首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Membrane inlet mass spectrometry was used to observe nitric oxide in the well-studied reaction of nitrite with hemoglobin. The membrane inlet was submerged in the reaction solutions and measured NO in solution via its flux across a semipermeable membrane leading to the mass spectrometer detecting the mass-to-charge ratio m/z 30. This method measures NO directly in solution and is an alternate approach compared with methods that purge solutions to measure NO. Addition to deoxy-Hb(Fe(II)) (near 38 microM heme concentration) of nitrite in a range of 80 microM to 16 mM showed no accumulation of either NO or N(2)O(3) on a physiologically relevant time scale with a sensitivity near 1 nM. The addition of nitrite to oxy-Hb(Fe(II)) and met-Hb(Fe(III)) did not accumulate free NO to appreciable extents. These observations show that for several minutes after mixing nitrite with hemoglogin, free NO does not accumulate to levels exceeding the equilibrium level of NO. The presence of cyanide ions did not alter the appearance of the data; however, the presence of 2 mM mercuric ions at the beginning of the experiment with deoxy-Hb(Fe(II)) shortened the initial phase of NO accumulation and increased the maximal level of free, unbound NO by about twofold. These experiments appear consistent with no role of met-Hb(Fe(III)) in the generation of NO and an increase in nitrite reductase activity caused by the presumed binding of mercuric to cysteine residues. These results raise questions about the ability of reduction of nitrite mediated by deoxy-Hb(Fe(II)) to play a role in vasodilation.  相似文献   

2.
Hypoxic vasodilation involves detection of the oxygen content of blood by a sensor, which rapidly transduces this signal into vasodilatory bioactivity. Current perspectives on the molecular mechanism of this function hold that hemoglobin (Hb) operates as both oxygen sensor and a condition-responsive NO reactor that regulates the dispensing of bioactivity through release of the NO group from the beta-cys93 S-nitroso derivative of Hb, SNO-Hb. A common path to the formation of SNO-Hb involves oxidative transfer of the NO-group from heme to thiol. We have previously reported that the reaction of nitrite with deoxy-Hb, which furnishes heme-Fe(II)NO, represents one attractive route for the formation of SNO-Hb. Recent literature, however, posits that the nitrite-reductase reaction of Hb might produce physiological vasodilatory effects through NO that evades trapping on heme-Fe(II) and may be stored before release as Fe(III)NO. In this article, we briefly review current perspectives in NO biology on the nitrite-reductase reaction of Hb. We report in vitro spectroscopic (UV/Vis, EPR) studies that are difficult to reconcile with suggestions that this reaction either generates a heme-Fe(III)NO reservoir or significantly liberates NO. We further show in bioassay experiments that combinations of nitrite and deoxy-Hb--under conditions that suppress SNO-Hb formation--exhibit no direct vasodilatory activity. These results help underscore the differences between physiological, RBC-regulated, hypoxic vasodilation versus pharmacological effects of exogenous nitrite.  相似文献   

3.
Site-directed mutagenesis studies have shown that Asp140 in both human and rat heme oxygenase-1 is critical for enzyme activity. Here, we report the D140A mutant crystal structure in the Fe(III) and Fe(II) redox states as well as the Fe(II)-NO complex as a model for the Fe(II)-oxy complex. These structures are compared to the corresponding wild-type structures. The mutant and wild-type structures are very similar, except for the distal heme pocket solvent structure. In the Fe(III) D140A mutant one water molecule takes the place of the missing Asp140 carboxylate side-chain and a second water molecule, novel to the mutant, binds in the distal pocket. Upon reduction to the Fe(II) state, the distal helix running along one face of the heme moves closer to the heme in both the wild-type and mutant structures thus tightening the active site. NO binds to both the wild-type and mutant in a bent conformation that orients the NO O atom toward the alpha-meso heme carbon atom. A network of water molecules provides a H-bonded network to the NO ligand, suggesting a possible proton shuttle pathway required to activate dioxygen for catalysis. In the wild-type structure, Asp140 exhibits two conformations, suggesting a dynamic role for Asp140 in shuttling protons from bulk solvent via the water network to the iron-linked oxy complex. On the basis of these structures, we consider why the D140A mutant is inactive as a heme oxygenase but active as a peroxidase.  相似文献   

4.
The mechanism of the nitric oxide reduction in a bacterial nitric oxide reductase (NOR) has been investigated in two model systems of the heme-b(3)-Fe(B) active site using density functional theory (B3LYP). A model with an octahedral coordination of the non-heme Fe(B) consisting of three histidines, one glutamate and one water molecule gave an energetically feasible reaction mechanism. A tetrahedral coordination of the non-heme iron, corresponding to the one of Cu(B) in cytochrome oxidase, gave several very high barriers which makes this type of coordination unlikely. The first nitric oxide coordinates to heme b(3) and is partly reduced to a more nitroxyl anion character, which activates it toward an attack from the second NO. The product in this reaction step is a hyponitrite dianion coordinating in between the two irons. Cleaving an NO bond in this intermediate forms an Fe(B) (IV)O and nitrous oxide, and this is the rate determining step in the reaction mechanism. In the model with an octahedral coordination of Fe(B) the intrinsic barrier of this step is 16.3 kcal/mol, which is in good agreement with the experimental value of 15.9 kcal/mol. However, the total barrier is 21.3 kcal/mol, mainly due to the endergonic reduction of heme b(3) taken from experimental reduction potentials. After nitrous oxide has left the active site the ferrylic Fe(B) will form a mu-oxo bridge to heme b(3) in a reaction step exergonic by 45.3 kcal/mol. The formation of a quite stable mu-oxo bridge between heme b(3) and Fe(B) is in agreement with this intermediate being the experimentally observed resting state in oxidized NOR. The formation of a ferrylic non-heme Fe(B) in the proposed reaction mechanism could be one reason for having an iron as the non-heme metal ion in NOR instead of a Cu as in cytochrome oxidase.  相似文献   

5.
Cytochrome cd(1) is a respiratory enzyme that catalyzes the physiological one-electron reduction of nitrite to nitric oxide. The enzyme is a dimer, each monomer containing one c-type cytochrome center and one active site d(1) heme. We present stopped-flow Fourier transform infrared data showing the formation of a stable ferric heme d(1)-NO complex (formally d(1)Fe(II)-NO(+)) as a product of the reaction between fully reduced Paracoccus pantotrophus cytochrome cd(1) and nitrite, in the absence of excess reductant. The Fe-(14)NO nu(NO) stretching mode is observed at 1913 cm(-1) with the corresponding Fe-(15)NO band at 1876 cm(-1). This d(1) heme-NO complex is still readily observed after 15 min. EPR and visible absorption spectroscopic data show that within 4 ms of the initiation of the reaction, nitrite is reduced at the d(1) heme, and a cFe(III) d(1)Fe(II)-NO complex is formed. Over the next 100 ms there is an electron redistribution within the enzyme to give a mixed species, 55% cFe(III) d(1)Fe(II)-NO and 45% cFe(II) d(1)Fe(II)-NO(+). No kinetically competent release of NO could be detected, indicating that at least one additional factor is required for product release by the enzyme. Implications for the mechanism of P. pantotrophus cytochrome cd(1) are discussed.  相似文献   

6.
The x-ray crystal structure of the fluoride derivative of ferric sperm whale (Physeter catodon) myoglobin (Mb) has been determined at 2.5 A resolution (R = 0.187) by difference Fourier techniques. The fluoride anion, sitting in the central part of the heme distal site and coordinated to the heme iron, is hydrogen bonded to the distal His(64)E7 NE2 atom and to the W195 solvent water molecule. This water molecule also significantly interacts with the same HisE7 residue, which stabilizes the coordinated fluoride ion. Moreover, fluoride and formate binding to ferric Aplysia limacina Mb, sperm whale (Physeter catodon) Mb, horse (Caballus caballus) Mb, loggerhead sea turtle (Caretta caretta) Mb, and human hemoglobin has been investigated by 1H-NMR relaxometry. A strong solvent proton relaxation enhancement is observed for the fluoride derivatives of hemoproteins containing HisE7. Conversely, only a small outer-sphere contribution to the solvent relaxation rate has been observed for all of the formate derivatives considered and for the A. limacina Mb:fluoride derivative, where HisE7 is replaced by Val.  相似文献   

7.
Tiso M  Tejero J  Kenney C  Frizzell S  Gladwin MT 《Biochemistry》2012,51(26):5285-5292
Plant nonsymbiotic hemoglobins possess hexacoordinate heme geometry similar to that of the heme protein neuroglobin. We recently discovered that deoxygenated neuroglobin converts nitrite to nitric oxide (NO), an important signaling molecule involved in many processes in plants. We sought to determine whether Arabidopsis thaliana nonsymbiotic hemoglobins classes 1 and 2 (AHb1 and AHb2, respectively) might function as nitrite reductases. We found that the reaction of nitrite with deoxygenated AHb1 and AHb2 generates NO gas and iron-nitrosyl-hemoglobin species. The bimolecular rate constants for reduction of nitrite to NO are 19.8 ± 3.2 and 4.9 ± 0.2 M(-1) s(-1), respectively, at pH 7.4 and 25 °C. We determined the pH dependence of these bimolecular rate constants and found a linear correlation with the concentration of protons, indicating the requirement for one proton in the reaction. The release of free NO gas during the reaction under anoxic and hypoxic (2% oxygen) conditions was confirmed by chemiluminescence detection. These results demonstrate that deoxygenated AHb1 and AHb2 reduce nitrite to form NO via a mechanism analogous to that observed for hemoglobin, myoglobin, and neuroglobin. Our findings suggest that during severe hypoxia and in the anaerobic plant roots, especially in species submerged in water, nonsymbiotic hemoglobins provide a viable pathway for NO generation via nitrite reduction.  相似文献   

8.
The nitrite anion (NO(-)(2)) has recently received much attention as an endogenous nitric oxide source that has the potential to be supplemented for therapeutic benefit. One major mechanism of nitrite reduction is the direct reaction between this anion and the ferrous heme group of deoxygenated hemoglobin. However, the reaction of nitrite with oxyhemoglobin (oxyHb) is well established and generates nitrate and methemoglobin (metHb). Several mechanisms have been proposed that involve the intermediacy of protein-free radicals, ferryl heme, nitrogen dioxide (NO(2)), and hydrogen peroxide (H(2)O(2)) in an autocatalytic free radical chain reaction, which could potentially limit the usefulness of nitrite therapy. In this study we show that none of the previously published mechanisms is sufficient to fully explain the kinetics of the reaction of nitrite with oxyHb. Based on experimental data and kinetic simulation, we have modified previous models for this reaction mechanism and show that the new model proposed here is consistent with experimental data. The important feature of this model is that, whereas previously both H(2)O(2) and NO(2) were thought to be integral to both the initiation and propagation steps, H(2)O(2) now only plays a role as an initiator species, and NO(2) only plays a role as an autocatalytic propagatory species. The consequences of uncoupling the roles of H(2)O(2) and NO(2) in the reaction mechanism for the in vivo reactivity of nitrite are discussed.  相似文献   

9.
Neuroglobin (Ngb) and cytoglobin (Cygb) are two recently discovered intracellular members of the vertebrate hemoglobin (Hb) family. Ngb, predominantly expressed in nerve cells, is of ancient evolutionary origin and is homologous to nerve-globins of invertebrates. Cygb, present in many different tissues, shares common ancestry with myoglobin (Mb) and can be traced to early vertebrate evolution. Ngb is held to facilitate O2 diffusion to the mitochondria and to protect neuronal cells from hypoxic-ischemic insults, may be an oxidative stress-responsive sensor protein for signal transduction, and may carry out enzymatic activities, such as NO/O2 scavenging. Cygb is linked to collagen synthesis, may provide O2 for enzymatic reactions, and may be involved in a ROS(NO)-signaling pathway(s). Ngb and Cgb display the classical three-over-three alpha-helical fold of Hb and Mb, and are endowed with a hexa-coordinate heme-Fe atom, in their ferrous and ferric forms, having the heme distal HisE7 residue as the endogenous ligand. Reversible hexa- to penta-coordination of the heme Fe atom modulates ligand binding properties of Ngb and Cygb. Moreover, Ngb and Cygb display a tunnel/cavity system within the protein matrix held to facilitate ligand channeling to/from the heme, multiple ligand copies storage, multi-ligand reactions, and conformational transitions supporting ligand binding.  相似文献   

10.
The mechanism of nitric oxide reduction in a ba(3)-type heme-copper oxidase has been investigated using density functional theory (B3LYP). Four possible mechanisms have been studied and free energy surfaces for the whole catalytic cycle including proton and electron transfers have been constructed by comparison to experimental data. The first nitric oxide coordinates to heme a(3) and is partly reduced having some nitroxyl anion character ((3)NO(-)), and it is thus activated toward the attack by the second N-O. In this reaction step a cyclic hyponitrous acid anhydride intermediate with the two oxygens coordinating to Cu(B) is formed. The cyclic hyponitrous acid anhydride is quite stable in a local minimum with high barriers for both the backward and forward reactions and should thus be observable experimentally. To break the N-O bond and form nitrous oxide, the hyponitrous acid anhydride must be protonated, the latter appearing to be an endergonic process. The endergonicity of the proton transfer makes the barrier of breaking the N-O bond directly after the protonation too high. It is suggested that an electron should enter the catalytic cycle at this stage in order to break the N-O bond and form N(2)O at a feasible rate. The cleavage of the N-O bond is the rate limiting step in the reaction mechanism and it has a barrier of 17.3 kcal/mol, close to the experimental value of 19.5 kcal/mol. The overall exergonicity is fitted to experimental data and is 45.6 kcal/mol.  相似文献   

11.
The reason for the presence of hemoglobin-like molecules in insects, such as Drosophila melanogaster, that live in fully aerobic environments has yet to be determined. Heme endogenous hexacoordination (where HisE7 and HisF8 axial ligands to the heme Fe atom are both provided by the protein) is a recently discovered mechanism proposed to modulate O(2) affinity in hemoglobins from different species. Previous results have shown that D. melanogaster hemoglobin 1 (product of the glob1 gene) displays heme endogenous hexacoordination in both the ferrous and ferric states. Here we present kinetic data characterizing the exogenous cyanide ligand binding process, and the three-dimensional structure (at 1.4 A resolution) of the ensuing cyano-met D. melanogaster hemoglobin. Comparison with the crystal structure of the endogenously hexacoordinated D. melanogaster hemoglobin shows that the transition to the cyano-met form is supported by conformational readjustment in the CD-D-E region of the protein, which removes HisE7 from the heme. The structural and functional features of D. melanogaster hemoglobin are examined in light of previous results achieved for human and mouse neuroglobins and for human cytoglobin, which display heme endogenous hexacoordination. The study shows that, despite the rather constant value for cyanide association rate constants for the ferric hemoproteins, different distal site conformational readjustments and/or heme sliding mechanisms are displayed by the known hexacoordinate hemoglobins as a result of exogenous ligand binding.  相似文献   

12.
Nitric-oxide synthases (NOSs) are widely distributed among prokaryotes and eukaryotes and have diverse functions in physiology. Recent genome sequencing revealed NOS-like protein in bacteria, but whether these proteins generate nitric oxide is unknown. We therefore cloned, expressed, and purified a NOS-like protein from Bacillus subtilis (bsNOS) and characterized its catalytic parameters in both multiple and single turnover reactions. bsNOS was dimeric, bound l-Arg and 6R-tetrahydrobiopterin with similar affinity as mammalian NOS, and generated nitrite from l-Arg when incubated with NADPH and a mammalian NOS reductase domain. Stopped-flow analysis showed that ferrous bsNOS reacted with O(2) to form a transient heme Fe(II)O(2) species in the presence of either Arg or the reaction intermediate N-hydroxy-l-arginine. In the latter case, disappearance of the Fe(II)O(2) species was kinetically and quantitatively coupled to formation of a transient heme Fe(III)NO product, which then dissociated to form ferric bsNOS. This behavior mirrors mammalian NOS enzymes and unambiguously shows that bsNOS can generate NO. NO formation required a bound tetrahydropteridine, and the kinetic effects of this cofactor were consistent with it donating an electron to the Fe(II)O(2) intermediate during the reaction. Dissociation of the heme Fe(III)NO product was much slower in bsNOS than in mammalian NOS. This constrains allowable rates of ferric heme reduction by a protein redox partner and underscores the utility of using a tetrahydropteridine electron donor in bsNOS.  相似文献   

13.
Cytochromes cd(1) are dimeric bacterial nitrite reductases, which contain two hemes per monomer. On reduction of both hemes, the distal ligand of heme d(1) dissociates, creating a vacant coordination site accessible to substrate. Heme c, which transfers electrons from donor proteins into the active site, has histidine/methionine ligands except in the oxidized enzyme from Paracoccus pantotrophus where both ligands are histidine. During reduction of this enzyme, Tyr(25) dissociates from the distal side of heme d(1), and one heme c ligand is replaced by methionine. Activity is associated with histidine/methionine coordination at heme c, and it is believed that P. pantotrophus cytochrome cd(1) is unreactive toward substrate without reductive activation. However, we report here that the oxidized enzyme will react with nitrite to yield a novel species in which heme d(1) is EPR-silent. Magnetic circular dichroism studies indicate that heme d(1) is low-spin Fe(III) but EPR-silent as a result of spin coupling to a radical species formed during the reaction with nitrite. This reaction drives the switch to histidine/methionine ligation at Fe(III) heme c. Thus the enzyme is activated by exposure to its physiological substrate without the necessity of passing through the reduced state. This reactivity toward nitrite is also observed for oxidized cytochrome cd(1) from Pseudomonas stutzeri suggesting a more general involvement of the EPR-silent Fe(III) heme d(1) species in nitrite reduction.  相似文献   

14.
The reaction between reduced Pseudomonas nitrite reductase and nitrite has been studied by stopped-flow and rapid-freezing EPR spectroscopy. The interpretation of the kinetics at pH 8.0 is consistent with the following reaction mechanism (where k1 and k3 much greater than k2). [formula: see text] The bimolecular step (Step 1) is very fast, being lost in the dead time of a rapid mixing apparatus; the stoichiometry of the complex has been estimated to correspond to one NO2- molecule/heme d1. The final species is the fully reduced enzyme with NO bound to heme d1; and at all concentrations of nitrite, there is no evidence for dissociation of NO or for further reduction of NO to N2O. Step 2 is assigned to an internal electron transfer from heme c to reduced NO-bound heme d1 occurring with a rate constant of 1 s-1; this rate is comparable to the rate of internal electron transfer previously determined when reducing the oxidized enzyme with azurin or cytochrome c551. When heme d1 is NO-bound, the rate at which heme c can accept electrons from ascorbate is remarkably increased as compared to the oxidized enzyme, suggesting an increase in the redox potential of the latter heme.  相似文献   

15.
Nitric oxide (NO) release from nitric oxide synthases (NOSs) is largely dependent on the dissociation of an enzyme ferric heme-NO product complex (Fe(III)NO). Although the NOS-like protein from Bacillus subtilis (bsNOS) generates Fe(III)NO from the reaction intermediate N-hydroxy-l-arginine (NOHA), its NO dissociation is about 20-fold slower than in mammalian NOSs. Crystal structures suggest that a conserved Val to Ile switch near the heme pocket of bsNOS might determine its kinetic profile. To test this we generated complementary mutations in the mouse inducible NOS oxygenase domain (iNOSoxy, V346I) and in bsNOS (I224V) and characterized the kinetics and extent of their NO synthesis from NOHA and their NO-binding kinetics. The mutations did not greatly alter binding of Arg, (6R)-tetrahydrobiopterin, or alter the electronic properties of the heme or various heme-ligand complexes. Stopped-flow spectroscopy was used to study heme transitions during single turnover NOHA reactions. I224V bsNOS displayed three heme transitions involving four species as typically occurs in wild-type NOS, the beginning ferrous enzyme, a ferrous-dioxy (Fe(II)O(2)) intermediate, Fe(III)NO, and an ending ferric enzyme. The rate of each transition was increased relative to wild-type bsNOS, with Fe(III)NO dissociation being 3.6 times faster. In V346I iNOSoxy we consecutively observed the beginning ferrous, Fe(II)O(2), a mixture of Fe(III)NO and ferric heme species, and ending ferric enzyme. The rate of each transition was decreased relative to wild-type iNOSoxy, with the Fe(III)NO dissociation being 3 times slower. An independent measure of NO binding kinetics confirmed that V346I iNOSoxy has slower NO binding and dissociation than wild-type. Citrulline production by both mutants was only slightly lower than wild-type enzymes, indicating good coupling. Our data suggest that a greater shielding of the heme pocket caused by the Val/Ile switch slows down NO synthesis and NO release in NOS, and thus identifies a structural basis for regulating these kinetic variables.  相似文献   

16.
Nagababu E  Ramasamy S  Rifkind JM 《Biochemistry》2007,46(41):11650-11659
The reaction of nitrite with deoxyhemoglobin (deoxyHb) results in the reduction of nitrite to NO, which binds unreacted deoxyHb forming Fe(II)-nitrosylhemoglobin (Hb(II)NO). The tight binding of NO to deoxyHb is, however, inconsistent with reports implicating this reaction with hypoxic vasodilation. This dilemma is resolved by the demonstration that metastable intermediates are formed in the course of the reaction of nitrite with deoxyHb. The level of intermediates is quantitated by the excess deoxyHb consumed over the concentrations of the final products formed. The dominant intermediate has a spectrum that does not correspond to that of Hb(III)NO formed when NO reacts with methemoglobin (MetHb), but is similar to metHb resulting in the spectroscopic determinations of elevated levels of metHb. It is a delocalized species involving the heme iron, the NO, and perhaps the beta-93 thiol. The putative role for red cell reacted nitrite on vasodilation is associated with reactions involving the intermediate. (1) The intermediate is less stable with a 10-fold excess of nitrite and is not detected with a 100-fold excess of nitrite. This observation is attributed to the reaction of nitrite with the intermediate producing N2O3. (2) The release of NO quantitated by the formation of Hb(II)NO is regulated by changes in the distal heme pocket as shown by the 4.5-fold decrease in the rate constant in the presence of 2,3-diphosphoglycerate. The regulated release of NO or N2O3 as well as the formation of the S-nitroso derivative of hemoglobin, which has also been reported to be formed from the intermediates generated during nitrite reduction, should be associated with any hypoxic vasodilation attributed to the RBC.  相似文献   

17.
The chemical and molecular mechanism of toxicity of nitrite towards food-spoilage bacteria such as Clostridium botulinum or Clostridium sporogenes is not well understood. In order to discover the active species and explore its chemistry, a number of compounds related to nitrite were synthesized. Their bacteriocidal effects on C. sporogenes were investigated in Oxoid nutrient broth No. 2 growth medium at pH 7.0. Inhibition of cell growth, expressed as the concentration which causes 50% cell inhibition, was observed with nitrite at 10 mM, whereas [Fe4S3(NO)7]-(the anion of Roussin's black salt) and (Fe2(SCH2CH2OH)2(NO)4] (a water-soluble Roussin's red salt ester) were found to be effective at 0.001 mM and 0.005 mM, respectively, confirming previous reports that iron-sulphur-nitrosyl complexes are much more toxic to these organisms than nitrite itself. The nitroprusside anion, [Fe(CN)5NO]2- was found to be toxic at 0.030 mM and the corresponding chromium species, [Cr(CN)5NO]3-, at 0.1 mM. Therefore, on the basis of the number of NO groups present, the nitrosylcyano complexes are comparable in activity with the iron-sulphur-nitrosyl compounds. These results show that neither iron nor sulphur are essential for the bacteriostatic effect of the Roussin's type compounds. The property that all these compounds have in common is that they contain NO+. It is proposed that this is the active species responsible for the preservative effect of nitrite, and that a relationship may exist between the N-O stretching frequency, a measure of the NO+ character, and the toxicity of these NO(+)-containing complexes.  相似文献   

18.
19.
Hemoglobin A (HbA) is an allosterically regulated nitrite reductase that reduces nitrite to NO under physiological hypoxia. The efficiency of this reaction is modulated by two intrinsic and opposing properties: availability of unliganded ferrous hemes and R-state character of the hemoglobin tetramer. Nitrite is reduced by deoxygenated ferrous hemes, such that heme deoxygenation increases the rate of NO generation. However, heme reactivity with nitrite, represented by its bimolecular rate constant, is greatest when the tetramer is in the R quaternary state. The mechanism underlying the higher reactivity of R-state hemes remains elusive. It can be due to the lower heme redox potential of R-state ferrous hemes or could reflect the high ligand affinity geometry of R-state tetramers that facilitates nitrite binding. We evaluated the nitrite reductase activity of unpolymerized sickle hemoglobin (HbS), whose oxygen affinity and cooperativity profile are equal to those of HbA, but whose heme iron has a lower redox potential. We now report that HbS exhibits allosteric nitrite reductase activity with competing proton and redox Bohr effects. In addition, we found that solution phase HbS reduces nitrite to NO significantly faster than HbA, supporting the thesis that heme electronics (i.e. redox potential) contributes to the high reactivity of R-state deoxy-hemes with nitrite. From a pathophysiological standpoint, under conditions where HbS polymers form, the rate of nitrite reduction is reduced compared with HbA and solution-phase HbS, indicating that HbS polymers reduce nitrite more slowly.  相似文献   

20.
Myeloperoxidase (MPO), an abundant protein in neutrophils, monocytes, and subpopulations of tissue macrophages, is believed to play a critical role in host defenses and inflammatory tissue injury. To perform these functions, an array of diffusible radicals and reactive oxidant species may be formed through oxidation reactions catalyzed at the heme center of the enzyme. Myeloperoxidase and inducible nitric-oxide synthase are both stored in and secreted from the primary granules of activated leukocytes, and nitric oxide (nitrogen monoxide; NO) reacts with the iron center of hemeproteins at near diffusion-controlled rates. We now demonstrate that NO modulates the catalytic activity of MPO through distinct mechanisms. NO binds to both ferric (Fe(III), the catalytically active species) and ferrous (Fe(II)) forms of MPO, generating stable low-spin six-coordinate complexes, MPO-Fe(III).NO and MPO-Fe(II).NO, respectively. These nitrosyl complexes were spectrally distinguishable by their Soret absorbance peak and visible spectra. Stopped-flow kinetic analyses indicated that NO binds reversibly to both Fe(III) and Fe(II) forms of MPO through simple one-step mechanisms. The association rate constant for NO binding to MPO-Fe(III) was comparable to that observed with other hemoproteins whose activities are thought to be modulated by NO in vivo. In stark contrast, the association rate constant for NO binding to the reduced form of MPO, MPO-Fe(II), was over an order of magnitude slower. Similarly, a 2-fold decrease was observed in the NO dissociation rate constant of the reduced versus native form of MPO. The lower NO association and dissociation rates observed suggest a remarkable conformational change that alters the affinity and accessibility of NO to the distal heme pocket of the enzyme following heme reduction. Incubation of NO with the active species of MPO (Fe(III) form) influenced peroxidase catalytic activity by dual mechanisms. Low levels of NO enhanced peroxidase activity through an effect on the rate-limiting step in catalysis, reduction of Compound II to the ground-state Fe(III) form. In contrast, higher levels of NO inhibited MPO catalysis through formation of the nitrosyl complex MPO-Fe(III)-NO. NO interaction with MPO may thus serve as a novel mechanism for modulating peroxidase catalytic activity, influencing the regulation of local inflammatory and infectious events in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号