首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Purpose

This paper performs a life cycle assessment study for a white wine produced in the northern part of Portugal, i.e. the white vinho verde. The purpose is to identify the environmental impacts occurring along the wine life cycle as well as the stages that mostly contribute to the environmental impact, as well as the associated causes. The stages considered include: (1) viticulture, (2) wine production (vinification to storage), (3) wine distribution and (4) bottles production.

Methods

The consumption of materials and energy, as well as the emissions to air, soil and water from the wine campaign of 2008/2009 were reported to the functional unit (0.75 l of white vinho verde). A Portuguese company that produces about 25 % of the current total production of white vinho verde supplied specific life cycle data for the stages of viticulture, wine production and distribution. SimaPro and the Ecoinvent database were used to perform the environmental assessment using CML 2001 impact methodology. A sensitivity analysis for a set of significant parameters was performed.

Results

Results show that for viticulture the contribution of each impact category is larger than 50 %. The production of bottles is the second contributor varying from about 4 % (to eutrophication) to 26 % (to acidification). Wine production and distribution are the subsequent contributors. The contribution of wine production varies between 0.6 % (to land competition) and about 13 % (from marine aquatic and sediment ecotoxicity 100a). The contribution of distribution is up to 14 % (to photochemical oxidation). Sensitivity analysis shows that significant changes are calculated for parameters as the nitrate leaching to groundwater, the emission of nitrous oxide from managed soil, and from runoff and leaching. Changes in these parameters are significant for only a few impact categories as eutrophication and global warming.

Conclusions

Viticulture is the stage with the largest relative contribution to the overall environmental impact and the bottle production is the subsequent stage. In order to improve the environmental performance of the supply chain for wine, it is necessary to optimise the dosage of fertilisers and phytosanitary products used during viticulture. The sensitivity analysis demonstrates that the most influential parameters relate with the emission of nitrogen compounds associated with the use of fertilisers.  相似文献   

2.

Background, aim and scope  

Nanostructured polymer particles are produced to be used in ball grid array (BGA) and chip scale packaging (CSP). The technology could replace conventional BGA and CSP metal balls, and the hypothesis is that the shift could be eco-efficient as polymer core particles increase the reliability. For the first time, these particles are environmentally evaluated.  相似文献   

3.

Purpose

Eco-innovation strategies are increasingly adopted to ensure the minimization of environmental impacts. Nonetheless, only a comprehensive integrated assessment along the life cycle stages of a product may ensure a robust analysis of the benefit of the innovation. The object of the present study is the environmental assessment of furniture prototypes produced using certified wood and integrating eco-design criteria in their conception. The aim of the study was twofold: firstly, to evaluate the environmental profile of the furniture, highlighting possible hot spots of impacts, and secondly, to evaluate the capability of life cycle assessment (LCA) to identify the environmental benefit associated to the adoption of eco-innovation strategies, such as the following: ensuring short supply chain from raw material to production; using wood coming from certified forests (according to PEFC scheme); and the implementation of eco-design principles, also associated with green public procurement requirements.

Methods

LCA has been applied in a case study related to the wood furniture sector in the alpine region of Northern Italy. Every activity was modeled using primary data, related to the inputs and outputs of the processes, provided directly by the designers and by woodworking firms. Input data related to forestry activities and wood extraction were collected and processed in a previous phase of the study. The life cycle of a prototype school desk from the cradle-to-gate perspective was analyzed. A woodworking plant was examined in detail, dividing the whole manufacturing process into four phases: panels production, woodworking, painting and steel parts processing. The system boundaries included all the activities which take place inside the plant as well as energy inputs, transports and ancillary products used.

Results and discussion

The results highlighted that the working phases showing the greatest environmental burdens were the production of solid wood panels and the processing of iron parts. No concerns about chemicals, glues and paints were raised, due to the eco-design principles implemented in the production of the furniture. The choice of a short supply chain allowed for drastic reductions in the impacts associated to long-distance transports. Three sensitivity analyses were carried out to test the robustness of results concerning the following: (1) glue options, (2) drying phase and VOC emissions, and (3) transport options.

Conclusions

This study proves to which extent eco-design criteria implemented in practice improve the environmental performance of products. All positive effects due to decisions taken in school desk design and conception were supported by evidence.  相似文献   

4.

Purpose  

In recent years, a new perspective for food packaging has emerged as a result of several issues like quality, safety, competitive prices or providing of useful information to consumers. This new perspective is called communicative packaging. Communicative packaging may influence consumers/companies on purchasing decisions. Since the environmental evaluation of such systems has not yet been performed, this paper is focused on the environmental evaluation of a flexible best-before-date (FBBD) communicative device on a packaging consumer unit and its implications on reducing environmental impacts related to fresh products. This consumer unit consists of a nanoclay-based polylactic acid tray filled with pork chops.  相似文献   

5.
The International Journal of Life Cycle Assessment - Renewable gasoline and diesel can be produced through integrated hydropyrolysis and hydroconversion (IH2) using renewable feedstocks such as...  相似文献   

6.
The International Journal of Life Cycle Assessment - Tempeh is a traditional Indonesian fermented soybean product, which plays an essential role in its culture and economy and forms an important...  相似文献   

7.
Life cycle assessment of the supply and use of water in the Segura Basin   总被引:1,自引:0,他引:1  

Purpose

In this paper, the combined life cycle assessment of the water supply alternatives and the water use in a water-stressed watershed in Spain (the Segura) is presented. Although it is a dry area, agriculture and tourism are very profitable sectors with high water demands. Thus, external water supply alternatives including water transfers or desalination partly balance the reduced natural water availability to cover the existing water demands.

Methods

In order to integrate both the impact of water supply alternatives and water use, the ReCiPe method was used to assess the water supply alternatives at the endpoint approach with the three specific damage categories: human health, ecosystem diversity and damage to resources availability. At the same time, the water use impact was calculated and grouped in the same categories. Firstly, one average cubic metre of water at the user's gate in the Segura Basin area was taken as the functional unit. As irrigation and drinking water constitute the principal water uses, it was considered that to separately analyse 1 m3 used for irrigation and 1 m3 destined to drinking purposes could provide interesting information. Then, these units were also considered as functional units. Then, three additional hypothetical scenarios were introduced: two of them defined by a strong variability in rainfall and the third by a sudden diminution of water transferred from a neighbouring basin.

Results and discussion

Regarding the facilities to provide 1 m3 at user's gate in the Segura Basin, results showed that the seawater desalination plants obtained the highest score for all the three considered damage categories, followed by the Tajo–Segura water transfer, the groundwater, the local surface waters and the water reuse. In relation to the water use impact, the damage to ecosystems diversity was very representative with respect to the one coming from water supply infrastructures because irrigation constituted 85 % of the total demand.

Conclusions

The diversification of water supply alternatives within a region considerably increases any environmental impact, primarily stemming from the additional required infrastructures, and frequently from the use of external water sources for their uses. Thus, users and policy makers should be aware of the costs that a guaranteed water supply entails. In water-scarce territories, the use of external solutions such as desalination or water transfer either increase the environmental impact due to their high energy consumption or they are limited by existing climate variability. Therefore, they cannot be considered as the definite solution, which would be a balance between renewable sources and existing demands.  相似文献   

8.

Purpose  

This paper is the second part of a two-paper series dealing with the sustainability evaluation of a new communicative packaging concept. The communicative packaging concept includes a device that allows changing the expiry date of the product as function of temperature during transport and storage: a flexible best-before-date (FBBD). Such device was analysed in a consumer unit consisting of a nanoclay-based polylactic acid tray filled with pork chops.  相似文献   

9.
10.
Purpose

This study aims at finding the environmental impacts generated by an electric disk insulator supply chain, used for the distribution of electricity by an open wire system, through a case study. This study also aims at benchmarking the environmental impacts of an electric insulator manufacturing process by taking ideal condition of zero waste as reference.

Methods

Cradle-to-grave life cycle assessment (LCA) has been carried out by following the guidelines provided in ISO 14040 series standards and using Umberto NXT software. ReCiPe endpoint and ReCiPe midpoint impact assessment methodologies have been used to calculate environmental impacts under various categories. The primary data has been collected from a medium-scale manufacturer of electric disk insulators located at Bikaner in north-west India. The secondary data has been taken from ecoinvent 3.0 database and literature. The environmental impacts using endpoint assessment (ecosystem quality, human health, and resources) and midpoint assessment (climate change, fossil depletion, human toxicity, metal depletion, ozone depletion, terrestrial acidification, and water depletion) categories have been computed. Finally, the results are compared and benchmarked against the ideal zero waste condition using three different production scenarios. The limitation of this study is that the data has been collected only from one manufacturer and its supply chain.

Results and discussion

It has been found that the use of steel, electricity, and fuel; transportation of product; and disposal of water generate high environmental impacts in the supply chain. It has also been found that in the electric disk insulator supply chain, the raw material extraction phase has the highest environmental impacts followed by manufacturing, disposal, transportation, and installation phases. This study has also found that benchmark scenario “B” (zero waste condition) is environmentally more efficient in comparison to scenario “A” (actual recycling condition) and scenario “C” (maximum waste condition).

Conclusions

This study has identified that raw materials, resources, and processes in the supply chain of an electric disk insulator manufacturing unit are responsible for the environmental damage. The various manufacturing processes and installation of the electric disk insulators are similar for all manufacturers except the machinery efficiency and the generated waste. This study provides environmental impacts associated with an electric disk insulator manufacturing process under zero waste or ideal conditions (scenario B). These results are used as a benchmark to compare environmental performance of electric disk insulator supply chain operating under actual conditions.

  相似文献   

11.

Purpose

Two different bioenergy systems using willow chips as raw material has been assessed in detail applying life cycle assessment (LCA) methodology to compare its environmental profile with conventional alternatives based on fossil fuels and demonstrate the potential of this biomass as a lignocellulosic energy source.

Methods

Short rotation forest willow plantations dedicated to biomass chips production for energy purposes and located in Southern Sweden were considered as the agricultural case study. The bioenergy systems under assessment were based on the production and use of willow-based ethanol in a flexi fuel vehicle blended with gasoline (85 % ethanol by volume) and the direct combustion of willow chips in an industrial furnace in order to produce heat for end users. The standard framework for LCA from the International Standards Organisation was followed in this study. The environmental profiles as well as the hot spots all through the life cycles were identified.

Results and discussion

According to the results, Swedish willow biomass production is energetically efficient, and the destination of this biomass for energy purposes (independently the sort of energy) presents environmental benefits, specifically in terms of avoided greenhouse gases emissions and fossil fuels depletion. Several processes from the agricultural activities were identified as hot spots, and special considerations should be paid on them due to their contribution to the environmental impact categories under analysis. This was the case for the production and use of the nitrogen-based fertilizer, as well as the diesel used in agricultural machineries.

Conclusions

Special attention should be paid on diffuse emissions from the ethanol production plant as well as on the control system of the combustion emissions from the boiler.  相似文献   

12.

Purpose

This life cycle assessment evaluates and quantifies the environmental impacts of renewable chemical production from forest residue via fast pyrolysis with hydrotreating/fluidized catalytic cracking (FCC) pathway.

Methods

The assessment input data are taken from Aspen Plus and greenhouse gases, regulated emissions, and energy use in transportation (GREET) model. The SimaPro 7.3 software is employed to evaluate the environmental impacts.

Results and discussion

The results indicate that the net fossil energy input is 34.8 MJ to produce 1 kg of chemicals, and the net global warming potential (GWP) is ?0.53 kg CO2 eq. per kg chemicals produced under the proposed chemical production pathway. Sensitivity analysis indicates that bio-oil yields and chemical yields play the most important roles in the greenhouse gas footprints.

Conclusions

Fossil energy consumption and greenhouse gas (GHG) emissions can be reduced if commodity chemicals are produced via forest residue fast pyrolysis with hydrotreating/FCC pathway in place of conventional petroleum-based production pathways.  相似文献   

13.
The International Journal of Life Cycle Assessment - Low-carbon emissions are usually related to hydropower energy, making it an attractive option for nations with hydropower potential as it...  相似文献   

14.

Purpose  

In the Indonesian transportation sector, gasoline is the most consumed fuel; in 2008 it accounted for 60% of the total fuel consumption in transportation. Increasing concern regarding environmental issues, particularly urban air quality, makes the utilization of gasoline in transport a crucial aspect to be analyzed. However, besides tailpipe emissions, there are many upstream processes when producing gasoline which need to be evaluated in terms of impacts to the environment.  相似文献   

15.
The International Journal of Life Cycle Assessment - This study quantifies the impact of the Dutch cash payment system on the environment and on climate change using a life cycle assessment (LCA)....  相似文献   

16.

Purpose

Sidewalks are important built areas for promoting environmental sustainability in cities since they support walking as a zero emission form of transportation contributing to protect the environment and the health of individuals. However, sidewalk management is typically focused on assessing their suitability for users without applying any environmental criteria on the infrastructure design. The paper aims to quantify the environmental impact that sidewalks can contribute to the urban space if no environmental criteria are applied in sidewalk design.

Methods

This study focuses on the environmental assessment of a very common sidewalk system found in cities to support pedestrian and light motorized traffic for over 45 years. The constructive solution consists of granite slabs (top layer) fixed on a mortar layer (3-cm thick) that is settled on a base of concrete (15-cm thick). The life cycle methodology was employed to conduct the environmental assessment of the system. The results are compared with the environmental outcomes of a sidewalk system that has the same function but is paved with concrete slabs to identify the environmentally optimal sidewalk design. The impact assessment method was CML Baseline 2001, and the inventory data were compiled from manufacturers associations, local authorities, and literature review.

Results and discussion

Construction materials have the highest environmental impact (48?C87%) in the sidewalk life cycle, where the granite top layer is the first contributor, although the amount of granite in the sidewalk system represents the 30% of the total weight of the construction materials used. A granite sidewalk has from 25% to 140% higher impact than a concrete one. The energy required to produce slabs is the key factor that characterizes the environmental impact of granite. Electricity and diesel consumption in stone cutting and moving represent over the 70% of the environmental burden of granite. The transportation of granite slabs is also relevant to the environmental impact. The use of imported granite could account for up to 76?C177% of the total environmental impact of the sidewalk life cycle.

Conclusions

Although granite is a natural material, using granite slabs as flooring material is not an environmentally suitable alternative over using concrete ones for paving sidewalks. The results have shown that if no environmental criteria are applied during sidewalk design and management, urban planners may be unconsciously contributing to an important environmental burden on the built environment. The ecodesign is a strategic opportunity to promote environmentally suitable urban infrastructures that contribute to promote urban sustainability in cities.

Recommendations

Energy efficiency techniques, water management, and well-considered transportation management should be developed and implemented in the granite industry to minimize the environmental impact of using it for paving. Additionally, further research is needed to quantify the environmental performance of other construction materials used in sidewalk construction in order to identify the best environmental alternatives and design improvements by optimizing the use of materials to the sidewalks functions.  相似文献   

17.
18.
Purpose

The overall aim of this study is to contribute to the creation of LCA database on electricity generation systems in Ethiopia. This study specifically estimates the environmental impacts associated with wind power systems supplying high voltage electricity to the national grid. The study has regional significance as the Ethiopian electric system is already supplying electricity to Sudan and Djibouti and envisioned to supply to other countries in the region.

Materials and methods

Three different grid-connected wind power systems consisting of four different models of wind turbines with power rates between 1 and 1.67 MW were analyzed for the situation in Ethiopia. The assessment takes into account all the life cycle stages of the total system, cradle to grave, considering all the processes related to the wind farms: raw material acquisition, manufacturing of main components, transporting to the wind farm, construction, operation and maintenance, and the final dismantling and waste treatment. The study has been developed in line with the main principles of the ISO 14040 and ISO 14044 standard procedures. The analysis is done using SimaPro software 8.0.3.14 multi-user, Ecoinvent database version 3.01, and ReCiPe 2008 impact assessment method. The assumed operational lifetime as a baseline is 20 years.

Results and discussion

The average midpoint environmental impact of Ethiopian wind power system per kWh electricity generated is for climate change: 33.6 g CO2 eq., fossil depletion: 8 g oil eq., freshwater ecotoxicity: 0.023 g 1,4-DCB eq., freshwater eutrophication: 0.005 g N eq., human toxicity: 9.9 g 1,4-DCB eq., metal depletion: 18.7 g Fe eq., marine ecotoxicity: 0.098 g 1,4-DCB eq., particulate matter formation: 0.097 g PM10 eq., photochemical oxidant formation: 0.144 g NMVOC, and terrestrial acidification: 0.21 g SO2 eq. The pre-operation phase that includes the upstream life cycle stage is the largest contributor to all the environmental impacts, with shares ranging between 82 and 96%. The values of cumulative energy demand (CED) and energy return on investment (EROI) for the wind power system are 0.393 MJ and 9.2, respectively.

Conclusion

The pre-operation phase is the largest contributor to all the environmental impact categories. The sensitivity and scenario analyses indicate that changes in wind turbine lifespans, capacity factors, exchange rates for parts, transport routes, and treatment activities would result in significant changes in the LCA results.

  相似文献   

19.
Life cycle assessment of mini-hydropower plants in Thailand   总被引:1,自引:0,他引:1  

Purpose  

The conversion of electricity in Thailand is mainly based on fossil fuels that account more than 90% of electricity generated in the country. The use of fossil fuels has large environmental impacts, and being largely imported, also affects the energy security of the country. From the oil shock situation in 1970s, there has been interest in renewable energy in Thailand resulting in the policy goal for the year 2020 to increase the portion of renewable energy to 20% of energy used in the country. Now, hydropower contributes a significant portion of the renewable energy in Thailand, and mini-hydropower (run-of-river type with capacity between 200 to 6000 kW) tends to be most attractive. This is particularly suitable for Thailand, and it is being applied at several locations. Thus, the overall life cycle assessment (LCA), from cradle to gate, of mini-hydropower plants needs to be assessed for quantitative evaluation.  相似文献   

20.

Background, aim, and scope  

In this study, we evaluate the environmental effects of wood-based household heating. Wood is a significant source of household heating in Norway, and a comparative life cycle assessment of a wood-based heating system using an old and a modern stove was conducted to estimate the total life cycle benefits associated with the change from old to new combustion technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号