首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary The role of collagen in microvascular growth was investigated using the aortic ring model of angiogenesis. Collagen production by vasoformative outgrowths in plasma clot culture of rat aorta was either stimulated with ascorbic acid or inhibited with the proline analogue cis-hydroxyproline. Microvessels proliferating in the absence of ascorbic acid supplements became ectatic and developed large lumina. In contrast, newly formed microvessels in the presence of ascorbic acid remained small and maintained thin lumina throughout the angiogenic process. Biochemical studies demonstrated enhanced collagen production and deposition in cultures treated with ascorbic acid. Ultrastructural studies of these cultures showed a marked increase in newly formed interstitial collagen in the perivascular matrix and in regions of the plasma clot containing nonendothelial mesenchymal cells. Small microvessels with thin lumina similar to the ones observed in ascorbic acid-treated plasma clot cultures were obtained by growing aortic explants in gels of interstitial collagen in the absence of ascorbic acid. Inhibition of collagen production with the proline analogue cis-hydroxyproline had a marked anti-angiogenic effect in both plasma clot and collagen gel cultures. The anti-angiogenic effect of cis-hydroxyproline was abolished by addingl-proline to the culture medium, thereby restoring normal metabolism. These results support the hypothesis that angiogenesis is regulated by collagen production and suggest that the size of newly formed microvessels is influenced by the degree of collagenization of the extracellular matrix.  相似文献   

2.
Shear stress stimulus is expected to enhance angiogenesis, the formation of microvessels. We determined the effect of shear stress stimulus on three-dimensional microvessel formation in vitro. Bovine pulmonary microvascular endothelial cells were seeded onto collagen gels with basic fibroblast growth factor to make a microvessel formation model. We observed this model in detail using phase-contrast microscopy, confocal laser scanning microscopy, and electron microscopy. The results show that cells invaded the collagen gel and reconstructed the tubular structures, containing a clearly defined lumen consisting of multiple cells. The model was placed in a parallel-plate flow chamber. A laminar shear stress of 0.3 Pa was applied to the surfaces of the cells for 48 h. Promotion of microvessel network formation was detectable after approximately 10 h in the flow chamber. After 48 h, the length of networks exposed to shear stress was 6.17 (+/-0.59) times longer than at the initial state, whereas the length of networks not exposed to shear stress was only 3.30 (+/-0.41) times longer. The number of bifurcations and endpoints increased for networks exposed to shear stress, whereas the number of bifurcations alone increased for networks not exposed to shear stress. These results demonstrate that shear stress applied to the surfaces of endothelial cells on collagen gel promotes the growth of microvessel network formation in the gel and expands the network because of repeated bifurcation and elongation.  相似文献   

3.
Matrix-bound thrombospondin promotes angiogenesis in vitro   总被引:13,自引:3,他引:10  
Thrombospondin (TSP) is a multidomain adhesive protein postulated to play an important role in the biological activity of the extracellular matrix. To test this hypothesis, TSP-containing fibrin and collagen matrices were evaluated for their capacity to support angiogenesis and cell growth from explants of rat aorta. This serum-free model allowed us to study the angiogenic effect of TSP without the interference of attachment and growth factors present in serum. TSP promoted dose- dependent growth of microvessels and fibroblast-like cells. The number of microvessels in TSP-containing collagen and fibrin gels increased by 136 and 94%, respectively. The TSP effect was due in part to cell proliferation since a 97% increase in [3H]thymidine incorporation by the aortic culture was observed. The effect was TSP-specific because TSP preparations adsorbed with anti-TSP antibody showed no activity. TSP did not promote angiogenesis directly since no TSP-dependent growth of isolated endothelial cells could be demonstrated. Rather TSP directly stimulated the growth of aortic culture-derived myofibroblasts which in turn promoted microvessel formation when cocultured with the aortic explants. Angiogenesis was also stimulated by myofibroblast- conditioned medium. Partial characterization of the conditioned medium suggests that the angiogenic activity is due to heparin-binding protein(s) with molecular weight > 30 kD. These results indicate that matrix-bound TSP can indirectly promote microvessel formation through growth-promoting effects on myofibroblasts and that TSP may be an important stimulator of angiogenesis and wound healing in vivo.  相似文献   

4.
Recent studies have shown that the extracellular matrix modifies the behaviour of endothelial cells. We have studied the effects of extracellular matrix components on retinal capillary endothelial cell migration and proliferation. Bovine retinal capillary endothelial cells were selectively cultured from collagenase-digested microvessel fragments. In a filter system for the assessment of migration, endothelial cells responded to substrate-bound fibronectin but not to soluble fibronectin. Cell migration on collagen- or gelatin-coated filters was minimal, and these cells failed to adopt a spread morphology, remaining instead as round cells. Cell replication was quantified using a protein dye binding assay for adherent cells in 96 well plates. Serum was essential for growth irrespective of the substrate. Cells harvested from microvessel cultures proliferated more rapidly on collagen- and gelatin-coated plastic than on fibronectin and were unaffected by additions to the medium such as endothelial cell conditioned medium, whereas cells proliferating directly from the microvessels grew at a faster rate on fibronectin and also responded to conditioned medium supplement. When cultured on collagen gels, initial microvessel cells and harvested cells required surface fibronectin in order to adopt a cobblestone morphology. These results show that fibronectin is a requirement for bovine retinal capillary endothelial cell migration, but proliferation of these cells can be supported, with slight differences, by both fibronectin and collagen provided serum growth factors are present. These findings are relevant to the early phase of angiogenesis in which migration and proliferation of endothelial cells occurs.  相似文献   

5.
We investigated the ability of extracellular matrix (ECM) proteins to modulate the response of endothelial cells to both promoters and inhibitors of angiogenesis. Using human dermal microvascular endothelial cells (HDMEC), we found that cells demonstrated different adhesive properties and proliferative responses to the growth factor VEGF depending upon which ECM protein with which they were in contact, with fibronectin having the most impact on VEGF-induced HDMEC proliferation and survival. More importantly, we observed that ECM could modulate the ability of the angiogenic inhibitor endostatin to prevent endothelial cell proliferation, survival and migration. We observed that growth on vitronectin or fibronectin impaired the ability of endostatin to inhibit VEGF-induced HDMEC proliferation to the greatest extent as determined by BrdU incorporation. We found that, following growth on collagen I or collagen IV, endostatin only inhibited VEGF-induced HDMEC proliferation at the highest dose tested (2500 ng/ml). In a similar manner, we observed that growth on ECM proteins modulated the ability of endostatin to induce endothelial cell apoptosis, with growth on collagen I, fibronectin and collagen IV impairing endostatin-induced apoptosis. Interestingly, endostatin inhibited VEGF-induced HDMEC migration following culture on collagen I, collagen IV and laminin, while migration was not inhibited by endostatin following HDMEC culture on other matrices including vitronectin, fibronectin and tenascin-C. These results suggest that different matrix proteins may affect different mechanisms of endostatin inhibition of angiogenesis. Taken together, our results suggest that the ECM may have a profound impact on the ability of angiostatic molecules such as endostatin to inhibit angiogenesis and thus may have impact on the clinical efficacy of such inhibitors.  相似文献   

6.
血管内皮细胞和心脏组织块的立体培养   总被引:1,自引:0,他引:1  
Wang MJ  Cai WJ  Yao T  Zhu YC 《生理学报》2005,57(2):259-269
本文旨在对比研究二维平面与三维立体培养模式下,内皮细胞和心脏组织形态学的差异。采用胶内、胶上、三明治模式、玻片培养小室模型等多种I型胶原立体培养模型,通过免疫荧光技术及显微形态学观察组织和细胞的生长情况。在二维平面培养中,原代心脏血管内皮细胞呈铺路石样排列;而在三维胶原培养模式中,内皮细胞呈长梭状形态,并迁入胶原培养介质中,和体内血管新生及血管生成过程中的内皮细胞活化表型相似。加入血管内皮生长因子(vascular endo- thelial growth factor VEGF)能增强内皮细胞管状结构的形成。在三维胶原中,心脏组织块生长良好,迁出的细胞将相邻组织块连接起来,组织块有自发的搏动。本工作表明,改进的薄层胶原培养、玻片培养小室模型和动脉条模型是较好的研究血管生成和血管新生的工具。在三维培养的情况下,内皮细胞通过空间增殖、迁移和锚定,可形成管状结构,比二维平面培养更适合用于血管新生的研究。不同的立体培养模型可用于不同目的的研究。  相似文献   

7.
Summary Rings of rat aorta cultured in Matrigel, a reconstituted gel composed of basement membrane molecules, gave rise to three-dimensional networks composed of solid cellular cords and occasional microvessels with slitlike lumina. Immunohistochemical and ultrastructural studies showed that the solid cords were composed of endothelial sprouts surrounded by nonendothelial mesenchymal cells. The angiogenic response of the aortic rings in Matrigel was compared to that obtained in interstitial collagen, fibrin, or plasma clot. Morphometric analysis demonstrated that the mean luminal area of the microvascular sprouts and channels was significantly smaller in Matrigel than in collagen, fibrin, or plasma clot. The percentage of patent microvessels in Matrigel was also markedly reduced. Autoradiographic studies of3H-thymidine-labeled cultures showed reduced DNA synthesis by developing microvessels in Matrigel. The overall number of solid endothelial cords and microvessels was lower in Matrigel than in fibrin or plasma clot. A mixed cell population isolated from Matrigel cultures formed a monolayer in collagen or fibrin-coated dishes but rapidly reorganized into a polygonal network when plated on Matrigel. The observation that gels composed of basement membrane molecules modulate the canalization, proliferation, and organization into networks of vasoformative endothelial cells in three-dimensional cultures supports the hypothesis that the basement membrane is a potent regulator of microvascular growth and morphogenesis. This work was supported by grants from the W. W. Smith Charitable Trust and grants CA14137 and HL43392 from the National Institutes of Health, Bethesda, MD.  相似文献   

8.
Summary We describe here a modified nonenzymatic method for the isolation of rat aortic endothelial cells with vasoformative properties. Aortic rings placed on plastic or gelatin-coated surfaces generated outgrowths primarily composed of endothelial cells. Prompt removal of aortic explants after endothelial migration minimized fibroblast contamination. However, fibroblasts, because of their high proliferative rate tended to overgrow the endothelial cells even when present in small numbers. This potential pitfall was avoided by weeding out fibroblasts with the rounded tip of a bent glass pipette. Primary endothelial colonies free of fibroblasts were segregated in cloning rings, trypsin-treated, and transferred to gelatin-coated dishes. Endothelial cells were cultured in MCDB 131 growth medium containing 10% fetal bovine serum, endothelial cell growth supplement, and heparin. Using this technique, pure endothelial cell strains were obtained from single aortic rings. Confluent endothelial cells formed a contact-inhibited monolayer with typical cobblestone pattern. The endothelial cells were positive for Factor VIII-related antigen, took up DiI-Ac-LDL, and bound the Griffonia Simplicifolia-isolectin-B4. Endothelial cells cultured on collagen gel formed a polarized monolayer, produced basement membrane, displayed Weibel-Palade bodies and caveolae, and were connected by tight junctions. In addition, they reorganized into a network of microvascular cords and tubes when overlaid with a second layer of collagen and formed microvascular sprouts in response to fibroblast-conditioned medium. This isolation procedure yields stable strains of vasoformative endothelial cells, which can be used to study aortic endothelium-related angiogenesis and its mechanisms.  相似文献   

9.
Angiogenesis after tissue injury occurs in a matrix environment consisting of fibrin, fibronectin, and vitronectin as the major extracellular matrix (ECM) constituents. ECM-integrin interactions is critical for angiogenesis and failure to bind a ligand to certain integrin receptors (αvβ3 or αvβ5) inhibits angiogenesis. The ligand that binds to αvβ3 or αvβ5 integrin receptors during microvascular angiogenesis has not been identified. Our hypothesis is that provisional matrix molecules provide the environmental context cues to microvascular endothelial cells and promote angiogenesis by decreased programmed cell death. Using cultured human microvascular endothelial cells, we show that vitronectin, in comparison to growth on alternative provisional matrix molecules (fibronectin, fibrinogen plus thrombin), collagen I, and basement membrane molecules (collagen IV), significantly reduces microvascular endothelial cell death in vitro. This reduction was observed using morphologic criteria, TdT-mediated dUTP nick end labeling (TUNEL) assay, histone release into the cytoplasm, and thymidine release into the supernatant. Though our data confirm that vitronectin may bind to more than one integrin receptor to reduce MEC apoptosis, binding to the αv component appears to be the critical integrin subcomponent for reducing apoptosis. J. Cell. Physiol. 175:149–155, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

10.
《Life sciences》1997,62(1):PL7-PL11
We have assessed the role of soluble P-selectin in promoting endothelial cell migration. Human endothelial cells (HUVEC) and bovine microvascular endothelial cells (CVEC) were assessed for migration in the Neuroprobe 48-well microchemotaxis chamber. Soluble P-selectin promoted a dose-dependent (0.1–10 nM) migration of both cell types, with maximal response at 10 nM, producing approximately 60% increment over basal migration. Anti-P-selectin monoclonal antibody (5 μg/ml) selectively blocked P-selectin induced migration. Fibronectin and collagen were essential to disclose the migration induced by P-selectin. It is suggested that at vascular level in the presence of modifications of the extracellular matrix milieu, the production of soluble P-selectin could contribute to angiogenesis by promoting endothelial cell migration.  相似文献   

11.
Previous studies have indicated the importance of basement membrane components both for cellular differentiation in general and for the barrier properties of cerebral microvascular endothelial cells in particular. Therefore, we have examined the expression of basement membrane proteins in primary capillary endothelial cell cultures from adult porcine brain. By indirect immunofluorescence, we could detect type IV collagen, fibronectin, and laminin both in vivo (basal lamina of cerebral capillaries) and in vitro (primary culture of cerebral capillary endothelial cells). In culture, these proteins were secreted at the subcellular matrix. Moreover, the interaction between basement membrane constituents and cerebral capillary endothelial cells was studied in adhesion assays. Type IV collagen, fibronectin, and laminin proved to be good adhesive substrata for these cells. Although the number of adherent cells did not differ significantly between the individual proteins, spreading on fibronectin was more pronounced than on type IV collagen or laminin. Our results suggest that type IV collagen, fibronectin, and laminin are not only major components of the cerebral microvascular basal lamina, but also assemble into a protein network, which resembles basement membrane, in cerebral capillary endothelial cell cultures.  相似文献   

12.
Summary During angiogenesis, the microvasculature displays both vessel remodeling and expansion under the control of both cellular and extracellular influences. We have evaluated the role of angiogenic and angiostatic molecules on angiogenesis in anin vitro model that more appropriately duplicates the cellular and extracellular components of this process. Freshly isolated microvessel fragments from rat adipose tissue (RFMF) were cultured within three-dimensional collagen I gels. These fragments were characterized at the time of isolation and were composed of vessel segments observed in the microvasculature of fatin situ (i.e., arterioles, venules, and capillaries). Fragments also exhibited characteristic ablumenally associated cells including smooth muscle cells and pericytes. Finally, fragments were encased in an extracellular matrix composed of collagen type IV and collagen type I/III. The elongation of microvascular elements was subsequently evaluated using morphologic and immunocytochemical techniques. The proliferation, migration, and elongation of cellular elements in microvessel fragments from rat adipose tissue was dependent on initial fragment density, matrix density, and required serum. Inclusion of endothelial cell growth factors to microvessel fragments from rat adipose tissue 3-D cultures resulted in the accelerated elongation of tube structures and the expression of von Willebrand factor in cells constituting these tubes. Molecules with reported angiostatic capacity (e.g., transforming growth factor and hydrocortisone) inhibited vessel tube elongation. In vitro methods have been developed to evaluate numerous mechanisms associated with angiogenesis, including endothelial cell proliferation, migration, and phenotypic modulation. Microvascular endothelial cell fragments described in this study represent anin vitro population of cells that accurately duplicate thein vivo microcirculatory elements of fat. The proliferation of cells and elongation of microvascular elements subsequently observed in three-dimensional cultures provides anin vitro model of angiogenesis. Microvascular formation in this system results from pre-existing microvessel fragments unlike tube formation observed when cultured endothelial cells are placed in three-dimensional gels. This form of tube formation from cultured endothelium is more characteristic of vasculogenesis. Thus, the formation of microvascular elements from microvessel fragments provides the opportunity to examine the mechanisms regulating angiogenesis in anin vitro system amenable to precise experimental manipulation.  相似文献   

13.
Notch4 is a member of the Notch family of transmembrane receptors that is expressed primarily on endothelial cells. Activation of Notch in various cell systems has been shown to regulate cell fate decisions. The sprouting of endothelial cells from microvessels, or angiogenesis, involves the modulation of the endothelial cell phenotype. Based on the function of other Notch family members and the expression pattern of Notch4, we postulated that Notch4 activation would modulate angiogenesis. Using an in vitro endothelial-sprouting assay, we show that expression of constitutively active Notch4 in human dermal microvascular endothelial cells (HMEC-1) inhibits endothelial sprouting. We also show that activated Notch4 inhibits vascular endothelial growth factor (VEGF)-induced angiogenesis in the chick chorioallantoic membrane in vivo. Activated Notch4 does not inhibit HMEC-1 proliferation or migration through fibrinogen. However, migration through collagen is inhibited. Our data show that Notch4 cells exhibit increased beta1-integrin-mediated adhesion to collagen. HMEC-1 expressing activated Notch4 do not have increased surface expression of beta 1-integrins. Rather, we demonstrate that Notch4-expressing cells display beta1-integrin in an active, high-affinity conformation. Furthermore, using function-activating beta 1-integrin antibodies, we demonstrate that activation of beta1-integrins is sufficient to inhibit VEGF-induced endothelial sprouting in vitro and angiogenesis in vivo. Our findings suggest that constitutive Notch4 activation in endothelial cells inhibits angiogenesis in part by promoting beta 1-integrin-mediated adhesion to the underlying matrix.  相似文献   

14.
When included in a free floating collagen lattice, several types of cells and fibroblasts attach to the collagen polymers, retract the gel, and their biosynthetic activity is repressed. Under similar conditions transformed pulmonary epithelial rat (PER) cells are unable to attach to the fibers and to significantly retract the lattice. Retraction can be induced by adding fibronectin (fn) and factor XIII (FXIII) together. This effect is fibronectin dose dependent and observed with a maximum efficiency for FXIII concentrations of 0.1 U/ml and above. Fibronectin or FXIII alone has only a limited effect on retraction. This experimental model allowed us to study the biosynthetic activity of PER cells under various degrees of cell interaction (control less than FXIII less than fn less than fn + FXIII) with their three-dimensional collagen support. The more the cells interacted with their support and retracted the gel, the more protein and collagen synthesis were reduced. This effect was observed for the products deposited in the cell layer and for those released in the medium. Increasing collagen concentration in a nonretracting lattice to a final density obtained in a maximally retracted lattice resulted in a much lower repression of biosynthetic activity. Fn and FXIII added at the same concentrations in monolayer cultures did not produce significant modification in biosynthetic activities. We propose that the regulation of the biosynthetic activity of adherent cells contracting the lattice is related to mechanical information resulting from the interactions between the cells and their support.  相似文献   

15.
Primary culture of microvascular endothelial cells from bovine retina   总被引:11,自引:0,他引:11  
Summary To provide an in vitro system for studying retinal capillary function we have developed methods for isolation and culture of microvascular endothelial cells from retina. Retinal microvessels were isolated by homogenization of the retina and collection of the microvessels onto nylon mesh. Treatment of the isolated microvessels with collagenase and dispase followed by Percoll gradient centrifugation yielded endothelial cells that were largely free of pericytes. A homogeneous population of endothelial cells that were capable of at least six population doublings was obtained by plating onto a fibronectin coated substrate in plasma derived serum. The endothelial origin of these cells was confirmed by the presence of Factor VIII antigen, angiotensin converting enzyme activity, numerous tight junctions, and a cell surface that did not bind platelets. A second cell type, which did not exhibit these cell markers and which is presumably the intramural pericyte, was obtained when the isolated microvessels were plated on tissue culture grade plastic in fetal bovine serum. Supported by Research Grants 5R01-EY03772 and 5R01-ES02380 from the U.S. Public Health Service (G. W. G.) and Established Investigator Award 31-107 from the American Heart Association (A. L. B.).  相似文献   

16.
Limb bud ectoderm inhibits chondrogenesis by limb bud mesenchymal cells cultured at high density or on collagen gels. This ectodermal antichondrogenic influence has been postulated to function in vivo in regulating the spatial patterning of cartilage and soft connective tissue in the limb. We have developed a method for preparing ectoderm-conditioned medium containing antichondrogenic activity. Using a simple bioassay, we have investigated some characteristics of the ectodermal products and their effects on limb bud mesenchymal cells. Inhibition of chondrogenesis by ectoderm-conditioned medium was tested on limb bud mesenchymal cells cultured on collagen gels. The antichondrogenic influence involves enhanced cell spreading and is alleviated by agents, such as cytochalasin D, that induce cell rounding. Fibronectin resembles ectoderm-conditioned medium in its ability to inhibit chondrogenesis and promote cell spreading in collagen gel cultures of limb bud mesenchymal cells. However, Western blot analysis shows that the antichondrogenic activity of ectoderm-conditioned medium is not due to fibronectin in the medium. Peptides related to the fibronectin cell-binding domain block the antichondrogenic effect of fibronectin, but not that of ectoderm-conditioned medium. On the other hand, an antibody to an integrin, as well as heparan sulfate, alleviates the antichondrogenic effects of both fibronectin and ectoderm-conditioned medium. The antichondrogenic effect of ectoderm-conditioned medium may be mediated by an integrin and by a cell surface heparan sulfate proteoglycan, but it does not depend directly upon fibronectin-mediated cell spreading.  相似文献   

17.
Angiogenesis of the microvasculature is central to the etiology of many diseases including proliferative retinopathy, age-related macular degeneration and cancer. A mouse model of microvascular angiogenesis would be very valuable and enable access to a wide range of genetically manipulated tissues that closely approximate small blood vessel growth in vivo. Vascular endothelial cells cultured in vitro are widely used, however, isolating pure vascular murine endothelial cells is technically challenging. A microvascular mouse explant model that is robust, quantitative and can be reproduced without difficulty would overcome these limitations. Here we characterized and optimized for reproducibility an organotypic microvascular angiogenesis mouse and rat model from the choroid, a microvascular bed in the posterior of eye. The choroidal tissues from C57BL/6J and 129S6/SvEvTac mice and Sprague Dawley rats were isolated and incubated in Matrigel. Vascular sprouting was comparable between choroid samples obtained from different animals of the same genetic background. The sprouting area, normalized to controls, was highly reproducible between independent experiments. We developed a semi-automated macro in ImageJ software to allow for more efficient quantification of sprouting area. Isolated choroid explants responded to manipulation of the external environment while maintaining the local interactions of endothelial cells with neighboring cells, including pericytes and macrophages as evidenced by immunohistochemistry and fluorescence-activated cell sorting (FACS) analysis. This reproducible ex vivo angiogenesis assay can be used to evaluate angiogenic potential of pharmacologic compounds on microvessels and can take advantage of genetically manipulated mouse tissue for microvascular disease research.  相似文献   

18.
Fibronectin and collagens are major constituents of the cell matrix of fibroblasts. Fibronectin is a 220,000 dalton glycoprotein that mediates a variety of adhesive functions of cells examined in vitro. Fibronectin is secreted in a soluble form and interacts with collagen to form extracellular filaments. Fibronectin and procollage type I were localized using the peroxidase anti-peroxidase method. Under standard culture conditions, fibronectin and procollagen were localized to non-periodic 10 nm extracellular fibrils, the cell membrane and plasma membrane vesicles. Ascorbate treatment of cells leads to a new larger fibril with a diameter of approximately 40 nm. Antibodies to fibronectin and procollagen I react to these native collagen fibrils with an axial periodicity of approximately 70 nm. Fibronectin is clearly associated with native collagen fibrils produced by ascorbate treated cells and there is an asymetric distribution or segregation of fibronectin on these collagen fibrils with a 70 nm axial repeat.  相似文献   

19.
Fibronectin is a major adhesive glycoprotein of the vascular basement membrane. Since fibronectin is also found in the interstitium, it may be important not only for attachment but also for endothelial cell migration during neovascularization. We have analyzed how human dermal microvascular endothelial cells use their diverse set of integrin receptors to interact with this ligand. Immunofluorescent staining with specific antibodies identified both beta 1 and beta 3 integrin receptor complexes in focal adhesion plaques on cells adhering to immobilized fibronectin. Adhesion assays with blocking monoclonal antibodies implicated both beta 1 and beta 3 complexes, specifically alpha 5 beta 1 and alpha v beta 3, in the initial adhesion of cells to fibronectin. Finally, ligand affinity chromatography of extracts of surface radiolabeled cells established that both alpha 5 beta 1 and alpha v beta 3 could bind to the 110-kDa cell-binding fragment of fibronectin. An additional receptor complex composed of an alpha v subunit and a beta 5-like subunit was also detected. These results provide evidence that microvascular endothelial cells use multiple integrin receptors, from several beta families, to attach to fibronectin surfaces.  相似文献   

20.
Angiogenesis plays an important role in various pathological conditions as well as some physiological processes. Although a number of soluble angiogenic factors have been reported, extracellular matrix also has crucial effect on angiogenesis through interaction with endothelial cells. Since recent reports showed osteopontin had some angiogenic activity, the effect of the SVVYGLR peptide, novel binding motif in osteopontin molecule, on angiogenesis was examined in this study. Synthetic peptide SVVYGLR did not have proliferative effect on endothelial cells but adhesion and migration activity to endothelial cells. Furthermore, SVVYGLR had as potent activity for tube formation in three-dimensional collagen gel as vascular endothelial growth factor which is known to be the strongest angiogenic factor. Electron microscopical analysis showed a number of microvilli on the endothelial luminar surface and tight junction formation in the luminar intercellular border between endothelial cells, indicating SVVYGLR induced cell porarity and differentiation of endothelial cells. This small peptide might be expected to stimulate angiogenesis to improve some ischemic conditions in the future because of some advantages due to smaller molecular weight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号