首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dynamics of zooplankton biomass and the biomass of the key copepod species Calanus finmarchicus were studied in the southern Barents Sea. The effect of climatic factors, i.e., water temperature and the atmospheric indices, on the zooplankton was assessed. It was found that the biomass of the zooplankton correlated positively both with the water temperature and winter NAO index of the previous year. The phenomenon and its reasons are discussed.  相似文献   

2.
The temporal and spatial dynamics of primary and secondary biomass/production in the Barents Sea since the late 1990s are examined using remote sensing data, observations and a coupled physical-biological model. Field observations of mesozooplankton biomass, and chlorophyll a data from transects (different seasons) and large-scale surveys (autumn) were used for validation of the remote sensing products and modeling results. The validation showed that satellite data are well suited to study temporal and spatial dynamics of chlorophyll a in the Barents Sea and that the model is an essential tool for secondary production estimates. Temperature, open water area, chlorophyll a, and zooplankton biomass show large interannual variations in the Barents Sea. The climatic variability is strongest in the northern and eastern parts. The moderate increase in net primary production evident in this study is likely an ecosystem response to changes in climate during the same period. Increased open water area and duration of open water season, which are related to elevated temperatures, appear to be the key drivers of the changes in annual net primary production that has occurred in the northern and eastern areas of this ecosystem. The temporal and spatial variability in zooplankton biomass appears to be controlled largely by predation pressure. In the southeastern Barents Sea, statistically significant linkages were observed between chlorophyll a and zooplankton biomass, as well as between net primary production and fish biomass, indicating bottom-up trophic interactions in this region.  相似文献   

3.
Over the last two decades, there have been large changes in the zooplankton biomass in the Barents Sea. These biomass variations are mainly attributed to predation pressure and environmental factors (e.g. advective transport). When stock size of capelin (Mallotus villosus), a major planktivorous fish in the Barents Sea ecosystem, was quite low as in 1986 and 1994, the zooplankton biomass showed marked increase. However, the increase in the zooplankton biomass occurred in different water masses during 1986 and 1994. In 1986, a climatically cold year, the plankton biomass was highest in the Arctic waters of the northeastern Barents Sea. This is probably due to the increase in larger Arctic amphipod species, such as Themisto libellula. In 1994, a climatically warm year, the zooplankton biomass was high in the Atlantic waters of the southwestern Barents Sea. The large increase in zooplankton biomass in the Atlantic waters in 1994 was presumably due to the higher inflow of advected organisms, e.g. Calanus spp., as well as high temperatures, which may lead to high growth rates of zooplankton. Throughout the studied region, the plankton biomass in the "cold year" of 1986 was generally much lower than in the "warm year" of 1994.  相似文献   

4.
Ocean warming can modify the ecophysiology and distribution of marine organisms, and relationships between species, with nonlinear interactions between ecosystem components potentially resulting in trophic amplification. Trophic amplification (or attenuation) describe the propagation of a hydroclimatic signal up the food web, causing magnification (or depression) of biomass values along one or more trophic pathways. We have employed 3‐D coupled physical‐biogeochemical models to explore ecosystem responses to climate change with a focus on trophic amplification. The response of phytoplankton and zooplankton to global climate‐change projections, carried out with the IPSL Earth System Model by the end of the century, is analysed at global and regional basis, including European seas (NE Atlantic, Barents Sea, Baltic Sea, Black Sea, Bay of Biscay, Adriatic Sea, Aegean Sea) and the Eastern Boundary Upwelling System (Benguela). Results indicate that globally and in Atlantic Margin and North Sea, increased ocean stratification causes primary production and zooplankton biomass to decrease in response to a warming climate, whilst in the Barents, Baltic and Black Seas, primary production and zooplankton biomass increase. Projected warming characterized by an increase in sea surface temperature of 2.29 ± 0.05 °C leads to a reduction in zooplankton and phytoplankton biomasses of 11% and 6%, respectively. This suggests negative amplification of climate driven modifications of trophic level biomass through bottom‐up control, leading to a reduced capacity of oceans to regulate climate through the biological carbon pump. Simulations suggest negative amplification is the dominant response across 47% of the ocean surface and prevails in the tropical oceans; whilst positive trophic amplification prevails in the Arctic and Antarctic oceans. Trophic attenuation is projected in temperate seas. Uncertainties in ocean plankton projections, associated to the use of single global and regional models, imply the need for caution when extending these considerations into higher trophic levels.  相似文献   

5.
Direct and indirect effects of global warming are expected to be pronounced and fast in the Arctic, impacting terrestrial, freshwater and marine ecosystems. The Barents Sea is a high latitude shelf Sea and a boundary area between arctic and boreal faunas. These faunas are likely to respond differently to changes in climate. In addition, the Barents Sea is highly impacted by fisheries and other human activities. This strong human presence places great demands on scientific investigation and advisory capacity. In order to identify basic community structures against which future climate related or other human induced changes could be evaluated, we analyzed species composition and diversity of demersal fish in the Barents Sea. We found six main assemblages that were separated along depth and temperature gradients. There are indications that climate driven changes have already taken place, since boreal species were found in large parts of the Barents Sea shelf, including also the northern Arctic area. When modelling diversity as a function of depth and temperature, we found that two of the assemblages in the eastern Barents Sea showed lower diversity than expected from their depth and temperature. This is probably caused by low habitat complexity and the distance to the pool of boreal species in the western Barents Sea. In contrast coastal assemblages in south western Barents Sea and along Novaya Zemlya archipelago in the Eastern Barents Sea can be described as diversity "hotspots"; the South-western area had high density of species, abundance and biomass, and here some species have their northern distribution limit, whereas the Novaya Zemlya area has unique fauna of Arctic, coastal demersal fish. (see Information S1 for abstract in Russian).  相似文献   

6.
Synchronism of year-class strength was noted for the majority of commercial fish in the Barents Sea. The reason for this is probably connected with a common factor, namely the intensity of water inflow which influences spawning efficiency, zooplankton food production, fish larval drift to the feeding grounds, and consequent survival of juvenile fish. Consequently, the established regular relationships of hydrological and weather processes in the ecosystem can serve as basis for long-term fishing forecasts. The overall pattern of the Barents Sea water circulation, long-term climatic changes in this region, and their effect on the fish stock reproduction are considered, using Arctic cod as an example.  相似文献   

7.
The zooplankton of 23 small salmon rivers of the White Sea and Barents Sea basins in the Kola Peninsula were studied. The species composition and quantitative indices in juvenile salmonids habitats are characterized. The maximum species diversity and abundance of planktonic fauna were recorded in lake-regulated rivers and places with large quantities of water. The quantitative development of zooplankton in rivers is low, which testifies to its minor role as a food resource for salmonid juveniles. The assessment of the ecological state of the river water is presented.  相似文献   

8.
An 0-group fish survey is conducted annually in the Barents Sea in order to estimate fish population abundance. Data on jellyfish by-catch have been recorded since 1980, although this dataset has never been analysed. In recent years, however, the ecological importance of jellyfish medusae has become widely recognized. In this paper the biomass of jellyfish (medusae) in 0–60 m depths is calculated for the period 1980–2010. During this period the climate changed from cold to warm, and changes in zooplankton and fish distribution and abundance were observed. This paper discusses the less well known ecosystem component; jellyfish medusae within the Phylum Cnidaria, and their spatial and temporal variation. The long term average was ca. 9×108 kg, with some years showing biomasses in excess of 5×109 kg. The biomasses were low during 1980s, increased during 1990s, and were highest in early 2000s with a subsequent decline. The bulk of the jellyfish were observed in the central parts of the Barents Sea, which is a core area for most 0-group fishes. Jellyfish were associated with haddock in the western area, with haddock and herring in the central and coastal area, and with capelin in the northern area of the Barents Sea. The jellyfish were present in the temperature interval 1°C<T<10°C, with peak densities at ca. 5.5°C, and the greatest proportion of the jellyfish occurring between 4.0–7.0°C. It seems that the ongoing warming trend may be favourable for Barents Sea jellyfish medusae; however their biomass has showed a recent moderate decline during years with record high temperatures in the Barents Sea. Jellyfish are undoubtedly an important component of the Barents Sea ecosystem, and the data presented here represent the best summary of jellyfish biomass and distribution yet published for the region.  相似文献   

9.
The southern Barents Sea is considered to be the most productive area in the Arctic Ocean; however, there are no assessments of daily production rates in the coastal waters. During the summer and autumn of 2007, we investigated the variation of mesozooplankton community structure relative to environmental conditions at 12 coastal stations. Copepods dominated the total zooplankton biomass and abundance during both periods. Diversity indices and the total biomass of zooplankton communities differed significantly between the two seasons. Cluster analyses revealed two distinct groups of stations which were associated with Ura Bay and the adjacent open sea, respectively. Daily production rates of the copepod species examined were calculated using three methods based on: (1) a temperature-dependent equation and (2) two multiple regressions that consider temperature, body weight, and chlorophyll a concentration. Significant seasonal differences for daily production rates were found using all three model equations (p?<?0.05): 358?±?188–1,775?±?791 versus 198?±?85–1,584?±?559?μg?dry?mass?m?3?day?1. Results of principal components analyses demonstrated that the abundance and biomass of herbivorous species were related to variation in chlorophyll a concentration while the abundance and biomass of other species (omnivorous copepods and Ctenophora) were related mainly with water temperature and salinity. Mesozooplankton biomass was higher during this study relative to previous studies. Computed copepod production rates were higher compared with other Arctic seas confirming a high productive potential of the coastal southern Barents Sea.  相似文献   

10.
Investigations into the 0-group fish in the Barents Sea have been carried out since 1965, with the goal of estimating the abundance of 0-group fish. 0-group abundance indices have been used in the assessment of the recruitment level and in recruitment variability studies. However, the ecological importance of the 0-group fish in the Barents Sea has been less studied. Although 0-group capelin, herring, cod and haddock are widely distributed in the Barents Sea, the central area seems to be the most important, accounting for approximately 50–80% of the annual biomass. The total biomass of the four most abundant 0-group fish species can be up to 3.3 million tonnes, with an average of 1.3 million tonnes (1993–2009). Wide distribution and high biomass of pelagically distributed 0-group fish make these fishes an important element in the energy transport between different trophic levels and different geographical areas, having a critical impact on the entire Barents Sea ecosystem. In recent years, capelin have shown a pronounced northward shift in biomass distribution, and several successive strong year classes occurred during warm temperature conditions. Cod biomasses were unexpectedly low during warm years and were positively correlated with spawning stock biomass, while the correlation with temperature was not significant. Haddock and herring show, as expected, increasing biomass with increased temperature when the spawning stock is at a sufficiently high level.  相似文献   

11.
During spring 1986 and winter 1987, zooplankton samples were collected over the entire North Sea by means of a multi-closing net-system. Before taxonomic treatment, wet weight estimates and carbon content conversions were carried out. From this data set, 4 962 522 tons zooplankton biomass (dry weight) were estimated for the whole North Sea during the spring survey. High biomasses (more than 100 mg C/m3) were located in areas between the Orkneys and the Shetlands, off the mouth of the Firth of Forth, the Channel and the river Rhine. Considerable zooplankton biomass was also found parallel to the Danish west coast. Furthermore, a narrow tongue of high biomass (partly greater than 200 mg C/m3) intruded from the north, between 1 °E and 4 °E, into the northern North Sea, turning to the east at 56°N, and continuing into deeper water layers to form a left turning “helix” of high biomass in the central part of the North Sea. During the winter survey the carbon content of the zooplankton stock was a factor 10 lower than in summer. Altogether, 519340 tons of zooplankton biomass (dry weight) were estimated in winter. Centres of relatively high biomass were located off the mouth of the rivers Rhine, Weser and Elbe and off the British east coast moving in a cyclic way across the Dogger Bank into the central North Sea. A further maximum of zooplankton abundance was found in the Skagerrak region. However, an intrusion of zooplankton from the shelf edge into the North Sea was not observed in winter. A qualitative analysis of species composition showed that small copepods dominated the zooplankton in the southern and eastern North Sea. The “eddy” of high biomass in the northern North Sea observed in spring, however, was mostly shaped by the large copepodCalanus finmarchicus (70–90%). The distribution of zooplankton biomass in the North Sea is discussed in relation to the hydrographic conditions and to the biology of the dominant species.  相似文献   

12.
The species composition and brief characteristic of some elements of structure of the ichthyofauna of the Barents Sea within its geographic boundaries are represented. During the whole historic period of observations in the Barents Sea, 182 species and subspecies of fish were recorded, belonging to 59 families, 28 orders, and 5 classes. Most species and subspecies belong to the boreal complex (59.3%), occur principally in the bottom layers (56.6%), more than a half feed on bottom and demersal invertebrates (52.2%), and are commercial species (52.7%). In the Barents Sea, 21 species and subspecies are commercial. Their ration in catches depends on the integral impact of natural and anthropogenous factors. In the arctic zone of the Barents Sea, the part of noncommercial species makes by biomass 1.18%; in the boreal zone—0.26%; in the Pechora Sea—10.6%.  相似文献   

13.
The mycobiota of bottom sediments at depths of 128?472 m was investigated in Barents and Kara sea areas remote from the shore. The species composition and fungal abundance, that is, the number of fungal colony-forming units (CFUs), were determined in 5 samples from the Kara Sea and in 14 samples of the Barents Sea. For the first time for the Arctic seas, the fungal biomass was determined in 12 samples of the bottom sediments from the Barents Sea. It was found that fungal abundance in the bottom sediments of the both seas did not exceed 13 CFUs per 1 g of dry substrate weight. In total, only 58 colonies of filamentous fungi belonging to 22 morphotypes, 8 of which were sterile, were isolated from all the samples. No more than six morphotypes were contained in 1 g of dried substrate; they were mostly species of the genus Cladosporium and sterile isolates. The study of the fungal biomass detected both spores and fungal mycelium in the bottom sediments. The total biomass was extremely low and ranged from 0.1 to 0.620 mg/g of the studied substrate. Small spores (with a diameter less than 3 μm) absolutely predominated (from 88 to 99.7% of the biomass).  相似文献   

14.
Krill plays a significant role in the Barents Sea ecosystem, providing energy transport between different trophic levels. The current paper presents the results of a long-term study (1980–2009) based on pelagic trawl catches from August to September. Our investigations show that the krill species were distributed widely in the Barents Sea and that the largest krill concentrations were restricted to the west-central and eastern parts of the Barents Sea. The current paper presents the relative biomass indices, and the estimates must be interpreted as minimum biomass. The mean annual krill biomass was estimated to be 22 million tonnes in wet weight, with the highest values being as much as 48 million tonnes. Capelin is the largest pelagic stock, and in some years, their biomass can amount to 4–7 million tonnes, which can impose high predation pressure on krill. When their biomass is high, capelin may consume close to 26 million tonnes annually. The predation from pelagic (herring and blue whiting) and bottom (cod and haddock) fish species was much lower, being 9 and 1 million tonnes, respectively. A negative relationship between krill biomass and capelin stock size above 74°N was observed during the study period. However, during the last decade, the krill biomass has increased despite heavy predation from capelin in some years. A positive significant linear relationship between the mean annual Kola temperature and the krill biomass seems to indicate that the recent warming conditions have favourable impacts on the krill populations in the Barents Sea.  相似文献   

15.
The Barents Sea is an important area with respect to fisheriesresources (i.e. capelin and cod). In May, June and August 1981zooplankton biomass was measured along a transect at 30°E,from the ice border southwards. A maximum was recorded in Atlanticwater by the end of June (>100 g wet weight m–2 InAugust the biomass values were relatively low south of the Polarfront and increased northwards into Arctic water (–50g m–2 The species composition was influenced by the distributionof cold Arctic water and warmer Atlantic water. The zooplanktonwas dominated by the copepods Calanus finmarchicus and C. glacialis;the former is regarded as an Atlantic species and C. glacialisas an Arctic species.  相似文献   

16.
Based on the data from ten cruises that were carried out in 2001–2009, the structure of zooplankton communities was assessed in the Western Arctic seas using the estimated biodiversity indices. The greatest number of taxa was revealed in the south, southeast, and north of the Barents Sea. The average number of taxa in the sample was at a maximum off the coast of the Svalbard Archipelago. The greatest value of the Shannon index was registered within the Murmansk coastal water mass (Barents Sea) and Svalbard Archipelago. The median values of the evenness of the abundance of fauna were 0.5–0.6. A trend to a reduction of the biodiversity parameters of zooplankton communities with increasing square of water area water area was found. An inverse correlation between the Shannon and evenness indices for the total zooplankton abundance was revealed.  相似文献   

17.
Diet composition of polar bears in Svalbard and the western Barents Sea   总被引:6,自引:2,他引:4  
We estimated both the numerical and biomass composition of the prey of polar bears (Ursus maritimus) from 135 opportunistic observations of kills in Svalbard and the western Barents Sea collected from March to October 1984-2001. By number, the prey composition was dominated by ringed seals (Phoca hispida) (63%), followed by bearded seals (Erignathus barbatus) (13%), harp seals (P. groenlandica) (8%) and unknown species (16%). However, when known prey were converted to biomass, the composition was dominated by bearded seals (55%), followed by ringed seals (30%) and harp seals (15%). Results indicated that bearded seals are an important dietary item for polar bears in the western Barents Sea. We believe that different patterns of space use by different bears may result in geographic variation of diet within the same population.  相似文献   

18.
The balance between faecal pellet (FP) production and destruction that accelerates or diminishes vertical export has an effect on pelagic-benthic coupling, but is inadequately known. Production, export and retention of copepod FP were investigated in the marginal ice zone (MIZ) of the northern Barents Sea in July 2003. Older stages of Calanus finmarchicus and C. glacialis dominated the copepod biomass and FP production experiments revealed that more than 90% of the FP were produced in the upper 50 m where most of the copepods were located both day and night. Copepod pellets typically made up ∼10% of the vertical particulate organic carbon flux, and significantly less than what was produced by the copepod community. This implies a variable but significant retention of pellets. We suggest that retention of FP is caused partly by the zooplankton themselves and that retention of FP is the rule rather than the exception in the Barents Sea, particularly during non-bloom scenarios.  相似文献   

19.
Distribution of 0-group cod (Gadus morhua) and haddock (Melanogrammus aeglefinus) in August–September 2005 and 2006 was mainly restricted to the Atlantic waters of the western and central areas of the Barents Sea. The main distribution of 0-group fish overlapped largely with areas of high biomass (>7 gm−2 dry weight) of zooplankton. The copepod Calanus finmarchicus and krill Thysanoessa inermis, which are dominant zooplankton species in both Atlantic and boreal waters of the Barents Sea, were the main prey of 0-group cod and haddock. The main distribution, feeding areas and prey of 0-group cod and haddock overlapped, implying that competition for food may occur between the two species. However, though their diet coincided to a certain degree, haddock seems to prefer smaller and less mobile prey, such as Limacina and appendicularians. As 0-group fish increased in size, there seems to be a shift in diet, from small copepods and towards larger prey such as krill and fish. Overall, a largely pelagic feeding behaviour of 0-group cod and haddock was evident from this study.  相似文献   

20.
Aim For decades, subfossil shells of the bivalve Mytilus edulis Linnaeus, 1758 in Svalbard have been taken as evidence of higher surface temperatures during the early Holocene because the modern northern occurrence of this mollusc was, until recently, in the southern Barents Sea. Here, we elucidate and discuss the spatial and temporal Late Pleistocene and Holocene distribution of the species within the entire Barents Sea region. Location The Barents Sea region. Methods Radiocarbon dates of Mytilus shells from the Barents Sea region and information about the present distribution of the species were compiled, including two new radiocarbon dates from north‐eastern Spitsbergen. The dataset was divided into time slices, each covering 1000 years, and compared with Holocene temperature variations, ocean current systems and present‐day temperature patterns. Results Maps show the Late Pleistocene and Holocene spatial and temporal distribution of Mytilus edulis in the Barents Sea region. M. edulis was already present in northern Norway about 14,000 cal. yr bp . It appeared at western Spitsbergen about 11,000 cal. yr bp , and slowly spread to the rest of the archipelago. The maximum distribution in the region was reached 10,000–7000 cal. yr bp , coinciding with the Holocene climatic optimum. The species gradually disappeared in the late Holocene and became absent from the northern and eastern parts of the region 3000–1000 cal. yr bp . Today, M. edulis lives in the southern part and has begun to recolonize the northern parts. Main conclusions The time slices illustrate strong connections between the ocean current regimes, the climate and the distribution of M. edulis. The species settled in the southern part of the Barents Sea region several thousand years before it spread to the northern part during the Holocene climatic optimum. It may even have been completely absent from the region for a short time during the late Holocene cold period. The Holocene distribution of Mytilus implies that the underlying pattern of coastal sea surface temperatures in the region was very stable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号