首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
Carnation tissue was allowed to vitrify in liquid culture and ethylene production, ACC content and capacity to convert ACC to ethylene were measured in comparison to tissue developing normally on solid medium. Flask atmospheres of liquid cultures accumulated ethylene at a higher rate during the first four days. Daily ethylene production by vitrifying material decreased later. Ethylene emission by vitrifying tissues always remained above controls when subcultured daily to fresh medium. Explants and microsomal preparations from vitrifying carnations converted ACC to ethylene at a higher degree from the first day in liquid medium. ACC level markedly increased in vitrifying tissues during the first two days of liquid culture. Raising the level of ethylene in the atmosphere of solid cultures did not induce vitrification symptoms nor did use of inhibitors of ethylene biosynthesis in liquid cultures prevent the process. The role of ethylene in vitrification is reappraised.  相似文献   

2.
Taking tetcyclacis, a norbornenodiazentine derivative, as an example, the influence of a growth retardant on the shoot growth of sunflower, soybean, and maize seedlings grown and treated in hydroculture was investigated. In detail, the reduction in the length of various shoot sections {epicotyl, 1st internode, leaf blade) caused by the retardant was studied. At low concentrations of the retardant (\lt10-6 M) the shortening effects are substantially attributable to an influence on cell elongation, whereas cell division is inhibited as the concentration increases (τ10-6 M). A comparison of the effects of tetcyclacis in cell suspension cultures of appropriate plant species showed that also in this system concentrations τ 10-6 M inhibited cell division growth, i. e. there is comparability of plant/ cell culture regarding the retardant effect on cell division. In contrast to the intact plants, however, cell elongation appears to be of only subordinate importance for the growth of cell cultures, as it has been shown using parsley cell suspension cultures.It is discussed to what extent influencing the gibberellin or sterol biosynthesis by means of tetcyclacis provides an explanation for the concentration-dependent effect on the cell division and cell elongation processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号