首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
D-3-Hydroxybutyrate dehydrogenase from Paracoccus denitrificans has been purified to near homogeneity. The enzyme was prepared using DEAE-cellulose chromatography, affinity chromatography on immobilized Cibacron blue (Matrex Gel Blue A) and gel permeation chromatography. The pure enzyme was obtained by chromatofocusing as the final isolation step. The purification procedure yielded the enzyme with a specific activity of about 100 units/mg protein. The enzyme is specific for D-3-hydroxybutyrate and NAD and it exhibits anomalous kinetics (hysteresis) at low enzyme and coenzyme concentrations. It is relatively stable in the presence of EDTA at pH 7–8 higer salt concentrations. D-3-Hydroxybutyrate dehydrogenase is a tetramer with a molecular weight of 130 000 ± 10 000, its isoelectric point equals 5.10 ± 0.05. The enzyme is applicable to the determination of acetoacetate and D-3-hydroxybutyrate concentrations.  相似文献   

3.
Homoserine dehydrogenase was extracted from Ricinus communis and Pisum sativum. The kinetic parameters of the forward and reverse reactions were determined. In the forward reaction only the enzyme from Ricinus is inhibited by threonine. The response to K+ is different for the enzyme from the two sources.  相似文献   

4.
A preliminary disc electrophoretic investigation utilizing malate dehydrogenase and general protein banding patterns obtained from mature seeds revealed detectable differences among Coffea species, varieties and cultivars. Protein differences among seed samples from individual plants of the same variety were also implied. The analyzed protein data were presented as dendrograms and compared with published genetical and taxonomical data.  相似文献   

5.

Background

In chordates, retinoid metabolism is an important target of short-chain dehydrogenases/reductases (SDRs). It is not known whether SDRs play a role in retinoid metabolism of protostomes, such as Drosophila melanogaster.

Methods

Drosophila genome was searched for genes encoding proteins with ∼ 50% identity to human retinol dehydrogenase 12 (RDH12). The corresponding proteins were expressed in Sf9 cells and biochemically characterized. Their phylogenetic relationships were analyzed using PHYLIP software.

Results

A total of six Drosophila SDR genes were identified. Five of these genes are clustered on chromosome 2 and one is located on chromosome X. The deduced proteins are 300 to 406 amino acids long and are associated with microsomal membranes. They recognize all-trans-retinaldehyde and all-trans-3-hydroxyretinaldehyde as substrates and prefer NADPH as a cofactor. Phylogenetically, Drosophila SDRs belong to the same branch of the SDR superfamily as human RDH12, indicating a common ancestry early in bilaterian evolution, before a protostome–deuterostome split.

Conclusions

Similarities in the substrate and cofactor specificities of Drosophila versus human SDRs suggest conservation of their function in retinoid metabolism throughout protostome and deuterostome phyla.

General significance

The discovery of Drosophila retinaldehyde reductases sheds new light on the conversion of β-carotene and zeaxantine to visual pigment and provides a better understanding of the evolutionary roots of retinoid-active SDRs.  相似文献   

6.
The patterns of alanine dehydrogenase, glutamate dehydrogenase and malate dehydrogenase activity were studied during the normal vegetative cell cycle and during the process of gametic differentiation and dedifferentiation in synchronized cultures of Chlamydomonas reinhardtii. During all three phases of growth and differentiation the synthesis of DNA was also measured. During gametic differentiation all three enzyme levels were suppressed compared to vegetative cells although DNA and cell number were comparable. During gametic dedifferentiation no DNA synthesis occurred during the first 24 h cycle and only a doubling during the second. It was not until the third cycle that a normal 4-fold increase in DNA was observed. Cell number followed a similar pattern. Athough the levels of alanine dehydrogenase and malate dehydrogenase were uniformly low during the first cycle when glutamate dehydrogenase increased 4-fold, during the second cycle the patterns of these enzymes changed markedly. The enzymes did not attain levels characteristic of vegetative cells until the third cycle.  相似文献   

7.
Electrophoretic surveys were conducted on individual larvae of four anisakine nematode genera: Anisakis, Phocanema, Contracaecum, and Sulcascaris. The larval worms were obtained from a variety of fish and molluscan hosts from widely dispersed geographic regions. Of several enzymes detected, constant and apparently species-specific electrophoretic patterns were obtained for alcohol dehydrogenase (ADH, alcohol:NAD oxidoreductase, EC 1.1.1.1) and malate dehydrogenase (MDH, l-malate: NAD oxidoreductase, EC 1.1.1.37). ADH, in all but Sulcascaris sp., possessed two isozymes, the slower of which was sensitive to temperature and inhibitors. Failure of preelectrophoretic treatment with NAD to cause interconversion of these isozymes suggests that they are products of separate genetic loci. Both isozymes were maximally active with isopropanol, sec-butanol, and amyl alcohol. Within a given species, ADH showed negligible variation (i.e., apparent genetic polymorphism) with respect to individual larvae, site of larvae in the host, or geographical origin of the host. MDH from Anisakis, Sulcascaris, and Phocanema spp. possessed one, two, and three bands of activity, respectively; MDH is highly thermostable in Anisakis sp. but not in the other species.  相似文献   

8.
In the hyphae of Penicillium cyclopium the in vitro measurable activities of 3 enzymes of alkaloid biosynthesis are induced endogenously during  相似文献   

9.
The Drosophila dorsal vessel is a segmentally repeated linear organ, in which seven-up (svp) is expressed in two pairs of cardioblasts and two pairs of pericardial cells in each segment. Under the control of hedgehog (hh) signaling from the dorsal ectoderm, svp participates in diversifying cardioblast identities within each segment. In this experiment, the homozygous embryos of svp mutants exhibited an increase in cell size of Eve positive pericardial cells (EPCs) and a disarranged expression pattern, while the cardioblasts pattern of svp-lacZ expression was normal. In the meantime, the DA1 muscle founders were absent in some segments in svp mutant embryos, and the dorsal somatic muscle patterning was also severely damaged in the late stage mutant embryos, suggesting that svp is required for the differentiation of Eve-positive pericardial cells and DA1 muscle founders and may have a role in EPC cell growth.  相似文献   

10.
Alcohol and lactate dehydrogenase activity and their electrophoretic isoenzymes were determined in developing Phaseolus vulgaris embryos, seed coat  相似文献   

11.
Protein extraction from the prokaryotic alga Prochloron LP (isolated from the ascidian host Lissoclinum patella) was complicated by an irrevers  相似文献   

12.
The measurement of acyl-CoA dehydrogenase activities is an essential part of the investigation of patients with suspected defects in fatty acid oxidation. Multiple methods are available for the synthesis of the substrates used for measuring acyl-CoA dehydrogenase activities; however, the yields are low and the products are used without purification. In addition, the reported characterization of acyl-CoAs focuses on the CoA moiety, not on the acyl group. Here we describe the synthesis of three medium-chain acyl-CoAs from mixed anhydrides of the fatty acids using an aqueous-organic solvent mixture optimized to obtain the highest yield. First, cis-4-decenoic acid and 2,6-dimethylheptanoic acid were prepared (3-phenylpropionic acid is commercially available). These were characterized by gas chromatography/mass spectrometry (GC/MS), 1H nuclear magnetic resonance (NMR), and 13C NMR. Then cis-4-decenoyl-CoA, 3-phenylpropionyl-CoA, and 2,6-dimethylheptanoyl-CoA were synthesized. These were then purified by ion exchange solid-phase extraction using 2-(2-pyridyl)ethyl-functionalized silica gel, followed by reversed-phase semipreparative high-performance liquid chromatography with ultraviolet detection (HPLC-UV). The purified acyl-CoAs were characterized by analytical HPLC-UV followed by data-dependent tandem mass spectrometry (MS/MS) analysis on the largest responding MS mass (HPLC-UV-MS-MS/MS) and 13C NMR. The yields of the purified acyl-CoAs were between 75% and 78% based on coenzyme A trilithium salt (CoASH). Acyl-CoA dehydrogenase activities were measured in rat skeletal muscle mitochondria using, as substrates, the synthesized cis-4-decenoyl-CoA, 3-phenylpropionyl-CoA, and 2,6-dimethylheptanoyl-CoA. These results were compared with the results using our standard substrates butyryl-CoA, octanoyl-CoA, and palmitoyl-CoA.  相似文献   

13.
Cercariae of Plagiorchis elegans Rudolphi 1802 collected from experimentally infected snails, Lymnaea palustris, were subjected to various histochemical tests for dehydrogenase systems. A high degree of activity was demonstrated for succinic dehydrogenase (EC 1.3.99.1), malic dehydrogenase (EC 1.1.1.37), isocitric dehydrogenase (EC 1.1.1.41), α-glycerophosphate dehydrogenase (EC 1.1.1.8), and glucose 6-phosphate dehydrogenase (EC 1.1.1.49). These enzymes were present in the tegument, tail, caudal pocket, excretory bladder, acetabulum, and oral sucker, particularly in the muscles around the stylet. Only moderate activity was obtained for lactic dehydrogenase (EC 1.1.1.27) and 6-phosphogluconate dehydrogenase (EC 1.1.1.44) at these sites, glutamic dehydrogenase (EC 1.4.1.2) was localized only in the tails of the cercariae and tests for alcohol dehydrogenase (EC 1.1.1.1) were completely negative. The cerebral ganglia and its commissures stained intensely in the tests for succinic, isocitric, α-glycerophosphate, and glucose 6-phosphate dehydrogenase systems. The results indicate the possibility that several energy-producing sequences may be available to these cercariae.  相似文献   

14.
Non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase (np-Ga3PDHase) plays a key metabolic role in higher plants. Purification to homogeneity of enzymes found in relatively low abundance in plants represents a major technical challenge that can be solved by molecular gene cloning and heterologous expression. To apply this strategy to np-Ga3PDHase we performed the cloning of the gapN gene from Arabidopsis thaliana and Triticum aestivum, followed by the heterologous expression in Escherichia coli by two different strategies. Soluble expression of the Arabidopsis enzyme in the pET32c+ vector required a chaperone co-expression system (pGro7). The system using E. coli BL21-CodonPlus® cells and the pRSETB vector was successful for expression of a soluble His6-taged recombinant wheat enzyme producing 2.5 mg of electrophoretically pure protein per liter of cell culture after a single chromatographic purification step. Both systems were effective for the expression of functional plant np-Ga3PDHases, however the expression of the Arabidopsis enzyme in pRSETB was affordable but not as optimal as for the wheat protein. This would be associated with a different codon usage preference between this specific plant and E. coli. Considering the relevant role played by np-Ga3PDHase in plant metabolism, it is experimentally valuable the development of a procedure to obtain adequate amounts of highly purified enzyme, which envisages the viability to perform studies of structure-to-function relationships to better understand the enzyme kinetics and regulation, as well as carbon and energy metabolism in higher plants.  相似文献   

15.
The structural and kinetic analyses of the components of the lactate shuttle from heterotrophic Euglena gracilis were carried out. Mitochondrial membrane-bound, NAD+-independent d-lactate dehydrogenase (d-iLDH) was purified by solubilization with CHAPS and heat treatment. The active enzyme was a 62-kDa monomer containing non-covalently bound FAD as cofactor. d-iLDH was specific for d-lactate and it was able to reduce quinones of different redox potential values. Oxalate and l-lactate were mixed-type inhibitors of d-iLDH. Mitochondrial l-iLDH also catalyzed the reduction of quinones, but it was inactivated during the extraction with detergents. Both l-iLDH and d-iLDH were inhibited by the specific flavoprotein-inhibitor diphenyleneiodonium, suggesting that l-iLDH was also a flavoprotein. Affinity chromatography revealed that the E. gracilis cytosolic fraction contained two types of NAD+-dependent LDH specific for the generation of d- and l-lactate (d-nLDH and l-nLDH, respectively). These two enzymes were tetramers of 126-132 kDa and showed an ordered bi-bi kinetic mechanism. Kinetic properties were different in both enzymes. Pyruvate reduction by d-nLDH was inhibited by its two products; the d-lactate oxidation was 40-fold lower than forward reaction. l-lactate oxidation by l-nLDH was not detected, whereas pyruvate reduction was activated by fructose-1, 6-bisphosphate, K+ or NH4+. Interestingly, membrane-bound l- and d-lactate dehydrogenases with quinone reductase activity have been only detected in bacteria, whereas the activity of soluble d-nLDH has been identified in bacteria and some yeast. Also, FBP-activated l-nLDH has been found solely in lactic bacteria. Based on their similar kinetic and structural characteristics, a possible common origin among bacterial and E. gracilis lactic dehydrogenase enzymes is discussed.  相似文献   

16.
Flood tolerant Glyceria maxima and intolerant Pisum sativum were compared in respect of the effects of anoxia and flooding on the maximum catalytic activities of alcohol dehydrogenase in their roots. Small (<73%) increases in enzyme activity occurred when excised roots of both species were incubated in nitrogen for up to 2 days. Further incubation in nitrogen rapidly and permanently damaged the roots of both species. Enzyme activity in flooded roots of Glyceria was about double that in corresponding non-flooded roots. A marginally greater difference was found for roots of Pisum. It was concluded that the two species respond so similarly to the above treatments that variation in the extent of induction of alcohol dehydrogenase is unlikely to be a significant factor in determining their ability to tolerate flooding.  相似文献   

17.
Short-chain dehydrogenase/reductase homologues from Escherichia coli (YdfG) and Saccharomyces cerevisiae (YMR226C) show high sequence similarity to serine dehydrogenase from Agrobacterium tumefaciens. We cloned each gene encoding YdfG and YMR226C into E. coli JM109 and purified them to homogeneity from the E. coli clones. YdfG and YMR226C consist of four identical subunits with a molecular mass of 27 and 29 kDa, respectively. Both enzymes require NADP+ as a coenzyme and use l-serine as a substrate. Both enzymes show maximum activity at about pH 8.5 for the oxidation of l-serine. They also catalyze the oxidation of d-serine, l-allo-threonine, d-threonine, 3-hydroxyisobutyrate, and 3-hydroxybutyrate. The kcat/Km values of YdfG for l-serine, d-serine, l-allo-threonine, d-threonine, l-3-hydroxyisobutyrate, and d-3-hydroxyisobutyrate are 105, 29, 199, 109, 67, and 62 M?1 s?1, and those of YMR226C are 116, 110, 14600, 7540, 558, and 151 M?1 s?1, respectively. Thus, YdfG and YMR226C are NADP+-dependent dehydrogenases acting on 3-hydroxy acids with a three- or four-carbon chain, and l-allo-threonine is the best substrate for both enzymes.  相似文献   

18.
Oral administration of O,O,S-trimethyl phosphorothioate (OOS), an impurity present in widely used organophosphorus insecticides, causes delayed toxicity in rats, i.e., death occurring as late as 28 days after the treatment. The signs of toxicity include body weight loss (maximum on day 3), red staining around the nose, mouth and eyes, and an increased level of lactate dehydrogenase (LDH) in bronchopulmonary lavage fluid accompanied by morphological alteration of non-ciliated bronchiolar epithelial Clara cells.Pretreatment with phenobarbital, piperonyl butoxide (2 h), SKF 525-A, or small multiple doses of OOS protected against the OOS-induced elevated level of bronchopulmonary lavage LDH, and the other signs of delayed toxicity including morphological alteration of Clara cells. These studies support the view that OOS-induced delayed toxicity is mediated by the cytochrome P-450 dependent metabolism of OOS, and the lung may be the major target organ of delayed toxicity produced by OOS.  相似文献   

19.
Kaur R. and Sood M. L. 1982. Haemonchus contortus: the in vitro effects of dl-tetramisole and rafoxanide on glycolytic enzymes. International Journal for Parasitology 12: 585–588. Various enzymes of glycolysis (hexokinase, phosphoglucomutase, phosphoglucoisomerase, adolase, glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase, phosphoglyceromutase-enolase-pyruvate kinase and lactate dehydrogenase) have been detected in adult Haemonchus contortus. Low pyruvate kinase and lactate dehydrogenase activities suggested an alternate pathway from phosphoenolpyruvate. In vitro incubation had no significant effects on these enzymes and the worm was able to maintain normal metabolism for 12 h. Varying degrees of inhibition of glycolytic enzymes were observed with 50 μg/ml of dl-tetramisole and rafoxanide. The enzymes were inhibited to a greater extent by dl-tetramisole. These effects may block the glycolytic pathway and deprive the parasite of its ATP production.  相似文献   

20.
Malate dehydrogenase activity in supernatant fractions prepared from the halophyte Suaeda maritima was modified by added NACl with an optimal concentration for activation of about 50 mM. At this ionic strength of 0.05 the chlorides of sodium, potassium, ammonium, rubidium, calcium and magnesium all produced a similar degree of stimulation, while the nitrates of potassium and sodium were somewhat less effective. A similar result was obtained whether the plants were grown in the presence or absence of NACl. Furthermore, malate dehydrogenase activity in preparations from the glycophyte Pisum sativum behaved in a similar manner. The enzyme activity from both Suaeda and Pisum was separable into two fractions (I and II) by gel filtration on Sephadex G200. The MW of fraction II from Suaeda was estimated to be 165000 and that from Pisum approximately 282000: fraction I from both species eluted at the void volume of Sephadex G200. Storage of lyophilised supernatant resulted in the loss of enzyme activity from fraction I and a decrease in the overall stimulation by NaCl. Treatment of the lyophilised enzyme with NACl at a concentration of 100 mM also resulted in the loss of enzyme activity from fraction I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号