent cancer therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号