首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The discovery of the sterol carrier and lipid transfer proteins was largely a result of the findings that cells contained cytosolic factors which were required either for the microsomal synthesis of cholesterol or which could accelerate the transfer or exchange of phospholipids between membrane preparations. There are two sterol carrier proteins present in rat liver cytosol. Sterol carrier protein 1 (SCP1) (Mr 47 000) participates in the microsomal conversion of squalene to lanosterol, and sterol carrier protein 2 (SCP2) (Mr 13 500) participates in the microsomal conversion of lanosterol to cholesterol. In addition SCP2 also markedly stimulates the esterification of cholesterol by rat liver microsomes, as well as the conversion of cholesterol to 7 alpha-hydroxycholesterol - the major regulatory step in bile acid formation. Also, SCP2 is required for the intracellular transfer of cholesterol from adrenal cytoplasmic lipid inclusion droplets to mitochondria for steroid hormone production, as well as cholesterol transfer from the outer to the inner mitochondrial membrane. SCP2 is identical to the non-specific phospholipid exchange protein. While SCP2 is capable of phospholipid exchange between artificial donors/acceptors, e.g. liposomes and microsomes, it does not enhance the release of lipids other than unesterified cholesterol from natural donors/acceptors, e.g. adrenal lipid inclusion droplets, and will not enhance exchange of labeled phosphatidylcholine between lipid droplets and mitochondria. Careful comparison of SCP2 and fatty acid binding protein (FABP) using six different assay procedures demonstrates separate and distinct physiological functions for each protein, with SCP2 participating in reactions involving sterols and FABP participating in reactions involving fatty acid binding and/or transport. Furthermore, there is no overlap in substrate specificities, i.e. FABP does not possess sterol carrier protein activity and SCP2 does not specifically bind or transport fatty acid. The results described in the present review support the concept that intracellular lipid transfer is a highly specific process, far more substrate-specific than suggested by the earlier studies conducted using liposomal techniques.  相似文献   

2.
Huang H  Gallegos AM  Zhou M  Ball JM  Schroeder F 《Biochemistry》2002,41(40):12149-12162
Previous studies showed that the N-terminal 32 amino acids of sterol carrier protein-2 ((1-32)SCP(2)) comprise an amphipathic alpha-helix essential for SCP(2) binding to membranes [Huang et al. (1999) Biochemistry 38, 13231]. However, it is unclear whether membrane interaction of the (1-32)SCP(2) portion of SCP(2) is in itself sufficient to mediate intermembrane sterol transfer, possibly by altering membrane structure. In this study a fluorescent sterol exchange assay was used to resolve these issues and demonstrated that the SCP(2) N-terminal peptide (1-32)SCP(2) did not by itself enhance intermembrane sterol transfer but potentiated the ability of the SCP(2) protein to stimulate sterol transfer. Compared with SCP(2) acting alone, (1-32)SCP(2) potentiated the sterol transfer activity of SCP(2) by increasing the initial rate of sterol transfer by 2.9-fold and by decreasing the half-time of sterol transfer by 10-fold (from 11.6 to 1.2 min) without altering the size of the transferable fractions. The ability of a series of SCP(2) mutant N-terminal peptides to potentiate SCP(2)-mediated sterol transfer was directly correlated with membrane affinity of the respective peptide. N-Terminal peptide (1-32)SCP(2) did not potentiate intermembrane sterol transfer by binding sterol (dehydroergosterol), altering membrane fluidity (diphenylhexatriene) or membrane permeability (leakage assay). Instead, fluorescence lifetime measurements suggested that SCP(2) and (1-32)SCP(2) bound to membranes and thereby elicited a shift in membrane sterol microenvironment to become more polar. In summary, these data for the first time showed that while the N-terminal membrane binding domain of SCP(2) was itself inactive in mediating intermembrane sterol transfer, it nevertheless potentiated the ability of SCP(2) to enhance sterol transfer.  相似文献   

3.
A liposomal membrane model system was developed to examine the mechanism of spontaneous and protein-mediated intermembrane cholesterol transfer. Rat liver sterol carrier protein 2 (SCP2) and fatty acid binding protein (FABP, also called sterol carrier protein) both bind sterol. However, only SCP2 mediates sterol transfer. The exchange of sterol between small unilamellar vesicles (SUV) containing 35 mol % sterol was monitored with a recently developed assay [Nemecz, G., Fontaine, R. N., & Schroeder, F. (1988) Biochim. Biophys. Acta 943, 511-541], modified to continuous polarization measurement and not requiring separation of donor and acceptor membrane vesicles. As compared to spontaneous sterol exchange, 1.5 microM rat liver SCP2 enhanced the initial rate of sterol exchange between neutral zwwitterionic phosphatidylcholine SUV 2.3-fold. More important, the presence of acidic phospholipids (2.5-30 mol %) stimulated the SCP2-mediated increase in sterol transfer approximately 35-42-fold. Thus, acidic phospholipids strikingly potentiate the effect of SCP2 by 15-18 times as compared to SUV without negatively charged lipids. Rat liver FABP (up to 60 microM) was without effect on sterol transfer in either neutral zwitterionic or anionic phospholipid containing SUV. The potentiation of SCP2 action by acidic phospholipids was suppressed by high ionic strength, neomycin, and low pH. The results suggest that electrostatic interaction between SCP2 and negatively charged membranes may play an important role in the mechanism whereby SCP2 enhances intermembrane cholesterol transfer.  相似文献   

4.
Electron transport from untreated to mersalyzed microsomal vesicles at the level of NADH-cytochrome b5 reductase or cytochrome b5 has been demonstrated in the absence of added water-soluble electron carriers. A similar effect was shown in the systems "intact mitochondria - mersalyzed microsomes" and "mersalyzed mtiochondria - untreated microsomes". No measurable electron transport between intact and mersalyzed particles of inner mitochondrial membrane was found. The obtained data suggest that the capability to carry out intermembrane electron transfer is specific for NADH-cytochrome b5 reductase and/or cytochrome b5, localized in microsomal and outer mitochondrial membranes.  相似文献   

5.
Supernatant protein factor (SPF), a protein that stimulates squalene epoxidation, mediates the transfer of squalene between two separable microsomal populations (Kojima, Y., E. J. Friedlander, and K. Bloch, 1981. J. Biol Chem. 256: 7235-7239). We now show that SPF also promotes the transfer of squalene associated with mitochondria or with plasma membranes to total microsomes or rough or smooth microsomal subfractions. Both rough and smooth microsomes have squalene epoxidase activity that is stimulated by SPF.  相似文献   

6.
We have proposed that glucose-6-phosphatase (EC 3.1.3.9) is a two-component system consisting of (a) a glucose-6-P-specific transporter which mediates the movement of the hexose phosphate from the cytosol to the lumen of the endoplasmic reticulum (or cisternae of the isolated microsomal vesicle), and (b) a nonspecific phosphohydrolase-phosphotransferase localized on the luminal surface of the membrane (Arion, W.J., Wallin, B.K., Lange, A.J., and Ballas, L.M. (1975) Mol. Cell. Biochem. 6, 75-83). Additional support for this model has been obtained by studying the interactions of D-mannose-6-P and D-mannose with the enzyme of untreated (i.e. intact) and taurocholate-disrupted microsomes. An exact correspondence was shown between the mannose-6-P phosphohydrolase activity at low substrate concentrations and the permeability of the microsomal membrane to EDTA. The state of intactness of the membrane influenced the kinetics of mannose inhibition of glucose-6-P hydrolysis; uncompetitive and noncompetitive inhibitions were observed for intact and disrupted microsomes, respectively. The apparent Km for glucose-6-P was smaller with intact preparations at mannose concentrations above 0.3 M. Mannose significantly inhibited total glucose-6-P utilization by intact microsomes, whereas D-glucose had a stimulatory effect. Both hexoses markedly enhanced the rate of glucose-6-P utilization by disrupted microsomes. The actions of mannose on the glucose-6-phosphatase of intact microsomes fully support the postulated transport model. They are predictable consequences of the synthesis and accumulation of mannose-6-P in the cisternae of microsomal vesicles which possess a nonspecific, multifunctional enzyme on the inner surface and a limiting membrane permeable to D-glucose, D-mannose, glucose-6-P, but impermeable to mannose-6-P. The latency of the mannose-6-P phosphohydrolase activity is proposed as a reliable, quantitative index of microsomal membrane integrity. The inherent limitations of the use of EDTA permeability for this purpose are discussed.  相似文献   

7.
G F Rush  J B Hook 《Life sciences》1984,35(2):145-153
Rat renal microsomes catalyzed the glucuronidation of l-naphthol, 4-methylumbelliferone and p-nitrophenol, whereas morphine and testosterone conjugation were not detected. In contrast, all five substrates were conjugated by hepatic microsomes; the activity was typically 5-10 times greater than with renal microsomes. Renal microsomal UDP-glucuronyltransferase toward l-naphthol was fully activated (six-fold) by 0.03% deoxycholate while the hepatic enzyme was fully activated (eight-fold) by 0.05% deoxycholate. Full activation of hepatic UDP-glucuronyltransferase occurred when microsomes had been preincubated at 0 C with deoxycholate for 20 min. This effect of preincubation was not observed with renal microsomes. The presence of 0.25M sucrose in the buffers during renal microsomal preparation resulted in a two-fold greater rate of l-naphthol conjugation in both unactivated and activated microsomes than renal microsomes prepared in phosphate buffers alone. Preparation of hepatic microsomes with or without 0.25M sucrose had no effect on UDP-glucuronyltransferase activity. Unactivated (-deoxycholate) renal enzyme was activated when incubations were done at a low pH (5.7), whereas fully activated (0.03% deoxycholate) renal microsomal UDP-glucuronyltransferase displayed a pH optimum at 6.5. Renal microsomal UDP-glucuronyltransferase activity toward l-naphthol, p-nitrophenol and 4-methylumbelliferone was induced by pretreatment of rats with beta-naphthoflavone and trans-stilbene oxide but not by phenobarbital or 3-methylcholanthrene. These data demonstrate that renal UDP-glucuronyltransferases are different from the hepatic enzymes with regard to biochemical properties, substrate specificity and in response to chemical inducers of xenobiotic metabolism.  相似文献   

8.
In brain of female monkey (M. fascicularis) the content of cytochrome P-450 and benzo(a)pyrene hydroxylase activity in the mitochondrial fraction exceeded that of the microsomes by more than 4-fold. The mitochondrial drug metabolism activity exhibited substrate specificity and, unlike the microsomes, did not catalyze 7-ethoxyresorufin O-deethylase reaction. Moreover, the rate of benzo(a)pyrene hydroxylase activity by both the mitochondrial and the microsomal fractions displayed regional variation with the olfactory bulb displaying the highest hydroxylase activity. In contrast, the microsomal 7-ethoxyresorufin O-deethylase activity was uniformally distributed in all brain regions.  相似文献   

9.
Highly purified rat brain myelin isolated by two different procedures showed appreciable activity for CDP-ethanolamine: 1,2-diacyl-sn-glycerol ethanolaminephosphotransferase (EC 2.7.8.1). Specific activity was close to that of total homogenate and approximately 12-16% that of brain microsomes. Three other lipid-synthesizing enzymes, cerebroside sulfotransferase, lactosylceramide sialyltransferase, and serine phospholipid exchange enzyme, were found to have less than 0.5% the specific activity in myelin compared with microsomes. Washing the myelin with buffered salt or taurocholate did not remove the phosphotransferase, but activity was lost from both myelin and microsomes by treatment with Triton X-100. It resembled the microsomal enzyme in having a pH optimum of 8.5 and a requirement for Mn2+ and detergent, but differed in showing no enhancement with EGTA. The diolein Km was similar for the two membranes (2.5-4 x 10(-4) M), but the CDP-ethanolamine Km was lower for myelin (3-4 x 10(-5) M) than for microsomes (11 - 13 x 10(-5 M). Evidence is reviewed that this enzyme is able to utilize substrate from the axon in situ.  相似文献   

10.
Supernatant protein factor (SPF), a cytosolic protein (Mr = 47,000) stimulates microsomal squalene epoxidase activity 4- to 10-fold in the presence of anionic phospholipid such as phosphatidylglycerol (PG) (Saat, Y., and Bloch, K. (1976) J. Biol. Chem. 251, 5155-5160). This effect has been ascribed to substrate translocation from inactive to active pools within the membrane of the endoplasmic reticulum (Friedlander, E. J., Caras, I. W., Lin, L. F. H., and Bloch, K. (1980) J. Biol. Chem. 255, 8042-8045). Here we show that SPF and PG also stimulate squalene uptake per se by microsomes as well as stimulate squalene epoxidase. Microsomes preloaded with substrate in the presence of SPF and PG show full epoxidase activity. They do not require further addition of these factors during enzyme assay. Addition of SPF and PG to assay mixtures containing microsomes preloaded with substrate in the presence of SPF and PG did not further increase epoxidase activity. We also show that PG tightly binds to microsomes. This binding of PG is essential for the response of microsomal epoxidase to SPF. Solubilized microsomal enzymes have been reconstituted and show high epoxidase activity. In this system, SPF and PG do not stimulate the conversion of squalene into products.  相似文献   

11.
Cardiac microsomes were incubated with [gamma-32P]ATP and a cardiac adenosine 3':5'-monophosphate (cyclic AMP)-dependent protein kinase in the presence of ethylene glycol bis(bets-aminoethyl ether)-N,N'-tetraacetic acid. After solubilization in sodium dodecyl sulfate and fractionation by polyacrylamide gel electrophoresis, a single microsomal protein component of approximately 22,000 daltons was found to bind most of the 32P label. The 32P labeling of this component increased several fold when NaF was included in the incubation medium. No other component of cardiac microsomes, including sarcoplasmic reticulum ATPase protein, contained significant amounts of 32P label. This 22,000-dalton phosphoprotein formed by cyclic AMP-dependent protein kinase had stability characteristics of a phosphoester rather than an acyl phosphate. Washing of microsomes with buffered KCl did not decrease the amount of 32P labeling to the 22,000-dalton protein, suggesting that this protein is associated with the membranes of sarcoplasmic reticulum rather than being a contaminant from other soluble proteins. The 22,000-dalton protein was susceptible to trypsin. Brief digestion with trypsin in the presence of 1 M sucrose did not significantly affect microsomal calcium transport activity, but prevented both subsequent phosphorylation of the 22,000-dalton protein and stimulation of calcium uptake by cyclic AMP-dependent protein kinase, suggesting that this protein is a modulator of the calcium pump. These results are consistent with previous findings (Kirchberger, M.A., Tada, M., and Katz, A.M. (1974) J. Biol. Chem. 249, 6166-6173; Tada, M., Kirchberger, M.A., Repke, D.I., and Katz, A.M. (1974) J. Biol. Chem. 249, 6174-6180) that cyclic AMP-dependent protein kinase-catalyzed phosphorylation is associated with stimulation of calcium transport in the cardiac sarcoplasmic reticulum, and further indicate that this phosphorylation occurs at a component of low mass (22,000 daltons) of the cardiac sarcoplasmic reticulum which, while separable from the calcium transport ATPase protein (100,000 daltons) by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, has the ability to regulate calcium transport by the cardiac sarcoplasmic reticulum.  相似文献   

12.
The distribution of cytochrome b5 in rat liver microsomes, and in two microsomal subfractions isolated by density equilibration in a linear sucrose gradient, was studied under the electron microscope by means of a ferritin-labeled hybrid anti-cytochrome b5/anti-ferritin antibody. Results of this study show that cytochrome b5 is present in essentially all microsomal vesicles derived from endoplasmic reticulum (ER), whether rough or smooth. Thus, the dissociation of ER constituents into two groups (b and c), achieved by subfractionating microsomes by isopycnic centrifugation (Beaufay, H., A. Amar-Costesec, D. Thines- Sempoux, M. Wibo, M. Robbi, and J. Berthet. 1974. J. Cell Biol. 61:213- 231), does not reflect the association of each group with distinct microsomal particles but reflects rather an enzymatic heterogeneity of the ER: the ratio of group c to group b enzymes increasing with the density and ribosome load of the particles.  相似文献   

13.
The phospholipids in rat brain microsomes were labeled with tritium by intracerebral administration of radioactive fatty acids and converted to diacylglycerol with phospholipase C. The latter lipid was hydrolyzed in situ at pH 4.8, to monoacylglycerol and fatty acid by the endogenous microsomal lipase. This paper provides an experimental approach to determine whether the lipid was degraded by enzyme molecules residing in its own membrane (intramembrane interaction) or an adjacent membrane (intermembrane interaction). Direct interaction between separate membranes containing enzyme or substrate showed the existence of the inter-membrane route while dilution experiments provided evidence for the presence of the intramembrane interaction as well. A probable difference in the mechanisms of these two interactions is suggested by different shapes of the curves that describe the reaction rate as a function of the endogenous substrate. The curve resulting from the intermembrane interaction was hyperbolic while that representing the intramembrane route was of a parabola-like shape. Competition experiments suggested that when given a choice between the two, the enzyme utilized preferentially the substrate molecules in its own membrane.  相似文献   

14.
The metabolism of phosphatidylinositol in the thyroid gland of the pig   总被引:18,自引:11,他引:7  
1. The metabolism of phosphatidylinositol in pig thyroid has been investigated as a basis for understanding the specific stimulation of the synthesis of this phospholipid in the gland by thyrotropin. 2. The gland contained an active Ca(2+)-dependent phosphatidylinositol-splitting enzyme with an optimum pH of 5.3-5.5. 3. The major water-soluble product (65%) formed by this catabolic enzyme was not phosphorylinositol but a related compound, which may be a cyclic phosphorylinositol. Both this and phosphorylinositol (35%) were released simultaneously from the phosphatidylinositol substrate. 4. The phosphatidylinositol-splitting enzyme was found almost exclusively in the supernatant fraction obtained by homogenization of the gland. It was not present in the acid-phosphatase-containing particulate fraction. 5. The incorporation of [2-(3)H(1)]inositol into phosphatidylinositol in the presence of either CDP-diglyceride or CTP+ATP was most active in the microsomal fraction. 6. When thyroidal microsomes were labelled with [(3)H]inositol and (32)P, and then incubated with unlabelled inositol, there was a dramatic loss of (3)H labelling from the phosphatidylinositol, which was not accompanied by an equivalent loss of (32)P from the phosphate moiety. This turnover of the inositol moiety required nucleotide coenzymes. It is postulated that the phosphatidylinositol is split into inositol and a phosphorus-containing lipid precursor of the phospholipid that remains on the microsomal membrane and is recycled. 7. Isolated thyroidal mitochondria synthesized phosphatidylinositol from [2-(3)H(1)]inositol only because of their contaminating microsomal component. 8. Some evidence has been obtained of a rapid transfer of phosphatidylinositol molecules from thyroidal microsomes to mitochondria when these were incubated together in the presence of a supernatant fraction. 9. Both phosphatidylinositol breakdown by the supernatant fraction of the gland and synthesis by the microsomes were totally inhibited by 1mm-chlorpromazine. This drug is known to suppress thyrotrophin-induced stimulation of activity in thyroid slices.  相似文献   

15.
A. Rousseau  S. Gatt 《FEBS letters》1984,167(1):42-46
The membranous lipase of rat liver microsomes was used to hydrolyze diacylglycerol (DG), generated within the microsomal membrane by treatment with phospholipase C, in two separate interactions. For an intramembrane enzyme-substrate interaction, the enzyme and DG were present in the same microsomes. For intermembrane interactions, native microsomes of rat liver were used as carriers of the enzyme, while heated and phospholipase C-treated microsomes of rat liver or brain were employed as carriers of the substrate. The v vs S curves of the intermembrane interaction were hyperbolic while those of the intramembrane utilization were parabolic.  相似文献   

16.
Rabbit antibodies raised against the hydrophilic part of microsomal NADPH-cytochrome P450 oxidoreductase (denoted fpT) demonstrated a marked ability to inhibit NADPH-sterol Delta7-reductase activity. In addition, trypsin and proteinase K treatment of microsomes removed almost all microsomal electron transfer constituents from the microsomes, but the Delta7-reductase activity could be reconstituted by adding detergent-solubilized NADPH-cytochrome P450 oxidoreductase (denoted OR). Furthermore, after solubilization from microsomes, the Delta7-reductase activity could be reconstituted with OR in a DEAE-cellulose column chromatography eluate fraction, which contained little OR activity. In the microsomal system, carbon monoxide, ketoconazole, and miconazole, specific inhibitors of cytochrome P450, had no effect on Delta7-reductase activity. These results provide the first evidence of an essential requirement of OR, which is distinct from cytochrome P450, in the NADPH-sterol Delta7-reductase system. EDTA, o-phenanthroline and KCN markedly lowered Delta7-reductase activity in a dose-dependent manner. Among metal ions tested, only ferric ion restored the reductase activity in the EDTA-treated microsomes. These results sugguest that NADPH-sterol Delta7-reductase is membrane-bound iron-dependent protein embedded in the microsomal lipid bilayer.  相似文献   

17.
Chick embryo chondrocyte microsomes containing intact Golgi vesicles took up 3'-phosphoadenosine-5'-phospho[35S]sulfate ([35S]PAPS) in a time- and temperature-dependent, substrate-saturable manner. When [35S]PAPS and p-nitrophenyl-N-acetyl-beta-D-galactosaminide (pNP-GalNAc) were added to the incubation in the absence of detergent, the microsomes catalyzed the transfer of sulfate from [35S]PAPS to pNP-GalNAc to form pNP-GalNAc-6-35SO4. The apparent Km values for PAPS in the uptake and the pNP-GalNAc sulfation reactions were 2 X 10(-7) and 2 X 10(-6) M, respectively. The sulfation of pNP-GalNAc by the microsomal preparation was inhibited by detergent. The microsomal fraction also catalyzed the transfer of sulfate from [35S]PAPS to oligosaccharides prepared from chondroitin. However, in contrast to the sulfation of pNP-GalNAc, the rate of sulfation of these oligosaccharides was low in the absence of detergent and was markedly stimulated when detergent was added. Sulfation of pNP-GalNAc by the freeze-thawed microsomes was inhibited when the octasaccharide prepared from chondroitin was present in the reaction mixture. As the PAPS that had been internalized in the microsomal vesicles was consumed in the sulfation of pNP-GalNAc, more [35S]PAPS was taken up and the sulfated pNP-GalNAc was released from the vesicles. These observations suggest that pNP-GalNAc may serve as a model membrane-permeable substrate for study of the 6-sulfo-transferase reaction involved in sulfation of chondroitin sulfate in intact Golgi vesicles.  相似文献   

18.
Electron transport from untreated to mersalyzed microsomal vesicles at the level of NADH-cytochrome b5 reductase or cytochrome b5 has been demonstrated in the absence of added water-soluble electron carriers. A similar effect was shown in the systems “intact mitochondria — mersalyzed microsomes” and “mersalyzed mitochondria— untreated microsomes”. No measurable electron transport between intact and mersalyzed particles of inner mitochondrial membrane was found. The obtained data suggest that the capability to carry out intermembrane electron transfer is specific for NADH-cytochrome b5 reductase and/or cytochrome b5, localized in microsomal and outer mitochondrial membranes.  相似文献   

19.
The relationships between cholesterol 7 alpha-hydroxylase activity, pool of free microsomal cholesterol, and degree of substrate saturation of the enzyme were studied in untreated (n = 5), cholesterol-fed (n = 4), and cholestyramine-treated (n = 6) gallstone patients undergoing cholecystectomy. Highly accurate methods based on isotope dilution-mass spectrometry were used for assay of the cholesterol 7 alpha-hydroxylase activity and for determination of the concentration of free cholesterol in the microsomes. The cholesterol-enriched diet increased the cholesterol 7 alpha-hydroxylase activity about twofold. Cholestyramine treatment was associated with a five- to sixfold increase of the cholesterol 7 alpha-hydroxylase activity. The concentration of free microsomal cholesterol remained essentially unchanged. The apparent degree of saturation of the enzyme was calculated to be 85% in the untreated patients, 86% in the cholesterol-fed patients, and 67% in those treated with cholestyramine. A significant negative correlation was obtained between enzyme activity and apparent substrate saturation. It is concluded that the apparent substrate saturation of the cholesterol 7 alpha-hydroxylase in human liver microsomes is high but that availability of cholesterol may limit the enzyme activity to some extent a high bile acid synthesis rates.  相似文献   

20.
The temperature dependence and activation energies for the oxidation of ethanol by microsomes from controls and from rats treated with pyrazole was evaluated to determine whether the overall mechanism for ethanol oxidation by microsomes was altered by the pyrazole treatment. Arrhenius plots of the temperature dependence of ethanol oxidation by pyrazole microsomes were linear and exhibited no transition breaks, whereas a slight break was observed at about 20 +/- 2.5 degrees C with control microsomes. Energies of activation (about 15-17 kcal/mol) were identical for the two microsomal preparations. Although transition breaks were noted for the oxidation of substrates such as dimethylnitrosamine and benzphetamine, activation energies for these two substrates were similar for control microsomes and microsomes from the pyrazole-treated rats. The addition of ferric-EDTA to the microsomes increased the rate of ethanol oxidation by a hydroxyl radical (.OH)-dependent pathway. Arrhenius plots of the .OH-dependent oxidation of ethanol by both microsomal preparations were linear with energies of activation (about 7 kcal/mol) that were considerably lower than values found for the P450-dependent pathway. These results suggest that, at least in terms of activation energy, the increase in microsomal ethanol oxidation by pyrazole treatment is not associated with any apparent change in the overall mechanism or rate-limiting step for ethanol oxidation but likely reflects induction of a P450 isozyme with increased activity toward ethanol. The lower activation energy for the .OH-dependent oxidation of ethanol suggests that different steps are rate limiting for oxidation of ethanol by .OH and by P450, which may reflect the different enzyme components of the microsomal electron transfer system involved in these reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号