首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The vasopressin analogue 1-deamino-8-D-arginine vasopressin (DDAVP) causes an immediate, transient rise in plasma levels of von Willebrand factor (vWF) after its administration. Although it is recognized that vascular endothelial cells play an essential role in this process, the molecular basis of the response is not understood. We have investigated the phenomenon using human umbilical vein endothelial cells as an in vitro model. When normal individuals were stimulated with DDAVP, plasma from blood samples collected subsequently caused the release of vWF from cultured endothelial cells over a 24 h period (22-46% increase over baseline), compared to control plasma (5-17%). DDAVP added directly to the endothelial cells produced no increase in vWF release. When whole blood was treated in vitro with DDAVP, and the plasma subsequently added to endothelial cells, a significant increase in vWF secretion was found. Peripheral blood mononuclear cells were then tested. In the presence of DDAVP, an increased response occurred. Further fractionation of these cells showed that monocytes were largely responsible, causing an increased vWF release of 162% at 2 h. These observations were reinforced by finding that the supernatants of monocytes incubated with DDAVP were also effective in causing increased vWF release (118% compared to 58% for the control sample). Our studies suggest that DDAVP plays an indirect role in causing the release of vWF from endothelial cells, and that peripheral blood monocytes may act as intermediary target cells, which then produce factor(s) acting directly on endothelial cells.  相似文献   

2.
The release of platelet-activating factor (PAF) from stimulated human endothelial cells (HEC) cultured from normal term, umbilical cord veins is described. HEC in primary cultures released PAF after challenge with A23187, rabbit anti-human factor VIII (RaHu/FVIII), angiotensin II, and vasopressin. HEC subcultures maintained the ability to release PAF in the presence of A23187 and RaHu/FVIII, whereas the release of PAF in response to angiotensin II and vasopressin was not constant and was reduced. Control cultured, smooth muscle cells derived from umbilical cord veins, previously depleted of endothelial cells, did not release PAF under the above-mentioned stimulation. Plastic-adherent or cultured monocytes released PAF with A23187, but not with RaHu/FVIII, angiotensin II, and vasopressin. The release of PAF from HEC in primary cultures required the presence of extracellular cations and the activation of membrane phospholipase A2. PAF release induced by A23187, RaHu/FVIII, angiotensin II, and vasopressin was unaffected by indomethacin, an inhibitor of cyclooxygenase, which, however, favored the release of PAF from HEC stimulated with thrombin, a stimulus that did not affect HEC in the absence of indomethacin. PGI2 inhibited PAF release from stimulated HEC. The relevance of an acetylation process in the biosynthesis of PAF and HEC was supported by the following evidence: 1) the increase in PAF yield in the presence of sodium acetate and, particularly, of acetyl-CoA; 2) the incorporation of [14C]acetate into PAF molecules; 3) the loss of radioactivity and of biologic activity after treatment with phospholipase A2. These results indicate that HEC in culture are able to release PAF and that metabolic pathways similar to those described for leukocytes are involved.  相似文献   

3.
The capacity to stimulate cytokine release may be important to the long-term effects of platelet-activating factor (PAF), which has a very short half-life. Previous studies have shown that PAF stimulates interleukin 1 (IL-1) release by human monocytes. IL-1 and other cytokines produced in response to PAF may be important to the long-term effects of this short-lived lipid. The THP-1 human monocytic leukemia cell line, was used to study the mechanism by which PAF stimulates IL-1 release. PAF stimulates the release of IL-1 beta activity into THP-1 cell supernatants with a multiphasic dose-response curve very similar to that for monocytes. When THP-1 cells are treated with PAF and LPS in combination, these two stimuli interact synergistically to greatly increase the release of IL-1 activity. To assess the effect of PAF on IL-1 beta synthesis, THP-1 cell pellet proteins were separated by SDS-PAGE, blotted, and immunostained to detect IL-1 beta. Immunostaining revealed that PAF increases intracellular IL-1 beta precursor and that the combination of PAF and LPS increases IL-1 beta precursor synergistically. PAF increases IL-1 beta release mainly by increasing IL-1 beta synthesis.  相似文献   

4.
Cytokines and other soluble factors released by tumor cells play an important role in modulating immune cells to favor tumor development. Monocyte differentiation into macrophages or dendritic cells (DCs) with specific phenotypes is deeply affected by tumor signals and understanding this context is paramount to prevent and propose new therapeutic possibilities. Hence, we developed a study to better describe the modulatory effects of leukemia and lymphoma cell products on human monocytes and monocyte-derived DCs secretion of cytokines such as interleukin (IL)-1β, tumor necrosis factor-α (TNF-α), IL-6, and IL-12. Except with the promyelocytic leukemia cell supernatants (HL-60), the other two tumor supernatants (chronic myeloid leukemia, K562 and Burkitt lymphoma, DAUDI) increased both TNF-α and IL-1β production by monocytes and monocytes undergoing differentiation. This effect was neither explained by alterations of cell number in culture nor by the high amount of vascular endothelial growth factor (VEGF) present in the tumor supernatants. Moreover, all supernatants used were able to induce drastic reduction of IL-12 secretion by cells induced to activation, suggesting a negative interference with Th1 antitumoral responses that should be a huge advantage for tumor progression.  相似文献   

5.
Isolated human polymorphonuclear leukocytes (PMNL) stimulated by platelet activating factor (PAF), leukotriene B(4) (LTB(4)) or opsonized zymosan (OZ) released adenosine measured by thermospray high performance liquid chromatography mass spectrometry in the cell-free supernatants. Stimulation by PAF or LTB(4) resulted in a bellshaped concentration-effect curve; 5 x 10(-7) M PAF, 10(-8) M LTB(4) and 500 mug ml(-1) OZ induced peak adenosine release, thus cytotoxic concentrations did not elevate adenosine level in the supernatants. Therefore adenosine release was characteristic of viable cells. As calculated from concentration-effect curves, the rank order of potency for adenosine release was PAF > LTB > OZ. These resuits suggest that adenosine, when bound specifically to membrane receptor sites, may initiate signal transduction, and, in co-operation with other inflammatory mediators, may modulate phagocyte function, e.g. production of chemoluminescence (CL).  相似文献   

6.
Eosinophil activation and subsequent release of inflammatory mediators are implicated in the pathophysiology of allergic diseases. Eosinophils are activated by various classes of secretagogues, such as cytokines (e.g., IL-5), lipid mediators (e.g., platelet-activating factor (PAF)), and Ig (e.g., immobilized IgG). However, do these agonists act directly on eosinophils or indirectly through the generation of intermediate active metabolites? We now report that endogenous PAF produced by activated eosinophils plays a critical role in eosinophil functions. Human eosinophils produced superoxide when stimulated with immobilized IgG, soluble IL-5, or PAF. Pretreating eosinophils with pertussis toxin abolished their responses to these stimuli, suggesting involvement of a metabolite(s) that acts on G proteins. Indeed, PAF was detected in supernatants from eosinophils stimulated with IgG or IL-5. Furthermore, structurally distinct PAF antagonists, including CV6209, hexanolamine PAF, and Y-24180 (israpafant), inhibited IgG- or IL-5-induced superoxide production and degranulation. Previous reports indicated that exogenous PAF stimulates eosinophil eicosanoid production through formation of lipid bodies. We found in this study that IgG or IL-5 also induces lipid body formation and subsequent leukotriene C4 production mediated by endogenous PAF. Finally, inhibition of cytosolic phospholipase A2, one of the key enzymes involved in PAF synthesis, attenuated both PAF production and effector functions of eosinophils. These findings suggest that endogenous PAF plays important roles in eosinophil functional responses to various exogenous stimuli, such as cytokines and Igs. Therefore, inhibition of PAF synthesis or action may be beneficial for the treatment of eosinophilic inflammation.  相似文献   

7.
The binding of neutrophils (polymorphonuclear leukocytes [PMNs]) to endothelial cells (ECs) presents special requirements in the regulation of intercellular adhesion. ECs that are stimulated by certain agonists, including thrombin and cytokines (tumor necrosis factor alpha, interleukin-1), generate molecular signals that induce the adhesion of PMNs (endothelial cell-dependent neutrophil adhesion). Our experiments demonstrate that the mechanism of binding induced by thrombin is distinct from that induced by the cytokines based on the time courses, the requirement for protein synthesis, and differential binding of HL60 promyelocytic leukemia cells to ECs activated by the two classes of agonists. The rapid EC-dependent PMN adhesion (initiated in minutes) that occurs when the ECs are stimulated by thrombin is temporally coupled with the accumulation of platelet-activating factor, a biologically active phosphoglyceride that remains associated with ECs and that activates PMNs by binding to a cell surface receptor. A portion of the newly synthesized platelet-activating factor (PAF) is on the EC surface, as demonstrated by experiments in which the rate of hydrolysis of PAF synthesized by activated ECs was accelerated by extracellular PAF acetylhydrolase. When ECs were treated with exogenous PAF they became adhesive for PMNs; the PMN binding was prevented by incubating the ECs with PAF acetylhydrolase or by treating the PMNs with competitive PAF receptor antagonists. Thus PAF associated with the EC plasma membrane induces PMN binding, an observation supported by experiments in which PAF in model membranes (liposomes) stimulated rapid PMN adhesion to ECs and to cell-free surfaces. In addition, competitive antagonists of the PAF receptor inhibited the binding of PMNs to ECs activated by thrombin and other rapidly acting agonists, but not to ECs activated by tumor necrosis factor alpha, indicating that PAF that is endogenously synthesized by ECs can mediate neutrophil adhesion. These experiments demonstrate a novel mechanism by which a cell-associated phospholipid, PAF, can serve as a signal for an intercellular adhesive event.  相似文献   

8.
We previously reported the expression of angiopoietin receptor Tie2 on human neutrophils. Both angiopoietins (Ang1 and Ang2) induce platelet activating factor (PAF) synthesis from endothelial cells (ECs) and neutrophils. Both angiopoietins can also modulate EC viability and since PAF can promote pro-survival activity on neutrophils, we addressed whether Ang1 and/or Ang2 could modulate neutrophil viability. Neutrophils were isolated from venous blood of healthy volunteers and neutrophil viability was assessed by flow cytometry using apoptotic and necrotic markers (annexin-V and propidium iodide (P.I.), respectively). Basal neutrophil viability from 0 to 24 h post-isolation decreased from 98% to ≈45%. Treatment with anti-apoptotic mediators such as interleukin-8 (IL-8; 25 nM) and PAF (100 nM) increased neutrophil basal viability by 34 and 26% (raising it from 43 to 58 and 55%) respectively. Treatment with Ang1 (0.001-50 nM) increased neutrophil viability by up to 41%, while Ang2 had no significant effect. Combination of IL-8 (25 nM) or PAF (100 nM) with Ang1 (10 nM) further increased neutrophil viability by 56 and 60% respectively. We also observed that Ang1, but not Ang2 can promote IL-8 release and that a pretreatment of the neutrophils with blocking anti-IL-8 antibodies inhibited the anti-apoptotic effect of IL-8 and Ang1 by 92 and 81% respectively. Pretreatment with a selective PAF receptor antagonist (BN 52021), did abrogate PAF pro-survival activity, without affecting Ang1-induced neutrophil viability. Our data are the first ones to report Ang1 pro-survival activity on neutrophils, which is mainly driven through IL-8 release.  相似文献   

9.
The qualitative and quantitative effects of physiological concentrations of chorionic gonadotropin (CG) on monocytes of women vary with the phases of the menstrual cycle. During the follicular phase, the hormone inhibits phagocytosis; stimulates the secretion of interleukin (IL) 6 (IL-6), interferon α (IFN-α), and the protein component of apolipoprotein A1 (APO-A1); and activates myeloperoxidase (MPO). During the luteal phase, CG stimulates phagocytosis and APO-A1 secretion, inhibits MPO, and does not shift the levels of IL-6 and INF-α. Regardless of the menstrual phase, the hormone does not modify the release of elastase or the production of granulocytic colony-stimulating growth factor, IL-1α, and tumor necrosis factor α.  相似文献   

10.
AimsSilibinin is the major active component of silymarin, a polyphenolic plant flavonoid that has anti-inflammatory effects. The modulatory effect of silibinin on monocyte function against Paracoccidioides brasiliensis (Pb18) has not yet been demonstrated. The present study investigated whether the effect of silibinin on nuclear factor-kappa B (NF-κB) pathways may affect the production of tumor necrosis factor-alpha (TNF-α), interleukin-10 (IL-10), transforming growth factor beta (TGF-β1), prostaglandin E2 (PGE2), nitric oxide (NO) and fungicidal activity of human monocytes challenged in vitro with Pb18.Main methodsPeripheral blood monocytes from healthy individuals were treated with silibinin and challenged with Pb18 for 18 h. TNF-α, IL-10, TGF-β1 and PGE2 expression were determined by immunoenzymatic assay (ELISA) and NO release was determined by the accumulation of nitrite in culture supernatants. Fungicidal activity of monocytes was analyzed after treatment with interferon-gamma plus silibinin and challenge with Pb18. NF-κB activation in cultured monocytes was evaluated by flow cytometry and ELISA.Key findingsSilibinin partially inhibited p65NF-κB activation as the number of cells expressing this factor was reduced and the concentration of nuclear p65NF-κB was low, compared to untreated controls. The addition of silibinin also resulted in suppression of TNF-α, IL-10, TGF-β1, PGE2 and NO production but did not affect the fungicidal activity of monocytes against Pb18.SignificanceSilibinin exerts anti-inflammatory and anti-fibrotic effects on CD14± human monocytes challenged by Pb18 by partial inhibition of p65NF-κB activation.  相似文献   

11.
Abstract

Vasopressin and in particular 1-deamino-8-D-arginine vasopressin (DDAVP) can release factor VIII (FVIII) and tissue plasminogen activator (tPA) to the blood. In the present study DDAVP was injected in conscious dogs which had been preloaded with specific antagonists either against vasopressin's vasopressor response (V1-receptors) or its antidiuretic response (V2-receptors). The presence in the blood of either of the antagonists had no effect on the increase of FVIII or tPA following stimulation with DDAVP. It is therefore concluded that the effect of DDAVP on coagulation and fibrinolysis is elicited via a new class of receptors different from the known V1- and V2-receptors.  相似文献   

12.
The capacity of IL-1-beta, TNF, and IFN-gamma to stimulate platelet-activating factor (PAF) synthesis by human monocytes is examined in our report. All three cytokines induced PAF synthesis in a novel biphasic pattern with peaks of PAF synthesis 1 to 2 and 6 to 8 h after stimulation of the monocytes. In contrast, calcium ionophore A23187 elicited a single peak of early PAF synthesis. PAF in the early peak was largely retained intracellularly whereas PAF in the late peak was largely released into culture fluids. Combinations of cytokines were subadditive or antagonistic in inducing PAF synthesis. Cycloheximide inhibited the late peak of PAF synthesis indicating that protein synthesis is required for synthesis of the phospholipid PAF. Specific antibodies to TNF or IL-1-beta inhibited the late peak of PAF synthesis induced by IFN-gamma indicating that late PAF synthesis is dependent on cytokine synthesis. The quantities of PAF produced by cytokine-activated monocytes are sufficient to activate human monocytes. Thus, these studies suggest that PAF may mediate in part monocyte activation by cytokines.  相似文献   

13.
Esculentoside A (EsA) is a saponin isolated from the roots of Phytolacca esculenta. Previous experiments have shown that it has strong anti-inflammatory effects. Tumour necrosis factor (TNF) is a very important inflammatory mediator. It is known that there are two types of TNF-TNFalpha is from macrophages/monocytes and TNFbeta is from activated lymphocytes. In order to study the mechanism of the anti-inflammatory effect of EsA, it was determined whether TNFalpha production from human peripheral monocytes was altered by EsA under lipopolysaccharide (LPS)-stimulated conditions. EsA was found to decrease TNFalpha production in a dose-dependent manner at concentrations higher than 1 mumol/l EsA. Recent studies have shown that EsA has a curative effect on chocolate cyst and other inflammatory diseases. Our previous studies have shown that EsA could reduce the release of platelet activating factor (PAF) from rat macrophages, and inhibit interleukin-1 and interleukin-6 production from routine macrophages. The reducing effects of EsA on the release of TNFalpha, IL-1, IL-6 and PAF may explain its anti-inflammatory effect.  相似文献   

14.
Platelet-activating factor (PAF) is a potent phospholipid mediator that may participate in inflammatory responses by virtue of its ability to activate platelets, leukocytes, and vascular cells. We examined the synthesis and release of PAF by human peripheral blood monocytes (PBM) isolated by countercurrent elutriation. PAF was produced after stimulation by calcium ionophore A23187 (IoA), opsonized zymosan (OpsZ), and PMA with a relative order of potency IoA much greater than OpsZ greater than PMA. The portion of PAF subsequently released from the cell was dependent on the specific agonist, the time of incubation, and the presence of albumin. Under optimal conditions, PBM released 67, 49 and 32% of the total PAF produced in response to IoA, OpsZ, and PMA, respectively. Changes in PAF metabolism were observed in PBM that were examined after short term adherence or differentiation into macrophages. Adherent PBM accumulated and released less PAF than suspended monocytes, and monocyte-derived macrophages produced less PAF than the parent PBM. The ability of monocytes to release significant amounts of newly synthesized PAF from the cell is unusual among human cell types, which in general retain the vast majority of the lipid, and may be of particular pathophysiologic importance.  相似文献   

15.
《Free radical research》2013,47(4):268-275
Abstract

Silibinin is a polyphenolic plant flavonoid with anti-inflammatory properties. The present study investigated the effect of silibinin on oxidative metabolism and cytokine production - tumor necrosis factor-alpha (TNF-α), interleukin (IL)12, granulocyte-macrophage colony-stimulating factor (GM-CSF), IL-6, IL-10, and transforming growth factor beta (TGF-β1) - by peripheral blood monocytes (PBM) from preeclamptic pregnant women. It is a case-controlled study involving women with preeclampsia (PE, n = 30) compared with normotensive pregnant (NT, n = 30) and with non-pregnant (NP, n = 30) women. Monocytes were obtained and cultured with or without silibinin (5 μM or 50 μM) for 18 h. Superoxide anion (O2?) and hydrogen peroxide (H2O2) release were determined by specific assays, and cytokine levels were determined by immunoenzymatic assays (ELISA). Monocytes from preeclamptic women cultured without stimulus released higher levels of O22, H2O2 and TNF-α, and lower levels of IL-10 and TGF-β1 than did monocytes from NT and NP women. Treatment in vitro with silibinin significantly inhibited spontaneous O2? and H2O2 release and TNF-α production by monocytes from preeclamptic women. The main effect of silibinin was obtained at 50 μM concentration. Thus, silibinin exerts anti-oxidative and anti-inflammatory effects on monocytes from preeclamptic pregnant women by inhibiting the in vitro endogenous release of reactive oxygen species and TNF-α production.  相似文献   

16.
The phospholipid platelet-activating factor (PAF) is a potent cell-derived bioactive molecule thought to be involved in diverse inflammatory processes. It has been shown that PAF can activate different leukocyte types and platelets, particularly in synergy with other agonists. In this study we examined the effect of PAF upon the release of histamine and leukotriene (LT) C4 by basophils when added alone and in combination with different agonists and cytokines. PAF by itself did neither induce histamine release nor the generation of LTC4 by basophils. However, basophils primed by the hematopoietic growth factors (hGF) IL-3, granulocyte-macrophage (GM)-CSF, or IL-5 (10 ng/ml) released preformed and de novo synthesized mediators in response to PAF at 10 to 100 nM concentrations. The extent of mediator release by hGF primed basophils in response to PAF was similar to that induced by an optimal concentration of monoclonal anti-IgE. Thus, similar to NAP-1/IL-8 and C3a, PAF efficiently stimulates mediator release in hGF-primed basophils only. However, PAF was clearly a more potent trigger of LTC4 formation in IL-3-primed cells than NAP-1/IL-8 or C3a. When PAF was used as a second trigger, the priming effect of IL-5 was less than that of IL-3 or GM-CSF, whereas the response for other IgE-independent agonists (i.e., C5a or FMLP) was augmented equally by all three hGF. IL-1 beta-pretreated basophils released minimal amounts of histamine in response to PAF. Neither TNF-alpha nor PAF, nor the combination thereof, was able to induce basophil mediator release. The efficiency of the different cytokines to prime for PAF responsiveness was strikingly similar to their capacity to enhance anti-IgE-induced mediator release. Similar to other IgE-independent agonists, the kinetic of mediator release in response to PAF was very rapid. PAF pretreatment of basophils did not enhance mediator release in response to diverse agonists, such as C5a and FMLP, in contrast to the capacity of PAF to augment the response of other leukocyte types to appropriate stimuli. Thus, depending on the presence of IL-3, GM-CSF, or IL-5, PAF is a potent basophil agonist capable of inducing histamine release as well as de novo synthesis of LTC4.  相似文献   

17.
The Fc fragment of immunoglobulin (Ig) has been shown to play an important role in the regulation of humoral immunity, cellular immunity, lymphocyte and monocyte activation, and immune mediator secretion. We wished to determine if Ig or Fc fragments would induce IL-6 production from monocytes. Incubation of monocytes purified from human peripheral blood mononuclear cells with aggregated Ig or Fc fragments of Ig induced interleukin-6 (IL-6) activity in the supernatants. Monomeric Ig taken from an intravenous preparation of Ig, from which all aggregated Ig are removed, would not induce IL-6 production from monocytes whereas as a heat-treated aliquot, presumably containing aggregates, did induce IL-6. The supernatants were assayed according to their ability to induce growth in a murine hybridoma cell line B9, or enhance Ig secretion of B cells stimulated with Staphylococcus aureus Cowan 1 (SAC). The IL-6 activity in the supernatants could be neutralized by a polyclonal rabbit anti-human IL-6 antiserum in both assays of IL-6 activity. Exposure of T-enriched or B-enriched lymphocyte subpopulations to Fc fragments did not induce the release of any IL-6 after 12 hr of incubation, but small amounts of IL-6 were produced by B-enriched cells after 60 hr of exposure to Fc fragments. Hence Fc fragments and aggregated Ig induce peripheral blood monocytes to rapidly secrete large quantities of interleukin-6.  相似文献   

18.
AIM: To investigate whether caspase-1 activation/intracellular processing of pro-interleukin-1β (pro-IL-1β) and extracellular release of mature IL-1β from activated monocytes are separable events. METHODS: All experiments were performed on fresh or overnight cultured human peripheral blood monocytes (PBMCs) that were isolated from healthy donors. PBMCs were activated by lipopolysaccharide (LPS) stimulation before being treated with Adenosine triphosphate (ATP, 1 mmol/L), human α-defensin-5 (HD-5, 50 μg/mL), and/or nigericin (Nig, 30 μmol/L). For each experiment, the culture supernatants were collected separately from the cells. Cell lysates and supernatants were both subject to immunoprecipitation with anti-IL-1β antibodies followed by western blot analysis with anti-caspase-1 and anti-IL-1β antibodies. RESULTS: We found that pro-IL-1β was processed to mature IL-1β in LPS-activated fresh and overnight cultured human monocytes in response to ATP stimulation. In the presence of HD-5, this release of IL-1β, but not the processing of pro-IL-1β to IL-1β, was completely inhibited. Similarly, in the presence of HD-5, the release of IL-1β, but not the processing of IL-1β, was significantly inhibited from LPS-activated monocytes stimulated with Nig. Finally, we treated LPS-activated monocytes with ATP and Nig and collected the supernatants. We found that both ATP and Nig stimulation could activate and release cleaved caspase-1 from the monocytes. Interestingly, and contrary to IL-1β processing and release, caspase-1 cleavage and release was not blocked by HD-5. All images are representative of three independent experiments. CONCLUSION: These data suggest that caspase-1 activation/processing of pro-IL-1β by caspase-1 and the release of mature IL-1β from human monocytes are distinct and separable events.  相似文献   

19.
Apolipoprotein M (apoM) is a recently discovered human apolipoprotein predominantly present in high-density lipoprotein (HDL) in plasma, exclusively expressed in liver and in kidney. The function of apoM is yet unknown. The human apoM gene is located in the major histocompatibility complex class III region on chromosome 6. Because many genes located in this region are related to the immune response, we have investigated whether apoM might also be involved in the host inflammatory response. In this study we examined effects of the platelet-activating factor (PAF), tumor necrosis factor (TNF-alpha), and interleukin-1alpha (IL-1alpha) on apoM expression in a hepatoblastoma cell line, HepG2 cells. PAF significantly enhanced the apoM mRNA levels and the secretion of apoM in HepG2 cell cultures. The enhancement of apoM secretion is seen at a low concentration of PAF (2 ng/ml), whereas a high concentration of PAF increases both the apoM mRNA levels and apoM secretion. Neither TNF-alpha nor IL-1alpha influenced apoM mRNA level and secretion. Furthermore, Lexipafant, a PAF-receptor (PAF-R) antagonist significantly suppressed the mRNA level and the secretion of apoM in HepG2 cells in a dose-dependent manner. Neither PAF nor Lexipafant influenced the mRNA levels and the secretion of apoA-I, apoB and apoE in HepG2 cells, indicating that the effects of PAF or Lexipafant on the apoM production on hepatic cells are selective for apoM. The cellular mechanism of the effects of PAF or Lexipafant on apoM metabolism requires further investigations.  相似文献   

20.
Although macrophages (Mphi) and monocyte-derived dendritic cells (MDDC) come from a common precursor, they are distinct cell types. This report compares the two cell types with respect to the metabolism of platelet-activating factor (PAF), a biologically active lipid mediator. These experiments were prompted by our studies of localized juvenile periodontitis, a disease associated with high IgG2 production and a propensity of monocytes to differentiate into MDDC. As the IgG2 Ab response is dependent on PAF, and MDDC selectively induce IgG2 production, we predicted that PAF levels would be higher in MDDC than in Mphi. To test this hypothesis, human MDDC were prepared by treating adherent monocytes with IL-4 and GM-CSF, and Mphi were produced by culture in M-CSF. Both Mphi and MDDC synthesized PAF; however, MDDC accumulated significantly more of this lipid. We considered the possibility that PAF accumulation in MDDC might result from reduced turnover due to lower levels of PAF acetylhydrolase (PAFAH), the enzyme that catabolizes PAF. Although PAFAH increased when monocytes differentiated into either cell type, MDDC contained significantly less PAFAH than did Mphi and secreted almost no PAFAH activity. The reduced levels of PAFAH in MDDC could be attributed to lower levels of expression of the enzyme in MDDC and allowed these cells to produce PGE(2) in response to exogenous PAF. In contrast, Mphi did not respond in this manner. Together, these data indicate that PAF metabolism may impinge on regulation of the immune response by regulating the accessory activity of MDDC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号