首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper we address the contribution of different endocytic pathways to the intracellular uptake and processing of differently sized latex particles and of plasmid DNA complexes by means of fluorescence microscopy and FACS analysis. By using a number of specific inhibitors of either clathrin-dependent or caveolae-dependent endocytosis we were able to discriminate between these two pathways. Latex particles smaller than 200 nm were internalized exclusively by clathrin-mediated endocytosis, whereas larger particles entered the cells via a caveolae-dependent pathway.The route of uptake of plasmid DNA complexes appears strongly dependent on the nature of the complexes. Thus, lipoplexes containing the cationic lipid DOTAP, were exclusively internalized by a clathrin-dependent mechanism, while polyplexes prepared from the cationic polymer polyethyleneimine (PEI) were internalized in roughly equal proportions by both pathways. Upon incubation of cells with lipoplexes containing the luciferase gene abundant luciferase expression was observed, which was effectively blocked by inhibitors of clathrin-dependent endocytosis but not by inhibitors of the caveolae-dependent uptake mechanism. By contrast, luciferase transfection of the cells with polyplexes was unaffected by inhibition of clathrin-mediated endocytosis, but was nearly completely blocked by inhibitors interfering with the caveolae pathway. The results are discussed with respect to possible differences in the mechanism by which plasmid DNA is released from lipoplexes and polyplexes into the cytosol and to the role of size in the uptake and processing of the complexes. Our data suggest that improvement of non-viral gene transfection could very much benefit from controlling particle size, which would allow targeting of particle internalization via a non-degradative pathway, involving caveolae-mediated endocytosis.  相似文献   

2.
In this paper we address the contribution of different endocytic pathways to the intracellular uptake and processing of differently sized latex particles and of plasmid DNA complexes by means of fluorescence microscopy and FACS analysis. By using a number of specific inhibitors of either clathrin-dependent or caveolae-dependent endocytosis we were able to discriminate between these two pathways. Latex particles smaller than 200 nm were internalized exclusively by clathrin-mediated endocytosis, whereas larger particles entered the cells via a caveolae-dependent pathway.

The route of uptake of plasmid DNA complexes appears strongly dependent on the nature of the complexes. Thus, lipoplexes containing the cationic lipid DOTAP, were exclusively internalized by a clathrin-dependent mechanism, while polyplexes prepared from the cationic polymer polyethyleneimine (PEI) were internalized in roughly equal proportions by both pathways. Upon incubation of cells with lipoplexes containing the luciferase gene abundant luciferase expression was observed, which was effectively blocked by inhibitors of clathrin-dependent endocytosis but not by inhibitors of the caveolae-dependent uptake mechanism. By contrast, luciferase transfection of the cells with polyplexes was unaffected by inhibition of clathrin-mediated endocytosis, but was nearly completely blocked by inhibitors interfering with the caveolae pathway. The results are discussed with respect to possible differences in the mechanism by which plasmid DNA is released from lipoplexes and polyplexes into the cytosol and to the role of size in the uptake and processing of the complexes. Our data suggest that improvement of non-viral gene transfection could very much benefit from controlling particle size, which would allow targeting of particle internalization via a non-degradative pathway, involving caveolae-mediated endocytosis.  相似文献   

3.
Endocytosis – the uptake of extracellular ligands, soluble molecules, protein and lipids from the extracellular surface – is a vital process, comprising multiple mechanisms, including phagocytosis, macropinocytosis, clathrin-dependent and clathrin-independent uptake such as caveolae-mediated and non-caveolar raft-dependent endocytosis. The best-studied endocytotic pathway for internalizing both bulk membrane and specific proteins is the clathrin-mediated endocytosis. Although many papers were published about the caveolar endocytosis, it is still not known whether it represents an alternative pathway with distinct cellular compartments to avoid lysosomal degradation or ligands taken up by caveolae can also be targeted to late endosomes/lysosomes. In this paper, we summarize data available about caveolar endocytosis. We are especially focussing on the intracellular route of caveolae and providing data supporting that caveolar endocytosis can join to the classical endocytotic pathway.  相似文献   

4.

Background

Gene transfer using non-viral vectors offers a non-immunogenic and safe method of gene delivery. Cellular uptake and intracellular trafficking of the nanoparticles can impact on the transfection efficiency of these vectors. Therefore, understanding the physicochemical properties that may influence the cellular uptake and the intracellular trafficking can aid the design of more efficient non-viral gene delivery systems. Recently, we developed novel amino acid-substituted gemini surfactants that showed higher transfection efficiency than their parent compound. In this study, we evaluated the mechanism of cellular uptake of the plasmid/gemini surfactant/helper lipid nanoparticles and their effect on the transfection efficiency.

Results

Nanoparticles were incubated with Sf 1 Ep cells in the presence of different endocytic inhibitors and gene expression (interferon-??) was measured using ELISA. Clathrin-mediated and caveolae-mediated uptake were found to be equally contributing to cellular internalization of both P/12-7NH-12/L (parent gemini surfactant) and P/12-7NGK-12/L (amino acid-substituted gemini surfactant) nanoparticles. The plasmid and the helper lipid were fluorescently tagged to track the nanoparticles inside the cells, using confocal laser scanning microscopy. Transmission electron microscopy images showed that the P/12-7NGK-12/L particles were cylindrical while the P/12-7NH-12/L particles were spherical which may influence the cellular uptake behaviour of these particles. Dye exclusion assay and pH-titration of the nanoparticles suggested that high buffering capacity, pH-dependent increase in particle size and balanced DNA binding properties may be contributing to a more efficient endosomal escape of P/12-7NGK-12/L compared to the P/12-7NH-12/L nanoparticles, leading to higher gene expression.

Conclusion

Amino-acid substitution in the spacer of gemini surfactant did not alter the cellular uptake pathway, showing similar pattern to the unsubstituted parent gemini surfactant. Glycyl-lysine substitution in the gemini spacer improved buffering capacity and imparted a pH-dependent increase of particle size. This property conferred to the P/12-7NGK-12/L nanoparticles the ability to escape efficiently from clathrin-mediated endosomes. Balanced binding properties (protection and release) of the 12-7NGK-12 in the presence of polyanions could contribute to the facile release of the nanoparticles internalized via caveolae-mediated uptake. A more efficient endosomal escape of the P/12-7NGK-12/L nanoparticles lead to higher gene expression compared to the parent gemini surfactant.  相似文献   

5.
BACKGROUND: Gene delivery by non-specific adsorption of non-viral vectors to protein-coated surfaces can reduce the amount of DNA required, and also increase transgene expression and the number of cells expressing the transgene. The protein on the surface mediates cell adhesion and vector immobilization, and functions to colocalize the two to enhance gene delivery. This report investigates the mechanism and specificity by which the protein coating enhances gene transfer, and determines if the protein coating targets the vector for internalization by a specific pathway. METHODS: Proteins (FBS, BSA, fibronectin, collagen I, and laminin) were dried onto culture dishes, followed by PEI/DNA complex adsorption for surface delivery. Reporter genes were employed to characterize transfection as a function of the protein identity and density. Vector immobilization was measured using radiolabeled plasmid, and internalization was quantified in the presence and absence of the endocytosis inhibitors chlorpromazine and genistein. RESULTS: Fibronectin coating yielded the greatest expression for PEI/DNA polyplexes, with maximal expression at intermediate protein densities. Expression in control studies with bolus delivery was independent of the protein identity. Substrate binding was independent of the protein identity; however, internalization was greatest on surfaces coated with fibronectin and collagen I. Inhibition of caveolae-mediated endocytosis reduced gene expression more than clathrin-mediated endocytosis. Similarly, inhibition of caveolae-mediated endocytosis significantly reduced the intracellular levels of DNA. CONCLUSIONS: Fibronectin at intermediate densities mediated the highest levels of transgene expression, potentially by targeting internalization through caveolae-mediated endocytosis. Substrate modifications, such as the identity and density of proteins, provide an opportunity for modification of biomaterials for enhancing gene expression.  相似文献   

6.
C105Y, a synthetic peptide (CSIPPEVKFNKPFVYLI) based on the amino acid sequence corresponding to residues 359-374 of alpha1-antitrypsin, enhances gene expression from DNA nanoparticles. To investigate how this enhancement occurs, C105Y was fluorescently labeled to study its uptake and intracellular trafficking. When human hepatoma cells (HuH7) were incubated with fluorescently labeled C105Y for as little as 3 min, C105Y displayed nuclear and cytoplasmic staining with enrichment of fluorescent signal in the nucleus and nucleolus. Uptake and nucleolar localization were observed with the short sequence PFVYLI, but not with SIPPEVKFNK, and the D-isomer was readily taken up into cells but not into the nucleus. We found that the C105Y peptide is routed to the nucleolus very rapidly in an energy-dependent fashion, whereas membrane translocation and nuclear localization are energy-independent. When we tested the involvement of known endocytosis pathways in uptake and trafficking of this peptide, we demonstrated that C105Y peptide is internalized by a clathrin- and caveolin-independent pathway, although lipid raft-mediated endocytosis may play a role in peptide intracellular trafficking. Efficient energy-independent cell entry with rapid nuclear localization probably accounts for enhancement of gene expression from inclusion of C105Y into DNA nanoparticles.  相似文献   

7.
Cell penetrating peptides are efficient tools to deliver various bioactive cargos into cells, but their exact functioning mechanism is still debated. Recently, we showed that a delivery peptide PepFect14 condenses oligonucleotides (ON) into negatively charged nanocomplexes that are taken up by cells via class A scavenger receptors (SR-As). Here we unraveled the uptake mechanism and intracellular trafficking of PF14–ON nanocomplexes in HeLa cells. Macropinocytosis and caveolae-mediated endocytosis are responsible for the intracellular functionality of nucleic acids packed into nanocomplexes. However, only a negligible fraction of the complexes were trafficked to endoplasmic reticulum or Golgi apparatus — the common destinations of caveolar endocytosis. Neither were the PF14–SCO nanocomplexes routed to endo-lysosomal pathway, and they stayed in vesicles with slightly acidic pH, which were not marked with LysoSensor. “Naked” ON, in contrary, was rapidly targeted to acidic vesicles and lysosomes. The transmission electron microscopy analysis of interactions between SR-As and PF14–ON nanocomplexes on ultrastructural level revealed that nanocomplexes localized on the plasma membrane in close proximity to SR-As and their colocalization is retained in cells, suggesting that PF14–ON complexes associate with targeted receptors.  相似文献   

8.
BACKGROUND: Gene delivery by the use of magnetic forces, so-called magnetofection, has been shown to enhance transfection efficiency of viral and non-viral systems up to several-hundred-fold. For this purpose gene carriers, such as polyethylenimine (PEI), are associated with superparamagnetic nanoparticles and complexed with plasmid DNA. Gene delivery is targeted by the application of a magnetic field. METHODS: To investigate the underlying mechanism, we studied the impact of the applied magnetic field on the transfection process of PEI-coated superparamagnetic iron oxide gene vectors (magnetofectins) using various cell lines. In particular, we addressed the question whether accelerated sedimentation of magnetofectins is the driving force or if the magnetic field itself directly influences the endocytic processing of the magnetofectins. The cellular uptake mechanism of magnetofectins was studied by electron microscopy and transfection experiments in the presence of various inhibitors that operate at different steps of endocytosis. RESULTS: In this study we could show that cellular uptake of magnetofectins proceeds obviously by endocytosis. Cellular uptake of magnetofectins behaves almost analogously as compared with PEI polyplexes. Besides unspecific endocytosis, apparently clathrin-dependent as well as caveolae-mediated endocytic uptake is involved. CONCLUSIONS: The magnetic field itself does not alter the uptake mechanism of magnetofectins. Obviously, the magnetic forces lead to an accelerated sedimentation of magnetofectins on the cell surface and do not directly affect the endocytic uptake mechanism. So further improvement of magnetic field application could lead to efficient targeting of gene expression into the desired organ and tissue in vivo.  相似文献   

9.
For studying the mechanism of cationic liposome-mediated transmembrane routes for gene delivery, various inhibitors of endocytosis were used to treat human throat epidermis cancer cells, Hep-2, before transfection with Lipofectamine 2000/pGFP-N2 or Lipofectamine 2000/pGL3. To eliminate the effect of inhibitor toxicity on transfection, the RLU/survival rate was used to represent the transfection efficiency. Chlorpromazine and wortmannin, clathrin inhibitors, decreased transfection efficiency by 44 % (100 μM) and 31 % (100 nM), respectively. At the same time, genistein, a caveolin inhibitor, decreased it by 30 % (200 μM). Thus combined transmembrane routes through the clathrin and caveolae-mediated pathways were major mechanisms of cell uptake for the cationic liposome-mediated gene delivery. After entering the cells, microtubules played an important role on gene delivery as vinblastine, a microtubulin inhibitor, could reduce transfection efficiency by 41 % (200 nM).  相似文献   

10.
Efficient entry of synthetic polymers inside cells is a central issue in polymeric drug delivery. Though polymers are widely believed to interact nonspecifically with plasma membrane, we present unexpected evidence that amphiphilic block copolymers, depending on their aggregation state, can distinguish between caveolae- and clathrin-mediated endocytosis. A block copolymer of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO), Pluronic P85 (P85), below critical micelle concentration (CMC) exists as single molecule coils (unimers) and above CMC forms 14.6 nm aggregated micelles with a hydrophobic PPO core and hydrophilic PEO shell. The internalization pathways of P85 in mammalian cells were elucidated using endocytosis inhibitors and colocalization with endocytosis markers (clathrin-specific antibodies and transferrin for clathrin and caveolin-1-specific antibodies and cholera toxin B for caveolae). Altogether, our results indicate that P85 unimers internalize through caveolae-mediated endocytosis, while P85 micelles internalize through clathrin-mediated endocytosis. Furthermore, at concentrations above 0.01% P85 inhibits caveolae-mediated endocytosis (cholera toxin B), while having little or no effect on the clathrin-mediated endocytosis (transferrin). Selective interaction of Pluronic with caveolae may explain its striking pharmacological activities including inhibition of drug efflux transport, activation of gene expression, and dose-dependent hyperlipidemia.  相似文献   

11.
《The Journal of cell biology》1994,127(5):1217-1232
Caveolae or noncoated plasmalemmal vesicles found in a variety of cells have been implicated in a number of important cellular functions including endocytosis, transcytosis, and potocytosis. Their function in transport across endothelium has been especially controversial, at least in part because there has not been any way to selectively inhibit this putative pathway. We now show that the ability of sterol binding agents such as filipin to disassemble endothelial noncoated but not coated plasmalemmal vesicles selectively inhibits caveolae-mediated intracellular and transcellular transport of select macromolecules in endothelium. Filipin significantly reduces the transcellular transport of insulin and albumin across cultured endothelial cell monolayers. Rat lung microvascular permeability to albumin in situ is significantly decreased after filipin perfusion. Conversely, paracellular transport of the small solute inulin is not inhibited in vitro or in situ. In addition, we show that caveolae mediate the scavenger endocytosis of conformationally modified albumins for delivery to endosomes and lysosomes for degradation. This intracellular transport is inhibited by filipin both in vitro and in situ. Other sterol binding agents including nystatin and digitonin also inhibit this degradative process. Conversely, the endocytosis and degradation of activated alpha 2- macroglobulin, a known ligand of the clathrin-dependent pathway, is not affected. Interestingly, filipin appears to inhibit insulin uptake by endothelium for transcytosis, a caveolae-mediated process, but not endocytosis for degradation, apparently mediated by the clathrin-coated pathway. Such selective inhibition of caveolae not only provides critical evidence for the role of caveolae in the intracellular and transcellular transport of select macromolecules in endothelium but also may be useful for distinguishing transport mediated by coated versus noncoated vesicles.  相似文献   

12.
We examined mechanisms of FITC-albumin uptake by alveolar type II epithelial cells using cultured RLE-6TN cells. Alkaline phosphatase activity and the expression of cytokeratin 19 mRNA, which are characteristic features of alveolar type II epithelial cells, were detected in RLE-6TN cells. The uptake of FITC-albumin by the cells was time and temperature dependent and showed the saturation kinetics of high- and low-affinity transport systems. FITC-albumin uptake was inhibited by native albumin, by chemically modified albumin, and by metabolic inhibitors and bafilomycin A(1), an inhibitor of vacuolar H(+)-ATPase. Confocal laser scanning microscopic analysis after FITC-albumin uptake showed punctate localization of fluorescence in the cells, which was partly localized in lysosomes. FITC-albumin taken up by the cells gradually degraded over time, as shown by fluoroimage analyzer after SDS-PAGE. The uptake of FITC-albumin by RLE-6TN cells was not inhibited by nystatin, indomethacin, or methyl-beta-cyclodextrin (inhibitors of caveolae-mediated endocytosis) but was inhibited by phenylarsine oxide and chlorpromazine (inhibitors of clathrin-mediated endocytosis) in a concentration-dependent manner. Uptake was also inhibited by potassium depletion and hypertonicity, conditions known to inhibit clathrin-mediated endocytosis. These results indicate that the uptake of FITC-albumin in cultured alveolar type II epithelial cells, RLE-6TN, is mediated by clathrin-mediated but not by caveolae-mediated endocytosis, and intracellular FITC-albumin is gradually degraded in lysosomes. Possible receptors involved in this endocytic system are discussed.  相似文献   

13.

Background

While it is accepted that viruses can enter epithelial cells by endocytosis, the lack of an established biological mechanism for the trafficking of infectious virions through vaginal epithelial cells and their release from the plasma membrane has contributed to ongoing controversy about whether endocytosis is a mere artifact of some cell culture systems and whether squamous vaginal epithelial cells are even relevant as it pertains to HIV-1 transmission.

Methodology/Principal Findings

In this study, we investigated the intracellular trafficking pathway that HIV-1 exploits to transcytose vaginal epithelial cells. The reduction of endosome tubulation by recycling endosome inhibitors blocked transcytosis of HIV-1 in a cell culture and transwell system. In addition, we demonstrate that although heat-inactivated virus was endocytosed as efficiently as native virus, heat-inactivated virus was trafficked exclusively to the lysosomal pathway for degradation following endocytosis. Lysosomal protease-specific inhibitors blocked the degradation of inactivated virions. Immunofluorescence analysis not only demonstrated that HIV-1 was inside the cells but the different colocalization pattern of native vs. heat inactivated virus with transferrin provided conclusive evidence that HIV-1 uses the recycling pathway to get across vaginal epithelial cells.

Conclusions/Significance

Altogether, our findings demonstrate the precise intracellular trafficking pathway utilized by HIV-1 in epithelial cells, confirms that HIV-1 transcytosis through vaginal epithelial cells is a biological phenomenon and brings to light the differential intracellular trafficking of native vs heat-inactivated HIV-1 which with further exploration could prove to provide valuable insights that could be used in the prevention of transcytosis/transmission of HIV-1 across the mucosal epithelia.  相似文献   

14.
Successful drug delivery by functionalized nanocarriers largely depends on their efficient intracellular transport which has not yet been fully understood. We developed a new tracking technique by encapsulating quantum dots into the core of wheat germ agglutinin-conjugated nanoparticles (WGA-NP) to track cellular transport of functionalized nanocarriers. The resulting nanoparticles showed no changes in particle size, zeta potential or biobinding activity, and the loaded probe presented excellent photostability and tracking ability. Taking advantage of these properties, cellular transport profiles of WGA-NP in Caco-2 cells was demonstrated. The cellular uptake begins with binding of WGA to its receptor at the cell surface. The subsequent endocytosis happened in a cytoskeleton-dependent manner and by means of clathrin and caveolae-mediated mechanisms. After endosome creating, transport occurs to both trans-Golgi and lysosome. Our study provides new evidences for quantum dots as a cellular tracking probe of nanocarriers and helps understand intracellular transport profile of lectin-functionalized nanoparticles.  相似文献   

15.
Influenza virus has been described to enter host cells via clathrin-mediated endocytosis. However, it has also been suggested that other endocytic routes may provide additional entry pathways. Here we show that influenza virus may enter and infect HeLa cells that are unable to take up ligands by clathrin-mediated endocytosis. By overexpressing a dominant-negative form of the Eps15 protein to inhibit clathrin-mediated endocytosis, we demonstrate that while transferrin uptake and Semliki Forest virus infection were prevented, influenza virus could enter and infect cells expressing Eps15Delta95/295. This finding is supported by the successful infection of cells with influenza virus in the presence of chemical treatments that block endocytosis, namely, chlorpromazine and potassium depletion. We show also that influenza virus may infect cells incapable of uptake by caveolae. Treatment with the inhibitors nystatin, methyl-beta-cyclodextrin, and genistein, as well as transfection of cells with dominant-negative caveolin-1, had no effect on influenza virus infection. By combining inhibitory methods to block both clathrin-mediated endocytosis and uptake by caveolae in the same cell, we demonstrate that influenza virus may infect cells by an additional non-clathrin-dependent, non-caveola-dependent endocytic pathway. We believe this to be the first conclusive analysis of virus entry via such a non-clathrin-dependent pathway, in addition to the traditional clathrin-dependent route.  相似文献   

16.
Human skin fibroblasts efficiently internalize the matrikine decorin by receptor-mediated endocytosis, however, very little is known about its intracellular trafficking routes up to lysosomal degradation. In an in vitro system measuring uptake and degradation of [(35)S]sulfate-labeled decorin, endocytosis was blocked by 46% when clathrin assembly/disassembly was inhibited using chlorpromazine. Pharmacological inhibition of EGF receptor signaling caused 34% reduction of decorin uptake, whereas inhibition of the IGF receptor had no effect. Using confocal immunofluorescence microscopy, we determined that only about 5-10% of internalized decorin colocalized with the EGFR. Thus, uptake depends on EGFR signaling rather than trafficking along the same pathway. Decorin passes through early endosomes towards trafficking to lysosomes, since more than 50% of decorin colocalized with EEA1. Moreover, inhibition of endosomal fusion by wortmannin caused a profound inhibition of decorin endocytosis. Overexpression of the clathrin-binding Hrs protein, which has previously been shown to inibit EGFR degradation blocked the degradation of decorin. Cholesterol depletion by filipin inhibited uptake of decorin by 34%, however, nearly no intracellular colocalization was found between decorin and caveolin-1. The combined use of filipin and chlorpromazine had an additive inhibitory effect on decorin endocytosis. Moreover, chlorpromazine diverted decorin from the chlorpromazine-sensitive pathway to an alternative uptake route. The CD44/hyaluronan pathway was excluded as an endocytic route for decorin. Our observations indicate that decorin is taken up by more than one endocytic pathway. Of note, lipid-raft-dependent EGFR signaling modulates decorin uptake, suggesting the presence of a potential feedback regulation mechanism for desensitization of signaling events mediated by decorin.  相似文献   

17.
Cellular entry of peptide, protein, and nucleic acid biopharmaceuticals is severely impeded by the cell membrane. Linkage or assembly of such agents and cell-penetrating peptides (CPP) with the ability to cross cellular membranes has opened a new horizon in biomedical research. Nevertheless, the uptake mechanisms of most CPP have been controversially discussed and are poorly understood. We present data on two recently developed oligocationic CPP, the sweet arrow peptide SAP, a gamma-zein-related sequence, and a branched human calcitonin derived peptide, hCT(9-32)-br, carrying a simian virus derived nuclear localization sequence in the side chain. Uptake in HeLa cells and intracellular trafficking of N-terminally carboxyfluorescein labeled peptides was studied by confocal laser scanning microscopy and flow cytometry using biochemical markers in combination with quenching and colocalization approaches. Both peptides were readily internalized by HeLa cells through interaction with the extracellular matrix followed by lipid raft-mediated endocytosis as confirmed by reduced uptake at lower temperature, in the presence of endocytosis inhibitors and through cholesterol depletion by methyl-beta-cyclodextrin, supported by colocalization with markers for clathrin-independent pathways. In contrast to the oligocationic SAP and hCT(9-32)-br, interaction with the extracellular matrix, however, was no prerequisite for the observed lipid raft-mediated uptake of the weakly cationic, unbranched hCT(9-32). Transient involvement of endosomes in intracellular trafficking of SAP and hCT(9-32)-br prior to endosomal escape of both peptides was revealed by colocalization and pulse-chase studies of the peptides with the early endosome antigen 1. The results bear potential for CPP as tools for intracellular drug delivery.  相似文献   

18.
Vascular hyperpermeability induced by lipopolysaccharide (LPS) is a common pathogenic process in cases of severe trauma and sepsis. Vascular endothelial cadherin (VE-cad) is a key regulatory molecule involved in this process, although the detailed mechanism through which this molecule acts remains unclear. We assessed the role of clathrin-mediated and caveolae-mediated endocytosis of VE-cad in LPS-induced vascular hyperpermeability in the human vascular endothelial cell line CRL-2922 and determined that vascular permeability and VE-cad localization at the plasma membrane were negatively correlated after LPS treatment. Additionally, the loss of VE-cad at the plasma membrane was caused by both clathrin-mediated and caveolae-mediated endocytosis. Clathrin-mediated endocytosis was dominant early after LPS treatment, and caveolae-mediated endocytosis was dominant hours after LPS treatment. The caveolae-mediated endocytosis of VE-cad was activated through the LPS-Toll-like receptor 4 (TLR4)-Src signaling pathway. Structural changes in the actin cytoskeleton, specifically from polymerization to depolymerization, were important reasons for the switching of the VE-cad endocytosis pathway from clathrin-mediated to caveolae-mediated. Our findings suggest that clathrin-mediated and caveolae-mediated endocytosis of VE-cad contribute to LPS-induced vascular hyperpermeability, although they contribute via different mechanism. The predominant means of endocytosis depends on the time since LPS treatment.  相似文献   

19.
Local and controlled DNA release is a critical issue in current gene therapy. As viral gene delivery systems are associated with severe security problems, nonviral gene delivery vehicles were developed. Here, DNA-nanoparticles using grafted copolymers of PLL and PEG to increase their biocompatibility and stealth properties were systematically studied. Ten different PLL-based polymers with no, low, and high PEG grafting and PEG molecular weights as well as different PLL backbone lengths were complexed with plasmids containing 3200 to 10,100 base pairs. Stable complexes were formed and selected for cytotoxicity and transfection efficiency. Predominantly, PLL-g-PEG-DNA nanoparticles grafted with 4 or 5% PEG moieties of 5 kDa transfected 40% COS-7 cells without reduction of cell viability when formed at N/P ratios between 0.1 and 12.5. The molecular weight of PLL did not significantly affect transfection efficiency or cytotoxicity indicating that a specific cationic charge-density-to-PEG-ratio is important for efficient transfection and low cytotoxicity. The PLL-g-PEG-DNA nanoparticles were spherical with a diameter of approximately 100 nm and did not aggregate over 2 weeks. Moreover, they protected included plasmid DNA against serum components and DNase I digestion. Therefore, such storage stable and versatile PLL-g-PEG-DNA nanoparticles might be useful to deliver differently sized therapeutic DNA for in vivo applications.  相似文献   

20.
Pemphigus vulgaris (PV) is a life-threatening autoimmune disease characterized by oral mucosal erosions and epidermal blistering. The autoantibodies generated target the desmosomal cadherin desmoglein-3 (Dsg3). Previous studies demonstrate that upon PV IgG binding, Dsg3 is internalized and enters an endo-lysosomal pathway where it is degraded. To define the endocytic machinery involved in PV IgG-induced Dsg3 internalization, human keratinocytes were incubated with PV IgG, and various tools were used to perturb distinct endocytic pathways. The PV IgG.Dsg3 complex failed to colocalize with clathrin, and inhibitors of clathrin- and dynamin-dependent pathways had little or no effect on Dsg3 internalization. In contrast, cholesterol binding agents such as filipin and nystatin and the tyrosine kinase inhibitor genistein dramatically inhibited Dsg3 internalization. Furthermore, the Dsg3 cytoplasmic tail specified sensitivity to these inhibitors. Moreover, inhibition of Dsg3 endocytosis with genistein prevented disruption of desmosomes and loss of adhesion in the presence of PV IgG. Altogether, these results suggest that PV IgG-induced Dsg3 internalization is mediated through a clathrin- and dynamin-independent pathway and that Dsg3 endocytosis is tightly coupled to the pathogenic activity of PV IgG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号