首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Bioactive gibberellins (GAs) affect many biological processes including germination, stem growth, transition to flowering, and fruit development. The location, timing, and level of bioactive GA are finely tuned to ensure that optimal growth and development occur. The balance between GA biosynthesis and deactivation is controlled by external factors such as light and by internal factors that include auxin. The role of auxin transport inhibitors (ATIs) and auxins on GA homeostasis in intact light-grown Arabidopsis thaliana (L.) Heynh. seedlings was investigated. Two ATIs, 1-N-naphthylthalamic acid (NPA) and 1-naphthoxyacetic acid (NOA) caused elevated expression of the GA biosynthetic enzyme AtGA20-oxidase1 (AtGA20ox1) in shoot but not in root tissues, and only at certain developmental stages. It was investigated whether enhanced AtGA20ox1 gene expression was a consequence of altered flow through the GA biosynthetic pathway, or was due to impaired GA signalling that can lead to enhanced AtGA20ox1 expression and accumulation of a DELLA protein, Repressor of ga1-3 (RGA). Both ATIs promoted accumulation of GFP-fused RGA in shoots and roots, and this increase was counteracted by the application of GA(4). These results suggest that in ATI-treated seedlings the impediment to DELLA protein degradation may be a deficiency of bioactive GA at sites of GA response. It is proposed that the four different levels of AtGA20ox1 regulation observed here are imposed in a strict hierarchy: spatial (organ-, tissue-, cell-specific) > developmental > metabolic > auxin regulation. Thus results show that, in intact auxin- and auxin transport inhibitor-treated light-grown Arabidopsis seedlings, three other levels of regulation supersede the effects of auxin on AtGA20ox1.  相似文献   

2.
Gibberellin levels in imbibed Arabidopsis thaliana seeds are regulated by light via phytochrome, presumably through regulation of gibberellin biosynthesis genes, AtGA3ox1 and AtGA3ox2, and a deactivation gene, AtGA2ox2. Here, we show that a loss-of-function ga2ox2 mutation causes an increase in GA(4) levels and partly suppresses the germination inability during dark imbibition after inactivation of phytochrome. Experiments using 2,2-dimethylGA(4), a GA(4) analog resistant to gibberellin 2-oxidase, in combination with ga2ox2 mutant seeds suggest that the efficiency of deactivation of exogenous GA(4) by AtGA2ox2 is dependent on light conditions, which partly explains phytochrome-mediated changes in gibberellin effectiveness (sensitivity) found in previous studies.  相似文献   

3.
Degradation of active C(19)-gibberellins (GAs) by dioxygenases through 2beta-hydroxylation yields inactive GA products. We identified two genes in Arabidopsis (AtGA2ox7 and AtGA2ox8), using an activation-tagging mutant screen, that encode 2beta-hydroxylases. GA levels in both activation-tagged lines were reduced significantly, and the lines displayed dwarf phenotypes typical of mutants with a GA deficiency. Increased expression of either AtGA2ox7 or AtGA2ox8 also caused a dwarf phenotype in tobacco, indicating that the substrates for these enzymes are conserved. AtGA2ox7 and AtGA2ox8 are more similar to each other than to other proteins encoded in the Arabidopsis genome, indicating that they may constitute a separate class of GA-modifying enzymes. Indeed, enzymatic assays demonstrated that AtGA2ox7 and AtGA2ox8 both perform the same GA modification: 2beta-hydroxylation of C(20)-GAs but not of C(19)-GAs. Lines containing increased expression of AtGA2ox8 exhibited a GA dose-response curve for stem elongation similar to that of the biosynthetic mutant ga1-11. Double loss-of-function Atga2ox7 Atga2ox8 mutants had twofold to fourfold higher levels of active GAs and displayed phenotypes associated with excess GAs, such as early bolting in short days, resistance to the GA biosynthesis inhibitor ancymidol, and decreased mRNA levels of AtGA20ox1, a gene in the GA biosynthetic pathway.  相似文献   

4.
Long day (LD) exposure of rosette plants causes rapid stem/petiole elongation, a more vertical growth habit, and flowering; all changes are suggestive of a role for the gibberellin (GA) plant growth regulators. For Arabidopsis (Arabidopsis thaliana) L. (Heynh), we show that enhancement of petiole elongation by a far-red (FR)-rich LD is mimicked by a brief (10 min) end-of-day (EOD) FR exposure in short day (SD). The EOD response shows red (R)/FR photoreversibility and is not affected in a phytochrome (PHY) A mutant so it is mediated by PHYB and related PHYs. FR photoconversion of PHYB to an inactive form activates a signaling pathway, leading to increased GA biosynthesis. Of 10 GA biosynthetic genes, expression of the 20-oxidase, AtGA20ox2, responded most to FR (up to a 40-fold increase within 3 h). AtGA20ox1 also responded but to a lesser extent. Stimulation of petiole elongation by EOD FR is reduced in a transgenic AtGA20ox2 hairpin gene silencing line. By contrast, it was only in SD that a T-DNA insertional mutant of AtGA20ox1 (ga5-3) showed reduced response. Circadian entrainment to a daytime pattern provides an explanation for the SD expression of AtGA20ox1. Conversely, the strong EOD/LD FR responses of AtGA20ox2 may reflect its independence of circadian regulation. While FR acting via PHYB increases expression of AtGA20ox2, other GA biosynthetic genes are known to respond to R rather than FR light and/or to other PHYs. Thus, there must be different signal transduction pathways, one at least showing a positive response to active PHYB and another showing a negative response.  相似文献   

5.
Gibberellin (GA) 3-oxidase, a class of 2-oxoglutarate-dependent dioxygenases, catalyzes the conversion of precursor GAs to their bioactive forms, thereby playing a direct role in determining the levels of bioactive GAs in plants. Gibberellin 3-oxidase in Arabidopsis is encoded by a multigene family consisting of at least four members, designated AtGA3ox1 to AtGA3ox4. It has yet to be investigated how each AtGA3ox gene contributes to optimizing bioactive GA levels during growth and development. Using quantitative real-time PCR analysis, we have shown that each AtGA3ox gene exhibits a unique organ-specific expression pattern, suggesting distinct developmental roles played by individual AtGA3ox members. To investigate the sites of synthesis of bioactive GA in plants, we generated transgenic Arabidopsis that carried AtGA3ox1-GUS and AtGA3ox2-GUS fusions. Comparisons of the GUS staining patterns of these plants with that of AtCPS-GUS from previous studies revealed the possible physical separation of the early and late stages of the GA pathway in roots. Phenotypic characterization and quantitative analysis of the endogenous GA content of ga3ox1 and ga3ox2 single and ga3ox1/ga3ox2 double mutants revealed distinct as well as overlapping roles of AtGA3ox1 and AtGA3ox2 in Arabidopsis development. Our results show that AtGA3ox1 and AtGA3ox2 are responsible for the synthesis of bioactive GAs during vegetative growth, but that they are dispensable for reproductive development. The stage-specific severe GA-deficient phenotypes of the ga3ox1/ga3ox2 mutant suggest that AtGA3ox3 and AtGA3ox4 are tightly regulated by developmental cues; AtGA3ox3 and AtGA3ox4 are not upregulated to compensate for GA deficiency during vegetative growth of the double mutant.  相似文献   

6.
赤霉素(gibberellin,GA)在植物生长发育的各个时期发挥重要作用。GA20-氧化酶(Gibberellin20-oxidase,GA20ox)是赤霉素生物合成途径中关键的限速酶,因此研究调控GA20ox基因表达的转录因子对进一步阐述赤霉素生物合成及其调控具有重要意义。本研究通过酵母单杂交技术利用AtGA20ox1启动子筛选拟南芥转录因子库,筛选获得转录因子RAP2.4f;酵母单杂交和X-gal显色结果进一步证实RAP2.4能与AtGA20ox1启动子结合;CPRG定量分析发现RAP2.4f与AtGA20ox1启动子结合作用强;双荧光素酶检测结果显示RAP2.4f对AtGA20ox1的启动子活性具有抑制作用。这些研究结果表明,RAP2.4f可能参与调控AtGA20ox1的转录。  相似文献   

7.
赤霉素不仅对植物的种子萌发、叶片伸展和开花结果有重要的影响, 而且在茎秆的发育过程中扮演关键的角色。它的生物合成受到多种酶的调控, 其中赤霉素3-氧化酶(GA3OX)是关键的限速酶, 备受重视。拟南芥AtGA3OX 基因由4个成员组成, 其中A3OX1 和 AtGA3OX2 基因在茎中超量表达, 可能与茎的发育有关。目前, 尚未见到AtGA3OX1、AtGA3OX2基因调控次生细胞壁增厚的报道。文章以拟南芥AtGA3OX1 和 AtGA3OX2 基因双突变体atga3ox1atga3ox2为材料, 系统研究了AtGA3OX1和AtGA3OX2 基因对次生细胞壁的影响。结果表明:同时突变 AtGA3OX1和AtGA3OX2基因不仅显著抑制了茎秆次生细胞壁纤维细胞的增厚(对导管细胞没有影响), 而且也明显降低了次生细胞壁3个组分(纤维素、半纤维素和木质素)的含量。利用实时荧光定量PCR (qRT-PCR) 进一步分析次生细胞壁3个组分生物合成基因及相关的转录因子的表达情况, 结果显示这些基因在双突变体中均受到显著影响, 表明拟南芥AtGA3OX1和 AtGA3OX2 基因可能是通过调控这些转录因子进而调控了次生细胞壁的加厚。研究结果为基因工程调控拟南芥AtGA3OX1、AtGA3OX2 基因(或其他物种同源基因), 进而增强粮食作物抗倒伏性和提高能源植物纤维生物质量提供了理论依据。  相似文献   

8.
Gibberellin (GA) 20-oxidase catalyses consecutive steps late in GA biosynthesis in plants. In Arabidopsis, the enzyme is encoded by a gene family of at least three members (AtGA20ox1, AtGA20ox2 and AtGA20ox3) with differential patterns of expression. The genes are regulated by feedback from bioactive GAs, suggesting that the enzymes may be involved in regulating GA biosynthesis. To investigate this, we produced transgenic Arabidopsis expressing sense or antisense copies of each of the GA 20-oxidase cDNAs. Over-expression of any of the cDNAs gave rise to seedlings with elongated hypocotyls; the plants flowered earlier than controls in both long and short days and were 25% taller at maturity. GA analysis of the vegetative rosettes showed a two- to threefold increase in the level of GA4, indicating that GA 20-oxidase normally limits bioactive GA levels. Plants expressing antisense copies of AtGA20ox1 had short hypocotyls and reduced rates of stem elongation. This was reflected in reduced levels of GA4 in both rosettes and shoot tips. In short days, flowering was delayed and the reduction in the rate of stem elongation was greater. Antisense expression of AtGA20ox2 had no apparent effects in long days, but stem growth in one transgenic line grown in short days was reduced by 20%. Expression of antisense copies of AtGA20ox3 had no visible effect, except for one transgenic line that had short hypocotyls. These results demonstrate that GA levels and, hence, plant growth and development can be modified by manipulation of GA 20-oxidase expression in transgenic plants.  相似文献   

9.
Negative feedback is a fundamental mechanism of organisms to maintain the internal environment within tolerable limits. Gibberellins (GAs) are essential regulators of many aspects of plant development, including seed germination, stem elongation, and flowering. GA biosynthesis is regulated by the feedback mechanism in plants. GA 3-oxidase (GA3ox) catalyzes the final step of the biosynthetic pathway to produce the physiologically active GAs. Here, we found that only the AtGA3ox1 among the AtGA3ox family of Arabidopsis (Arabidopsis thaliana) is under the regulation of GA-negative feedback. We have identified a cis-acting sequence responsible for the GA-negative feedback of AtGA3ox1 using transgenic plants. Furthermore, we have identified an AT-hook protein, AGF1 (for the AT-hook protein of GA feedback regulation), as a DNA-binding protein for the cis-acting sequence of GA-negative feedback. The mutation in the cis-acting sequence abolished both GA-negative feedback and AGF1 binding. In addition, constitutive expression of AGF1 affected GA-negative feedback in Arabidopsis. Our results suggest that AGF1 plays a role in the homeostasis of GAs through binding to the cis-acting sequence of the GA-negative feedback of AtGA3ox1.  相似文献   

10.
Gibberellins (GAs) are involved in many aspects of plant development, including shoot growth, flowering and wood formation. Increased levels of bioactive GAs are known to induce xylogenesis and xylem fiber elongation in aspen. However, there is currently little information on the response pathway(s) that mediate GA effects on wood formation. Here we characterize an important element of the GA pathway in hybrid aspen: the GA receptor, GID1. Four orthologs of GID1 were identified in Populus tremula  ×  P. tremuloides ( PttGID1.1–1.4 ). These were functional when expressed in Arabidopsis thaliana , and appear to present a degree of sub-functionalization in hybrid aspen. PttGID1.1 and PttGID1.3 were over-expressed in independent lines of hybrid aspen using either the 35S promoter or a xylem-specific promoter ( LMX5 ). The 35S : PttGID1 over-expressors shared several phenotypic traits previously described in 35S:AtGA20ox1 over-expressors, including rapid growth, increased elongation, and increased xylogenesis. However, their xylem fibers were not elongated, unlike those of 35S:AtGA20ox1 plants. Similar differences in the xylem fiber phenotype were observed when PttGID1.1 , PttGID1.3 or AtGA20ox1 were expressed under the control of the LMX5 promoter, suggesting either that PttGID1.1 and PttGID1.3 play no role in fiber elongation or that GA homeostasis is strongly controlled when GA signaling is altered. Our data suggest that GAs are required in two distinct wood-formation processes that have tissue-specific signaling pathways: xylogenesis, as mediated by GA signaling in the cambium, and fiber elongation in the developing xylem.  相似文献   

11.
Gibberellin (GA) biosynthesis is necessary for normal plant development, with later GA biosynthetic stages being governed by multigene families. Arabidopsis thaliana contains five GA 20-oxidase (GA20ox) genes, and past work has demonstrated the importance of GA20ox1 and -2 for growth and fertility. Here, we show through systematic mutant analysis that GA20ox1, -2, and -3 are the dominant paralogs; their absence results in severe dwarfism and almost complete loss of fertility. In vitro analysis revealed that GA20ox4 has full GA20ox activity, but GA20ox5 catalyzes only the first two reactions of the sequence by which GA(12) is converted to GA(9). GA20ox3 functions almost entirely redundantly with GA20ox1 and -2 at most developmental stages, including the floral transition, while GA20ox4 and -5 have very minor roles. These results are supported by analysis of the gene expression patterns in promoter:β-glucuronidase reporter lines. We demonstrate that fertility is highly sensitive to GA concentration, that GA20ox1, -2, and -3 have significant effects on floral organ growth and anther development, and that both GA deficiency and overdose impact on fertility. Loss of GA20ox activity causes anther developmental arrest, with the tapetum failing to degrade. Some phenotypic recovery of late flowers in GA-deficient mutants, including ga1-3, indicated the involvement of non-GA pathways in floral development.  相似文献   

12.
The involvement of lipase in flowering is seldom studied, and this research provides evidence that fatty acids produced by lipase affect flowering. OSAG78 encoding a patatin-like protein was isolated from Oncidium Gower Ramsey. OSAG78 fused with green fluorescent protein was found to localize at the cell membrane. Transgenic Arabidopsis overexpressing OSAG78 demonstrated higher lipase activity than the wild-type control. In addition, the amount of free linoleic acid and linolenic acid in transgenic Arabidopsis was found to be higher than that in the wild type. Transgenics overexpressing OSAG78 exhibited altered phenotypes, including smaller leaves and rounder flowers, and also demonstrated a late flowering phenotype that could be rescued by gibberellin A(3) (GA(3)) application. Several flowering-related genes were analyzed, indicating that the expression of gibberellin-stimulated genes was decreased in the plants overexpressing OSAG78. Also, the expression of AtGA2ox1, AtGA3ox1 and AtGA20ox1 genes encoding GA2-, GA3- and GA20-oxidases, respectively, which are mainly responsible for gibberellin metabolism, was decreased, and the level of GA(4), a bioactive gibberellin, measured by gas chromatography-mass spectrometry was also reduced in the overexpressing lines. Furthermore, the expression levels of AtGA3ox1 and AtGA20ox1 were significantly decreased in wild-type Arabidopsis treated with linoleic acid, linolenic acid or methyl jasmonate. The membrane-bound OSAG78 might hydrolyze phospholipids to release linoleic acid and linolenic acid, and then depress the expression of genes encoding GA3- and GA20-oxidase. These changes reduced the bioactive gibberellin level, and, finally, late flowering occurred. Our results indicate that a patatin-like membrane protein with lipase activity affects flowering through the regulation of gibberellin metabolism.  相似文献   

13.
14.
15.
Embryonic regulators LEC2 (LEAFY COTYLEDON2) and FUS3 (FUSCA3) are involved in multiple aspects of Arabidopsis (Arabidopsis thaliana) seed development, including repression of leaf traits and premature germination and activation of seed storage protein genes. In this study, we show that gibberellin (GA) hormone biosynthesis is regulated by LEC2 and FUS3 pathways. The level of bioactive GAs is increased in immature seeds of lec2 and fus3 mutants relative to wild-type level. In addition, we show that the formation of ectopic trichome cells on lec2 and fus3 embryos is a GA-dependent process as in true leaves, suggesting that the GA pathway is misactivated in embryonic mutants. We next demonstrate that the GA-biosynthesis gene AtGA3ox2, which encodes the key enzyme AtGA3ox2 that catalyzes the conversion of inactive to bioactive GAs, is ectopically activated in embryos of the two mutants. Interestingly, both beta-glucuronidase reporter gene expression and in situ hybridization indicate that FUS3 represses AtGA3ox2 expression mainly in epidermal cells of embryo axis, which is distinct from AtGA3ox2 pattern at germination. Finally, we show that the FUS3 protein physically interacts with two RY elements (CATGCATG) present in the AtGA3ox2 promoter. This work suggests that GA biosynthesis is directly controlled by embryonic regulators during Arabidopsis embryonic development.  相似文献   

16.
Gibberellin (GA), a plant hormone, is involved in many aspects of plant growth and development both in vegetative and reproductive phases. GA2-oxidase plays a key role in the GA catabolic pathway to reduce bioactive GAs. We produced transgenic Arabidopsis plants expressing GA2-oxidase 4 (AtGA2ox4) under the control of a senescenceassociated promoter (SEN1). As we hypothesized, transgenic plants (SEN1::AtGA2ox4) exhibited a dominant semi-dwarf phenotype with a decrease of bioactive GAs (e.g., GA4 and GA1) up to two-fold compared to control plants. Application of bioactive GA3 resulted in increased shoot length, indicating that the GA signaling pathway functions normally in the SEN1::AtGA2ox4 plants. Expressions of other members of GA2-oxidase family, such as AtGA2ox1, AtGA2ox3, AtGA2ox6, and AtGA2ox8, were decreased slightly in the flower and silique tissues while GA biosynthetic genes (e.g., AtGA20ox1, AtGA20ox2 and AtGA3ox1) were not significantly changed in the SEN::AtGA2ox4 plants. Using proteome profiling (2-D PAGE followed by MALDI-TOF/MS), we identified 29 protein spots that were increased in the SEN1::AtGA2ox4 plants, but were decreased to wild-type levels by GA3 treatment. The majority were found to be involved in photosynthesis and carbon/energy metabolism. Unlike the previous constitutive over-expression of GA2-oxidases, which frequently led to floral deformity and/or loss of fertility, the SEN1::AtGA2ox4 plants retained normal floral morphology and seed production. Accordingly, the expressions of FT and CO genes remained unchanged in the SEN1::AtGA2ox4 plants. Taken together, our results suggest that the dominant dwarf trait carried by SEN1::AtGA2ox4 plants can be used as an efficient dwarfing tool in plant biotechnological applications.  相似文献   

17.
Gibberellin (GA) 20-oxidase (GA20ox) is a key enzyme that normally catalyzes the penultimate steps in GA biosynthesis. One of the GA20ox genes in rice (Oryza sativaL.), OsGA20ox2 (SD1), is well known as the Green Revolution gene, and loss-of function mutation in this locus causes semi-dwarfism. Another GA20ox gene, OsGA20ox1, has also been identified, but its contribution to plant stature has remained unclear because no suitable mutants have been available. We isolated a mutant, B142, tagged with a T-DNA containing three CaMV 35S promoters, which showed a tall, GA-overproduction phenotype. The final stature of the B142 mutant reflects internode overgrowth and is approximately twice that of its wild-type parent. This mutant responds to application of both GA3 and a GA biosynthesis inhibitor, indicating that it is a novel tall mutant of rice distinct from GA signaling mutants such as slr1. The integrated T-DNAs, which contain three CaMV 35S promoters, are located upstream of the OsGA20ox1 open reading frame (ORF) in the B142 mutant genome. Analysis of mRNA and the endogenous GAs reveal that biologically active GA level is increased by up-regulation of the OsGA20ox1 gene in B142. Introduction of OsGA20ox1 cDNA driven by 35S promoter into the wild type phenocopies the morphological characteristics of B142. These results indicate that the elongated phenotype of the B142 mutant is caused by up-regulation of the OsGA20ox1 gene. Moreover, the final stature of rice was reduced by specific suppression of the OsGA20ox1 gene expression. This result indicates that not only OsGA20ox2 but also OsGA20ox1 affects plant stature.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号