首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Normal and androgenic diploid Datura innoxia plants were selfedand the progeny was analysed for its leaf alkaloid content.Since the androgenic lines had originally produced very differentamounts of the tropane alkaloids, scopolamine and hyoscyamine,we were interested in determining whether this trait is transmittedby self-fertilization. The alkaloid content of the progeny wasfound to correlate well with that of the parental plants. Also,calli were initiated from leaf discs derived from plants withdifferent capacities for alkaloid biosynthesis. These were furthersubcultured for 2 years. Again, the same correlations in hyoscyamineand scopolamine content were observed. This indicates that itis possible to initiate callus with a high alkaloid contentstarting from actively alkaloid-producing androgenic Daturainnoxia plants. Key words: Datura innoxia, tropane alkaloids, androgenic plants, callus culture  相似文献   

2.
A rapid in vitro propagation system leading to formation of shoots from callus, roots, and plantlets was developed for Schizanthus hookeri Gill. (Solanaceae), an endemic Chilean plant. The genus Schizanthus is of particular interest due to the presence of several tropane alkaloids. So far, in vitro propagation of species of this genus has not been reported. Propagation of S. hookeri consisted of two phases, the first one for callus initiation and shoot formation and the second for rhizogenesis and plantlet regeneration. From a single callus that rapidly increased in cell biomass (from approximately 50 mg to approximately 460 mg/culture tube [25 x 130 mm] in 60 days) in the presence of 2.69 microM NAA and 2.22 microM BA, more than 10 shoots/callus explant were formed. From the latter, approx. twenty plantlets formed after 90-110 days shoot subculture in medium devoid of growth regulators that favored root formation. Ten alkaloids ranging from simple pyrrolidine derivatives to tropane esters derived from angelic, tiglic, senecioic or methylmesaconic acids were obtained from in vitro regenerated plantlets. One of them, 3alpha-methylmesaconyloxytropane, was not previously described. The same growth conditions, as well as other growth regulator levels tested, were required to induce callus and root formation in S. grahamii Gill. Root organogenesis occurred despite a high level of BA vs. NAA used, (i.e., 4.44 microM BA and 0.54 microM NAA); however no shoot formation was achieved. In the case of S. tricolor Grau et Gronbach, only callus formation was obtained in the presence of various growth regulators.  相似文献   

3.
In the present study, a protocol was optimized for establishment of callus and cell suspension culture of Scrophularia striata Boiss. as a strategy to obtain an in vitro acteoside producing cell line for the first time. The effects of growth regulators were analyzed to optimize the biomass growth and acteoside production. The stem explant of S. striata was optimum for callus induction. Modified Murashige and Skoog medium supplemented with 0.5 mg/l naphthalene acetic acid + 2.0 mg/l benzyl adenine was the most favorable medium for callus formation with the highest induction rate (100 %), the best callus growth and the highest acteoside content (1.6 μg/g fresh weight). Incompact and rapid growing suspension cells were established in the liquid medium supplemented with 0.5 mg/l naphthalene acetic acid + 2.0 mg/l benzyl adenine. The optimum time of subculture was found to 17–20 days. Acteoside content in the cell suspension was high during exponential growth phase and decreased subsequently at the stationary phase. The maximum content of acteoside (about 14.25 μg/g cell fresh weight) was observed on the 17th day of the cultivation cycle. This study provided an efficient way to further regulation of phenylethanoid glycoside biosynthesis and production of valuable acteoside, a phenylethanoid glycoside, on scale-up in S. striata cell suspension culture.  相似文献   

4.
An efficient callus induction and plant regeneration system has been standardized for an ethnomedicinal plant, Elephantopus scaber Linn. Two explants i. e. seeds and leaf segments were used for callus induction. Murashige and Skoog (MS) medium supplemented with 5.0 μM 2, 4-dichlorophenoxy acetic acid (2, 4-D) and 0.5 μM kinetin (Kn) gave the optimum frequency (89 %) of callus induction from seed explant. The results showed that the highest response in terms of percent callus regenerating (91 %) and number of shoots (56) per culture was recorded on MS medium supplemented with 6.0 μM N6-benzylaminopurine (BA) and 1.5 μM α naphthalene acetic acid (NAA). The best rooting of regenerated shoots was obtained on half strength MS medium supplemented with 6.0 μM indole-3- butyric acid (IBA). On this medium, 100 % of the shoots produced roots with a mean number of 3.2 roots per shoot. The positive role of vesicular arbuscular mycorrhizae (VAM) along with potting mix has been well established in the present study. Of the various potting mix employed for plant acclimatization, the highest response of 100 % plant survival was noticed when autoclaved garden soil, sand (2:1) and VAM was utilized as potting mix. Inter-simple sequence repeats (ISSR) were used to establish the clonal fidelity of regenerated plantlets and the banding profiles from callus derived plants were monomorphic and similar to those of mother plant, thus ascertaining the true-to-type nature of these plants.  相似文献   

5.
An efficient in vitro plant regeneration system was established from callus culture of Scopolia parviflora. Callus was induced from adventitious roots on B5 medium with 0.45–9.04 μM 2,4-dichlorophenoxyacetic acid (2,4-D). In vitro plantlet regeneration was achieved on B5 medium supplemented with 44.38 μM benzyladenine (BA), 3% sucrose, and 0.38% gelrite. Plantlets were transplanted to artificial soil and grown to maturity successfully in a greenhouse. The tropane alkaloid contents in regenerated plants were analyzed using high-performance liquid chromatography (HPLC), and were found to be higher than those of adventitious roots, native growing plants, and acclimated plants. Regenerated plants from organogenic callus cultures produced a greater amount of tropane alkaloids.  相似文献   

6.
In this study, an efficient transformation system for the medicinal plant Anisodus acutangulus was successfully developed and optimized using Agrobacterium rhizogenes. Three bacterial strains, A4, R1601, and modified C58C1 and three explant types, leaf blade, petiole, and stem, were examined. The highest transformation efficiency of 94.44% was achieved using strain C58C1 with stem explants. Over 20 independent hairy root lines were successfully established with strain C58C1 using stem explants, all of which contained the ro/B and ro/C genes as confirmed by polymerase chain reaction (PCR). Out of four media compositions, the liquid 1/2 MS medium was found the most suitable for hairy root growth. The maximum biomass of one hairy root line increased up to 80 times in liquid 1/2 MS medium after a 30 day culture period. Different hairy root lines displayed a varied capacity for tropane alkaloid production and the best hairy root line (T4) from the C58C1-stem combination produced up to 10.21 mg/g (dw) of hyoscyamine, which was about 1.5-fold higher than in the wild type plants. To our knowledge, this is the first report to demonstrate the production of tropane alkaloids in hairy roots of A. acutangulus.  相似文献   

7.
为了评估人工栽培山莨菪的药用价值,采用高效液相色谱技术对人工栽培和野生山莨菪的地上部分和根中具有生物活性的4种托烷类生物碱:樟柳碱、山莨菪碱、东莨菪碱和阿托品的含量进行了测定。结果表明无论是人工栽培还是野生植物,地上部分中4种生物碱含量均远低于根,这解释了人们为什么用山莨菪的根而不是整株人药。在栽培植物的根中,一年生山莨菪中各生物碱含量均小于二年生山莨菪,其根中4种生物碱总量与野生根相比差异不是很明显;二年生山莨菪根中,4种生物碱总量以及樟柳碱、东莨菪碱和阿托品含量均比野生的高。这说明人工栽培的山莨菪,尤其是二年生山茛菪,同野生山莨菪一样具有一定的药用价值。  相似文献   

8.
In this study, the effects of ploidy level and culture medium were studied on the production of tropane alkaloids. We have successfully produced stable tetraploid hairy root lines of Hyoscyamus muticus and their ploidy stability was confirmed 30?months after transformation. Tetraploidy affected the growth rate and alkaloid accumulation in plants and transformed root cultures of Egyptian henbane. Although tetraploid plants could produce 200% higher scopolamine than their diploid counterparts, this result was not observed for corresponding induced hairy root cultures. Culture conditions did not only play an important role for biomass production, but also significantly affected tropane alkaloid accumulation in hairy root cultures. In spite of its lower biomass production, tetraploid clone could produce more scopolamine than the diploid counterpart under similar growth conditions. The highest yields of scopolamine (13.87?mg?l?1) and hyoscyamine (107.7?mg 1?1) were obtained when diploid clones were grown on medium consisting of either Murashige and Skoog with 60?g/l sucrose or Gamborg??s B5 with 40?g/l sucrose, respectively. Although the hyoscyamine is the main alkaloid in the H. muticus plants, manipulation of ploidy level and culture conditions successfully changed the scopolamine/hyoscyamine ratio towards scopolamine. The fact that hyoscyamine is converted to scopolamine is very important due to the higher market value of scopolamine.  相似文献   

9.
An in vitro culture system leading to the formation of callus and plant regeneration, starting from nodal sections and shoot tips, was developed for Solidago chilensis (Asteraceae). The content of the gastroprotective diterpene solidagenone as well as the phenolics chlorogenic acid (CA) and rutin was determined either in rhizomes from wild growing plants and in callus and in in vitro regenerated plantlets by analytical HPLC. Additionally, total phenolic and flavonoid content was assessed in plant samples, callus and cell suspensions. In terms of dry starting material, the percentual solidagenone content in nine S. chilensis samples ranged from 0.5-3.5% for rhizomes from wild growing plants, 0.1-0.3% for callus and 0.3% for an in vitro regenerated plantlet, respectively. The highest solidagenone contents were found in the wild plant during the late summer in the months of March and April (3.5-2.2%) while highest values for chlorogenic acid (0.5%) and rutin (0.4%) were detected in May, before senescence. The callus tissue and cell suspensions contained some 1.8-2.0 and 1.2% of total phenolics, respectively. CA was the main phenolic in the cell suspension while only traces were found in the callus. Rutin was not detected in the callus nor cell culture.  相似文献   

10.
A number of cell cultures of Peganum harmala were initiated to check for a correlation between the harman alkaloid content of seedlings and cell lines derived therefrom. Despite a poor correlation between callus or suspension culture lines and parent plants, the mean alkaloid contents of strains derived from seedlings with higher alkaloid yields were nevertheless higher than the mean contents of strains derived from low yield plants. Generally, alkaloid accumulation decreased with the numbers of transfers. By permanent visual selection for fluorescent areas of the calluses, however, a mean content of 0.1% harman alkaloids and 0.1% serotonin could be maintained, which was 10 times higher than in unselected callus cultures.  相似文献   

11.
The kinetics of tropane alkaloids accumulation in different organs such as roots, leaves, stems, flowers and seeds of Datura innoxia was investigated by GC-MS. Twenty-six tropane alkaloids were detected. The ester derivatives of tropine (3alpha-tigloyloxytropine and 3-tigloyloxy-6-hydroxytropine) are the major compounds. Undifferentiated callus were established from the stem explants of Datura innoxia using Murashige and Skoog (MS) medium supplied with 6-benzylaminopurine (BA, 1 mg l(-10) and indole-3-acetic acid (IAA, 0.5 mg l(-1)) in combination for 6 weeks. Callus differentiation was initiated by subculture onto solid MS medium, free from hormones, for more than 10 months. Initially, shoots were formed after four weeks from subculture. Further subculturing in basal MS medium without growth regulators initiated the rooting of a shooty callus after 6 weeks. Investigation of the alkaloid content of the unorganized and organized callus revealed that callus (either green or brown) yielded only trace amounts of alkaloids. On the other hand, re-differentiated shoots contained mainly scopolamine while re-differentiated roots biosynthesized hyoscyamine as the main alkaloid.  相似文献   

12.
We have developed an efficient transformation system for Tribulus terrestris L., an important medicinal plant, using Agrobacterium rhizogenes strains AR15834 and GMI9534 to generate hairy roots. Hairy roots were formed directly from the cut edges of leaf explants 10–14 days after inoculation with the Agrobacterium with highest frequency transformation being 49 %, which was achieved using Agrobacterium rhizogenes AR15834 on hormone-free MS medium after 28 days inoculation. PCR analysis showed that rolB genes of Ri plasmid of A. rhizogenes were integrated and expressed into the genome of transformed hairy roots. Isolated transgenic hairy roots grew rapidly on MS medium supplemented with indole-3-butyric acid. They showed characteristics of transformed roots such as fast growth and high lateral branching in comparison with untransformed roots. Isolated control and transgenic hairy roots grown in liquid medium containing IBA were analyzed to detect ß-carboline alkaloids by High Performance Thin Layer Chromatograghy (HPTLC). Harmine content was estimated to be 1.7 μg g−1 of the dried weight of transgenic hairy root cultures at the end of 50 days of culturing. The transformed roots induced by AR15834 strain, spontaneously, dedifferentiated as callus on MS medium without hormone. Optimum callus induction and shoot regeneration of transformed roots in vitro was achieved on MS medium containing 0.4 mg L−1 naphthaleneacetic acid and 2 mg L−1 6-benzylaminopurine (BAP) after 50 days. The main objective of this investigation was to establish hairy roots in this plant by using A. rhizogenes to synthesize secondary products at levels comparable to the wild-type roots.  相似文献   

13.
A repeatable in vitro culture method was established and it could induce a series of abnormal embryos by which their scale leaves were substituted by petals. These petal-bearing embryos were derived from long-term root calli of an orchid cultivar, Oncidium ??Gower Ramsey??. The calli were induced and subcultured on a modified 1/2MS medium supplemented with five combinations of TDZ and dicamba. When 1-year-old callus, which induced and subcultured at 3?mg/l TDZ and 5?mg/l dicamba (line 13 callus), was transferred onto 1/2MS medium supplemented with 0.1?ml/l NAA and 3?mg/l TDZ, it gave the highest number of petal-bearing embryos. However, line 13 root explants gave one of the lowest percentage of callus formation (12.5%) and the number of somatic embryos per callus was also one of the lowest (along with lines 10, 11 and 12). The efficiency of embryogenesis decreased with age of callus and the significant decrease was started from the third year of culturing. Flowering characteristics of plantlets from normal embryos and petal-bearing embryos were both evaluated after 3?years of culture in the greenhouse. Parameters including length of the longest inflorescence, numbers of flowers per plant, length of flowers and width of flowers were all not significantly different between abnormal embryo-derived plants and normal embryo-derived plants.  相似文献   

14.
The effects of silicon on the growth and development of Phragmites australis (Cav.) Trin. Ex Steud. (common reed) stem nodal and root embryogenic calli were investigated. Silicon is considered to be a beneficial or quasi-essential nutrient for several Gramineaceous plants, including reed. Seven callus lines of four geographical locations (genotypes 1-4) within Hungary were investigated. Callus lines 1A, 2A and 3A were produced from stem nodal explants, while lines 1B, 2B, 3B and 4 were produced from roots. For the assay of silicon-dependent growth of callus lines of identical genotype but originating from different explants, we measured the increase of fresh weight of lines 1A and 1B. The studied developmental parameters were the increase of the number of somatic embryos (for callus lines 1A and 1B) and plant or root production from somatic embryos (for all genotypes/callus lines). Silicon was added to the culture medium as sodium silicate. In control cultures, plant or root regeneration from embryogenic calli was strongly genotype- and explant type-dependent. Stem nodal explants developed plants on regeneration medium in case of callus lines 2A and 3A, while line 1A produced roots only. All root derived calli developed roots on regeneration medium. Silicon stimulated the growth of both stem nodal and root calli (callus lines 1A, B) however, the concentration optima were different. Somatic embryogenesis of root calli, but not of stem nodal calli, was stimulated by silicate at low concentrations. However, for both of these callus lines, root development was stimulated by silicon. It had genotype-dependent influences on plant regeneration: while stimulation was observed in case of callus line 2A, inhibition occurred for line 3A. Root morphogenesis on calli was significantly influenced by silicon and depended on the callus line studied. Root production was stimulated on callus lines 1A, B and 2B, while in case of callus line 3B, it was significantly inhibited. The morphogenetic effects of Si were similar for different explants of the same geographical origin, i.e. plant or root production was similarly stimulated or inhibited by this element. We can conclude that the effects of Si on plant or root development depend on reed genotype used for callus induction. Its effect on growth and somatic embryogenesis depends on the explant type used for callus production. This is the first detailed report on the role of silicon in plant vegetative development and morphogenesis of a Gramineaceous plant.  相似文献   

15.
Ziziphora tenuior L. (Lamiaceae) is an aromatic herb used for its medicinal values against fungi, bacteria. Micropropagation can be used for large-scale multiplication of essential oil producing plants thus avoiding an overexploitation of natural resources. This work aims to develop a reliable protocol for the in vitro propagation of Z. tenuior, and to compare the antioxidant activity between in vitro propagated and wild plants.The explants were sterilized and cultured on MS medium containing different concentrations of growth regulators naphthalene acetic acid (NAA) or indole-3-butyric acid (IBA) with 0.5 mg/L of kinetin (Kin) callus formation was 70.2% after 45 days of incubation in dark on medium supplemented with 1.5 mg/L of NAA. After one month of callus culture on medium supplemented with 2 mg/L BA the shoot number was 5.12 and for the multiplication stage. The shoot number was 4.21 and length was 6.17 cm on medium supplemented with 1 mg/L Kin + 0.1 mg/L NAA.DPPH• reagent was used to test the antioxidant activity. The aqueous and methanol extracts of in vitro plants which were treated with 1.5 and 1 mg/L of kin plus 0.1 mg/L of NAA showed a strong DPPH• scavenging activity where IC50 was 0.307 and 0.369 mg/ml, respectively, while the IC50 of aqueous and methanol extracts of wild plants was 0.516 and 9.229 mg/ml, respectively. Our results suggested that plant growth regulators and in vitro culture conditions increased the antioxidant activity.  相似文献   

16.
Agrobacteria mediated Coleus blumei tumour tissues were cultured in vitro on MS medium. Sixteen diversified transformed callus cultures were maintained for several years in the absence of plant growth regulators and antibiotics without affecting the growth rate. Rosmarinic acid was detected spectrophotometrically in all tissue lines but in different quantities. The highest rosmarinic acid accumulation detected was 11% of dry tissue mass. The relation between culture growth and rosmarinic acid production was investigated in three callus lines. The lines showed different rosmarinic acid accumulation in relation to their growth rate; it was either parallel or inversely related to the tissue growth. The effects of certain medium constituents on the callus growth and rosmarinic acid accumulation were examined in four tumour cell lines. Addition of 4% or 5% sucrose stimulated rosmarinic acid synthesis and decreased callus growth. Nitrogen reduction to one half or one quarter of initial concentration did not affect rosmarinic acid synthesis and decreased callus growth in three lines, while it increased rosmarinic acid accumulation and callus growth in one line. Addition of 0.1 mg/l Phe stimulated rosmarinic acid production in two lines but had little effect on the rosmarinic acid level in others. Rosmarinic acid production was significantly improved on modified macronutrients, where the Ac2 line produced 16.5 mg of rosmarinic acid per tube (0.2 g of dry wt) after being in culture for 35 days.  相似文献   

17.
The purpose of this study was to evaluate and compare the use of liquid and solid Murashige and Skoog (MS) medium in different culture vessels for mass production of Catharanthus roseus, an important source of anticancerous compounds, vincristine and vinblastine. Three media conditions i.e. agar-solidified medium (S), liquid medium in agitated conical flask (L) and growtek bioreactor (B) were used. Rapid propagation was achieved through in vitro somatic embryogenesis pathway. The process of embryogenesis has been categorized into induction, proliferation, maturation and germination stages. All in vitro embryogenesis stages were conducted by withdrawing spent liquid medium and by adding fresh MS medium. In optimized 4.52 μM 2,4-D added MS, the callus biomass growth was low in solid (1.65 g) compared to liquid medium in agitated conical flask (1.95 g) and in bioreactor (2.11 g). The number of normal somatic embryos was more in solid medium (99.75/50 mg of callus mass) compared to liquid medium used in conical flask (83.25/callus mass) and growtek bioreactor (84.88/callus mass). The in vitro raised embryos maturated in GA3 (2.60 μM) added medium; and in bioreactor the embryo growth was high, a maximum length of 9.82 mm was observed at the end of four weeks. These embryos germinated into seedlings in BAP (2.22 μM) added medium and the embryo germination ability was more (59.41%) in bioreactor compared to liquid medium in conical flask (55.5%). Shoot length (11.25 mm) was also high in bioreactor compared to agitated conical flask. The liquid medium used in agitated conical flask and bioreactor increased seedling production efficiency, at the same time it also reduced plant recovery time. The embryo generated plants grew normally in outdoor conditions. The exploitation of medium to large culture vessel or bioreactor may make the process more efficient in getting large number of Catharanthus plant as it is the only source of anti-cancerous alkaloids, vincristine and vinblastine.Abbreviations: BA, N6-benzyladenine; 2,4-D, 2,4-Dichlorophenoxyacetic acid; GA3, gibberellic acid; NAA, naphthalene acetic acid; MS, Murashige and Skoog (1962) medium; S, agar-solidified medium; L, liquid medium in agitated conical flask; B, growtek bioreactor  相似文献   

18.
Putrescine:SAM N-methyltransferase (PMT) catalyses the N-methylation of the diamine putrescine to form N-methylputrescine, the first specific precursor of both tropane and pyridine-type alkaloids, which are present together in the roots of Duboisia plants. The pmt gene of Nicotiana tabacum was placed under the regulation of the CaMV 35S promoter and introduced into the genome of a scopolamine-rich Duboisia hybrid by a binary vector system using the disarmed Agrobacterium tumefaciens strain C58C1 carrying the rooting plasmid pRiA4. The presence of the foreign gene in kanamycin-resistant hairy roots and its overexpression were confirmed by polymerase chain reaction and Northern blot analysis respectively. The N-methylputrescine levels of the resulting engineered hairy roots increased (2-4-fold) compared to wild type roots, but there was no significant increase in either tropane or pyridine-type alkaloids.  相似文献   

19.
Summary From a callus culture which was started from explants of a single plant of Crepis capillaris, a line was isolated which could grow on auxin- and kinetin-free medium (in contrast to the other lines of the culture). The calluses of this habituated line grew on hormone-free medium as teratomas. Regenerated plants were obtained from the habituated line and from other lines of the culture as control. In the secondary callus cultures which originated from these plants, the subcultures belonging to the initially transformed line no longer had the ability to grow on hormone-free medium. Since this line was also a chromosome mutant and the same mutation was present in its regenerated plants and in the secondary culture line of them, the loss of the auxin-autotrophy cannot be explained in this case on the basis of a selection of cells with karyotypes different from those of the primary culture.  相似文献   

20.
《Plant science》1988,58(1):111-119
Somaclonal variation in disease reaction type to infection by the vascular wilt pathogen Verticillium albo-atrum Reinke & Berth was assessed in a population of lucerne plants regenerated from callus lines obtained from a susceptible cultivar. Disease severity in the regenerant population was reduced by comparison with parental controls. Seed progeny and plants recovered via a second tissue culture cycle reverted to mainly susceptible reaction types. In a further experiment a low molecular weight toxic fraction from culture filtrates of the fungus was incorporated into the callus medium prior to regeneration. Toxin treatment reduced the regenerative capacity of callus, and there was little evidence for a higher frequency of wilt resistant plants in populations selected at low toxin concentrations. The results suggest that somaclonal variation as an alternative breeding strategy for disease resistance in lucerne offers no advantages over conventional recurrent selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号