首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The ontogeny of a primary flight muscle, the pectoralis, in the little brown bat (Myotis lucifugus: Vespertilionidae) was studied using histochemical, immunocytochemical, and electrophoretic techniques. In fetal and early neonatal (postnatal age 1–6 days) Myotis, histochemical techniques for myofibrillar ATPase (mATPase) and antibodies for slow and fast myosins demonstrated the presence of two fiber types, here called types I and IIa. These data correlated with multiple transitional myosin heavy chain isoforms and native myosin isoforms demonstrated with SDS-PAGE and 4% pyrophosphate PAGE. There was a decrease in the distribution and number of type I fibers with increasing postnatal age. At postnatal age 8–9 days, the adult phenotype was observed with regard to muscle fiber type (100% type IIa fibers) and myosin isoform profile (single adult MHC and native myosin isoforms). This “adult” fiber type profile and myosin isoform composition preceeded adult function by about 2 weeks. For example, little brown bats were incapable of sustained flight until approximately postnatal day 24, and myofiber size did not achieve adult size until approximately postnatal day 25. Although Myotis pectoralis is unique in being composed of 100% type IIa fibers, transitional fiber types and isoforms were present. These transitional forms had been observed previously in other mammals bearing mixed adult muscle fibers and which undergo transitional stages in muscle ontogeny. However, in Myotis pectoralis, this transition transpires relatively early in development. © 1994 Wiley-Liss, Inc.  相似文献   

2.
The present study used muscle histochemistry and polyacrylamide gel electrophoresis of native myosin and myosin heavy chains to establish a correlation, if any, between chiropteran histochemical fiber types and myosin isoform composition. Histochemical analysis of the primary flight muscle, the pectoralis profundus, documented the presence of a single histochemical fiber type, here termed Type II. Electrophoresis of native myosin isolated from pectoralis muscle yielded a single isoform that comigrated with the FM-3 isoform of rat diaphragm. Heavy chain analysis of the Myotis pectoralis demonstrated a single heavy chain with comparable electrophoretic mobility to rat IIa myosin heavy chain. These data demonstrate unique histochemical and biochemical homogeneity in the myosin composition of the pectoralis muscle of Myotis lucifugus. Thus this muscle is extremely specialized for flight at histochemical, morphologic, and molecular levels. These data contrast with the mixed myosin and histochemical fiber types found in other mammals, as well as in other muscles of Myotis lucifugus.  相似文献   

3.
Two fast-twitch fiber types are histochemically identified in the primary flight muscles of Artibeus jamaicensis. These are classified as type IIa and IIb according to an acid-preincubation staining protocol for myosin ATPase. All fibers in the bat flight muscles exhibit relatively intense staining properties for NADH-TR, suggesting a high oxidative capacity. The glycolytic potential of all fibers is rather low, as assessed by stains for alpha-GPD. This two-type histochemical profile appears to parallel biphasic electromyographic patterns observed in these muscles and leads us to propose that flight muscle histochemistry and activation are mediated by a "two-gear" neuromuscular control system. In contrast, earlier studies on Tadarida brasiliensis demonstrate the existence of a "one-gear" neuromuscular control system, exemplified by the presence of one fiber type. These observations are discussed with respect to the natural history and flight styles of several species.  相似文献   

4.
Summary Combined histochemical and biochemical analyses were performed on rat skeletal muscles in order to determine the myosin heavy chain patterns in specific fiber types. Four myosin heavy chain isoforms were separated by gradient polyacrylamide gel electrophoresis of extracts from single fibers and whole muscle homogenates. Their electrophoretic mobility increased in the order HCIIa, HCIIb, and HCI. HCIIa, HCIIb and HCI were present as unique isoforms in histochemically defined fiber types IIA, IIB and I, respectively. The isoforms HCI and HCIIa coexisted at variable ratios in type IC and IIC fibers. An additional fast myosin heavy chain isoform with an electrophoretic mobility between HCIIa and HCIIb was designated as HCIId because of its abundance in fast fibers of large diameter in the diaphragm. With the exception of slight differences in mATPase staining intensity after acid preincubation, these fibers were almost indistinguishable from type IIB fibers. In view of their specific myosin heavy chain composition (HCIId), these fibers were named type IID. In the extensor digitorum longus muscle, type IID fibers were of smaller size than type IIB and differed from the latter by higher NADH tetrazolium reductase activities. Circumstantial evidence suggests that type IID fibers are identical with the 2X fibers, previously described by Schiaffino et al. (1986).  相似文献   

5.
Combined histochemical and biochemical analyses were performed on rat skeletal muscles in order to determine the myosin heavy chain patterns in specific fiber types. Four myosin heavy chain isoforms were separated by gradient polyacrylamide gel electrophoresis of extracts from single fibers and whole muscle homogenates. Their electrophoretic mobility increased in the order HCIIa, HCIIb, and HCI. HCIIa, HCIIb and HCI were present as unique isoforms in histochemically defined fiber types IIA, IIB and I, respectively. The isoforms HCI and HCIIa coexisted at variable ratios in type IC and IIC fibers. An additional fast myosin heavy chain isoform with an electrophoretic mobility between HCIIa and HCIIb was designated as HCIId because of its abundance in fast fibers of large diameter in the diaphragm. With the exception of slight differences in mATPase staining intensity after acid preincubation, these fibers were almost indistinguishable from type IIB fibers. In view of their specific myosin heavy chain composition (HCIId), these fibers were named type IID. In the extensor digitorum longus muscle, type IID fibers were of smaller size than type IIB and differed from the latter by higher NADH tetrazolium reductase activities. Circumstantial evidence suggests that type IID fibers are identical with the 2X fibers, previously described by Schiaffino et al. (1986).  相似文献   

6.
Recent studies of muscle architecture demonstrate that many mammalian muscles are composed of short, interdigitating fibers. In addition, the avian pectoralis, a muscle capable of producing high frequency oscillations has been shown to possess a serially arranged pattern of muscle endplate in all sizes of birds studied. The pectoralis muscle of the little brown bat, Myotis lucifugus (Chiroptera: Vespertilionidae), is composed of fairly uniform fibers that span the length of the muscle and is characterized by a zone of motor endplates within the middle third of the muscle. The homogeneous fiber architecture of the bat pectoralis muscle is in contrast to the serial arrangement of endplates (and presumably muscle muscle fibers) in the avian pectoralis in species equivalent in size to Myotis. The short fiber organization and motor endplate pattern observed in most birds is thus not a requisite design for flying vertebrates. © 1994 Wiley-Liss, Inc.  相似文献   

7.
Summary The composition of adult rat soleus muscle spindles, with respect to myosin heavy chain isoforms and M-band proteins, was studied by light-microscope immunohistochemistry. Serial sections were labelled with antibodies against slow tonic, slow twitch, fast twitch and neonatal myosin isoforms as well as against myomesin, M-protein and the MM form of creatine kinase. Intrafusal fiber types were distinguished according to the pattern of ATPase activity following acid and alkaline preincubations.Nuclear bag1 fibers were always strongly stained throughout with anti-slow tonic myosin, were positive for anti-slow twitch myosin towards and in the C-region but were unstained with anti-fast twitch and anti-neonatal myosins. The staining of nuclear bag2 fibers was in general highly variable. However, they were most often strongly stained by anti-slow tonic myosin in the A-region and gradually lost this reactivity towards the poles, whereas a positive reaction with anti-slow twitch myosins was found along the whole fiber. Regional staining variability with antineonatal and anti-fast myosins was apparent, often with decreasing intensity towards the polar regions. Nuclear chain fibers showed strong transient reactivity with anti-slow tonic myosin in the equatorial region, did not react with anti-slow twitch and were always evenly stained by anti-fast twitch and anti-neonatal myosins. All three intrafusal fiber types were stained with anti-myomesin. Nuclear bag1 fibers lacked staining for M-protein, whereas bag2 fibers displayed intermediate staining, with regional variability, often increasing in reactivity towards the polar regions. Chain fibers were always strongly stained by anti-M-protein. The MM form of creatine kinase was present in all three fiber types, but bag1 fibers were less reactive and clear striations were not observed, in contrast to bag2 and chain fibers. Out of 38 cross sectioned spindles two were found to have an atypical fiber composition, (lack of chain fibers) and a rather diverse staining pattern for the different antibodies tested.Taken together, the data show that in adult rat solcus, slow tonic and neonatal myosin heavy, chain isoforms are only expressed in the muscle spindle fibers and that each intrafusal fiber type has a unique, although variable, composition of myosin heavy chain isoforms and M-band proteins. We propose that both motor and sensory innervation might be the determining factors regulating the variable expression of myosin heavy chain isoforms and M-band proteins in intrafusal fibers of rat muscle spindles.  相似文献   

8.
Rabbit predominantly fast-twitch-fibre and predominantly slow-twitch-fibre skeletal muscles of the hind limbs, the psoas, the diaphragm and the masseter muscles were fibre-typed by one-dimensional polyacrylamide-gel electrophoresis of the myofibrillar proteins of chemically skinned single fibres. Investigation of the distribution of fast-twitch-fibre and slow-twitch-fibre isoforms of myosin light chains and the type of myosin heavy chains, based on peptide ''maps'' published in Cleveland. Fischer, Kirschner & Laemmli [(1977) J. Biol. Chem. 252, 1102-1106], allowed a classification of muscle fibres into four classes, corresponding to histochemical types I, IIA, IIB and IIC. Type I fibres with a pure slow-twitch-type of myosin were found to be characterized by a unique set of isoforms of troponins I, C and T, in agreement with the immunological data of Dhoot & Perry [(1979) Nature (London) 278, 714-718], by predominance of the beta-tropomyosin subunit and by the presence of a small amount of an additional tropomyosin subunit, apparently dissimilar from fast-twitch-fibre alpha-tropomyosin subunit. The myofibrillar composition of type IIB fast-twitch white fibres was the mirror image of that found for slow-twitch fibres in that the fast-twitch-fibre isoforms only of the troponin subunits were present and the alpha-tropomyosin subunit predominated. Type IIA fast-twitch red fibres showed a troponin subunit composition identical with that of type IIB fast-twitch white fibres. On the other hand, a unique type of myosin heavy chains was found to be associated with type IIA fibres. Furthermore, the myosin light-chain composition of these fibres was invariably characterized by a small amount of LC3F light chain and by a pattern that was either a pure fast-twitch-fibre light-chain pattern or a hybrid LC1F/LC2F/LC3F/LC1Sb light-chain pattern. By these criteria type IIA fibres could be distinguished from type IIC intermediate fibres, which showed coexistence of fast-twitch-fibre and slow-twitch-fibre forms of myosin light chains and of troponin subunits.  相似文献   

9.
The composition of adult rat soleus muscle spindles, with respect to myosin heavy chain isoforms and M-band proteins, was studied by light-microscope immunohistochemistry. Serial sections were labelled with antibodies against slow tonic, slow twitch, fast twitch and neonatal myosin isoforms as well as against myomesin, M-protein and the MM form of creatine kinase. Intrafusal fiber types were distinguished according to the pattern of ATPase activity following acid and alkaline preincubations. Nuclear bag1 fibers were always strongly stained throughout with anti-slow tonic myosin, were positive for anti-slow twitch myosin towards and in the C-region but were unstained with anti-fast twitch and anti-neonatal myosins. The staining of nuclear bag2 fibers was in general highly variable. However, they were most often strongly stained by anti-slow tonic myosin in the A-region and gradually lost this reactivity towards the poles, whereas a positive reaction with anti-slow twitch myosins was found along the whole fiber. Regional staining variability with anti-neonatal and anti-fast myosins was apparent, often with decreasing intensity towards the polar regions. Nuclear chain fibers showed strong transient reactivity with anti-slow tonic myosin in the equatorial region, did not react with anti-slow twitch and were always evenly stained by anti-fast twitch and anti-neonatal myosins. All three intrafusal fiber types were stained with anti-myomesin. Nuclear bag1 fibers lacked staining for M-protein, whereas bag2 fibers displayed intermediate staining, with regional variability, often increasing in reactivity towards the polar regions. Chain fibers were always strongly stained by anti-M-protein. The MM form of creatine kinase was present in all three fiber types, but bag1 fibers were less reactive and clear striations were not observed, in contrast to bag2 and chain fibers. Out of 38 cross sectioned spindles two were found to have an atypical fiber composition (lack of chain fibers) and a rather diverse staining pattern for the different antibodies tested. Taken together, the data show that in adult rat soleus, slow tonic and neonatal myosin heavy chain isoforms are only expressed in the muscle spindle fibers and that each intrafusal fiber type has a unique, although variable, composition of myosin heavy chain isoforms and M-band proteins. We propose that both motor and sensory innervation might be the determining factors regulating the variable expression of myosin heavy chain isoforms and M-band proteins in intrafusal fibers of rat muscle spindles.  相似文献   

10.
Summary The purpose of this investigation was (1) to determine the fiber composition of pectoralis muscle of the little brown bat,Myotis lucifugus; (2) to compare the fiber composition of this muscle with two of the animal's accessory flight muscles; and (3) to study the effect of hibernation on pectoralis muscle fiber composition. Bat skeletal muscle fibers were also compared with those of white laboratory rats (Rattus norvegicus). Bat pectoralis muscles possessed exceptionally high oxidative capacities as indicated by their succinate dehydrogenase activities, but relatively low glycolytic potentials (phosphofructokinase activities). Muscle histochemistry demonstrated that fiber composition of bat pectorlis muscle was homogeneous; all fibers possessed high aerobic and low glycolytic potentials, and high myofibrillar ATPase activities indicating fast contractile properties. In contrast, accessory flight muscles possessed three distinguishable fiber types. During hibernation there was a significant decline in oxidative potential, no change in glycolytic potential, and no alteration in basic fiber composition of bat pectoralis muscle. The findings of this study suggest that pectoralis muscles ofM. lucifugus may approach the ultimate adaptation of a mammalian locomotory muscle for aerobic generation of muscular power.Abbreviations FG fast-twich glycolytic - FOG fast-twitch-oxydative-glycolytic - -GPDH -glycerophosphate dehydrogenase - LDH lactate dehydrogenase - NADH-D reduced nicotinamide adenine dinucleotide diaphorase - PFK phosphofructokinase - SDH succinate dehydrogenase - SO slowtwich-oxidative  相似文献   

11.
Summary Pretarsal orbicularis oculi muscle (POOM) is an important structure of eyelid movement in human. The aim of this study was to investigate fiber histomorphology and myosin heavy chain (MyHC) isoform composition of adult POOM, and to clarify their age-related changes. Eyelid specimens from 58 subjects (age range, 21 to 91 years) were collected during upper blepharoplasty procedures. Serial cross sections of POOM were ATPase-stained and examined under miscroscope. Quantitative measures of muscle fiber size and fiber type distribution were obtained in 35 subjects with adequate fiber cross sections. Relative MyHC isoform contents of POOM were retrieved by gel electrophoresis in all 58 subjects. Examination of the histochemical staining revealed an abundance of type II fiber ( >85%) in human POOM, with more type IIX than IIA fibers. Decreased mean area of all fibers and type IIA fibers were noted in the old group when compared to the young. As for MyHC analysis, the relative content of MyHC isoforms exhibited an order of IIX > IIA > I, and the relative MyHC IIA content showed a negative correlation with age. Comparing with previous studies of limb or masticatory muscles, adult POOM exhibits a unique fiber and MyHC composition, as well as a different aging pattern.  相似文献   

12.
Summary Combined histochemical and biochemical analyses were performed on single fibers of rabbit soleus muscle. Histochemically, four fiber types (I, IC, IIC, IIA) were defined. Of these, types I and IIA were separate, histochemically homogeneous groups. A heterogeneous C fiber population exhibited a continuum of staining intensities between types I and IIA. Microelectrophoretic analyses of specific, histochemically defined fibers revealed that type I fibers contained exclusively HCI, whereas type IIA fibers contained only HCIIa. The C fibers were characterized by the coexistence of both heavy chains in varying ratios, type HC with a predominance of HCI and type IIC with a predominance of HCIIa. A direct correlation existed between the myosin heavy chain composition and the histochemical mATPase staining and was especially evident in the C fiber population with its variable HCI/HCIIa ratio. This correlation did not apply to the myosin light chain complement.  相似文献   

13.
Combined histochemical and biochemical analyses were performed on single fibers of rabbit soleus muscle. Histochemically, four fiber types (I, IC, IIC, IIA) were defined. Of these, types I and IIA were separate, histochemically homogeneous groups. A heterogeneous C fiber population exhibited a continuum of staining intensities between types I and IIA. Microelectrophoretic analyses of specific, histochemically defined fibers revealed that type I fibers contained exclusively HCI, whereas type IIA fibers contained only HCIIa. The C fibers were characterized by the coexistence of both heavy chains in varying ratios, type IC with a predominance of HCI and type IIC with a predominance of HCIIa. A direct correlation existed between the myosin heavy chain composition and the histochemical mATPase staining and was especially evident in the C fiber population with its variable HCI/HCIIa ratio. This correlation did not apply to the myosin light chain complement.  相似文献   

14.
Distribution of myosin isoenzymes among skeletal muscle fiber types.   总被引:17,自引:4,他引:13  
Using an immunocytochemical approach, we have demonstrated a preferential distribution of myosin isoenzymes with respect to the pattern of fiber types in skeletal muscles of the rat. In an earlier study, we had shown that fluorescein-labeled antibody against "white" myosin from the chicken pectoralis stained all the white, intermediate and about half the red fibers of the rat diaphragm, a fast-twitch muscle (Gauthier and Lowey, 1977). We have now extended this study to include antibodies prepared against the "head" (S1) and "rod" portions of myosin, as well as the alkali- and 5,5'dithiobis (2-nitrobenzoic acid) (DTNB)-light chains. Antibodies capable of distinguishing between alkali 1 and alkali 2 type myosin were also used to localize these isoenzymes in the same fast muscle. We observed, by both direct and indirect immunofluorescence, that the same fibers which had reacted previously with antibodies against white myosin reacted with antibodies to the proteolytic subfragments and to the low molecular-weight subunits of myosin. These results confirm our earlier conclusion that the myosins of the reactive fibers in rat skeletal muscle are sufficiently similar to share antigenic determinants. The homology, furthermore, is not confined to a limited region of the myosin molecule, but includes the head and rod portions and all classes of light chains. Despite the similarities, some differences exist in the protein compositions of these fibers: antibodies to S1 did not stain the reactive (fast) red fiber as strongly as they did the white and intermediate fibers. Non-uniform staining was also observed with antibodies specific for A2 myosin; the fast red fiber again showed weaker fluorescence than did the other reactive fibers. These results could indicate a variable distribution of myosin isoenzymes according to their alkali-light chain composition among fiber types. Alternatively, there may exist yet another myosin isoenzyme which is localized in the fast red fiber. Those red fibers which did not react with any of the antibodies to pectoralis myosin, did react strongly with an antibody against myosin isolated from the anterior latissimus dorsi (ALD), a slow red muscle of the chicken. The myosin in these fibers (slow red fibers) is, therefore, distinct from the other myosin isoenzymes. In the rat soleus, a slow-twitch muscle, the majority of the fibers reacted only with antibody against ALD myosin. A minority, however, reacted with antiboddies to pectoralis as well as ALD myosin, which indicates that both fast and slow myosin can coexist within the same fiber of a normal adult muscle. These immunocytochemical studies have emphasized that a wide range of isoenzymes may contribute to the characteristic physiological properties of individual fiber types in a mixed muscle.  相似文献   

15.
In the urodelan amphibian Pleurodeles waltlii, spontaneous anatomical metamorphosis was correlated with an increase in the serum level of thyroxine (T4). It was also accompanied by a change in the myofibrillar ATPase profile of the dorsal skeletal muscle; fibers of larval type were gradually replaced by the adult fiber types I, II A, and II B. Likewise, a myosin isoenzymic transition was observed in dorsal muscle, larval isomyosins were replaced by adult isoforms. In a related species, Ambystoma mexicanum, in which no spontaneous external metamorphosis occurs under standard conditions, the serum T4 level was shown to remain low. During further development, the myofibrillar ATPase profile acquired the adult fiber types, but a high percentage of immature fibers of type II C persisted. Myosin isoenzymic transition was also incomplete; larval isoforms were still distinguished in the neotenic adults. In experimental hypothyroidian P. waltlii, no external metamorphosis occurred; the myofibrillar ATPase profile was of the immature type, and the larval isomyosins persisted. Triiodothyronine induced experimental anatomical metamorphosis in A. mexicanum; only limited changes in the myofibrillar ATPase profile resulted from the treatment, but a complete myosin isoenzymic transition was observed. These results tend to indicate that a moderate increase in the level of thyroid hormone is sufficient to induce the differentiation of adult fiber types, together with the production of adult myosin isoforms in the skeletal dorsal muscle of amphibians, while a pronounced increase would be necessary for repressing the initial larval features.  相似文献   

16.
A quantitative histochemical study was carried out on axial musculature of Noemacheilus barbatulus L. On the basis of succinate dehydrogenase (SDH) and myofibrillar ATP-ase activity, 5 types of muscle fibers are described. When the SDH method was used, red, tonic, intermediate, and white muscle fibers were easily observed. However, histochemical reaction for myofibrillar ATP-ase activity, after alkaline preincubation (pH = 10.4), revealed another type of fiber zone laying between the intermediate and white muscle fiber regions and forming a transitional zone. Electron microscopic observation showed significant differences in sarcomere organization and thickness of myosin filaments of the various muscle fiber types.  相似文献   

17.
Three myosin heavy chain isoforms with unique peptide maps appear sequentially in the development of the chicken pectoralis major muscle. An embryonic isoform is expressed early and throughout development in the embryo. A second isoform appears just after hatching and predominates by 10 days ex ovo. A third isoform, indistinguishable from adult myosin heavy chain, predominates by 8 weeks after hatching. This sequence of myosin isoform change does not, however, appear during myogenesis in vitro. In cultures prepared from embryonic myoblasts only embryonic myosin heavy chain is expressed. This is true even in cultures maintained for 30 days. Myosin light chain expression also changes in vivo with a progressive increase in fast light chain 3 accumulation. In vitro, however, this shift to increasing fast light chain 3 accumulation does not occur. The results indicate that the myosin heavy chain and light chain pattern observed in vitro is identical to that of the embryonic muscle and that the conditions necessary for the shift in expression to a more mature myosin phenotype are not present in myogenic cultures. These cultures are therefore potentially of great value in probing further the neural and humoral determinants of muscle fiber maturation and growth.  相似文献   

18.
Changes both in the ATPase myofibrillar profile and in the electrophoretic pattern of myosin isoforms were examined in the mouse dorsal skeletal muscle (longissimus) during postnatal development. In the newborn, only type II C and a few type I fibers were present; differentiation into type II A and II B fibers took place during the 3 weeks following birth. During the same period, a transition from three neonatal isomyosins to four adult isoforms was observed. The two phenomena were related to a marked increase in the serum thyroid hormones levels. Hypothyroidism and hyperthyroidism experiments were performed. Hypothyroidism produced by propylthiouracil treatment of pregnant females and thiourea injections of the litters was shown to induce a complete inhibition of postnatal muscular differentiation. Hyperthyroidism produced by triiodothyronine treatment of the neonate mice significantly accelerated the myosin transition and the switch in the myofibrillar pattern. Our results suggest a primordial role for thyroid hormones in directly regulating the appearance of myosin and fiber adult types and in modulating directly or indirectly the disappearance of the neonatal types.  相似文献   

19.
Myosin types in human skeletal muscle fibers   总被引:2,自引:0,他引:2  
By combining enzyme histochemistry for fiber typing with immunohistochemistry for slow and fast myosin a correlation between fiber type and myosin type was sought in human skeletal muscle. Fiber typing was done by staining for myofibrillar ATPases after preincubation at discriminating pH values. Myosin types were discriminated using type specific anti-rabbit myosin antibodies shown to cross-react with human myosin and were visualized by a protein A-peroxidase method. Type I fibers were shown to contain slow myosin only, type IIA and IIB fibers fast myosin only, and type IIC fibers both myosins in various proportions. When muscle biopsies from well-trained athletes were investigated essentially the same staining pattern was observed. However, rarely occurring type I fibers with high glycolytic activity were detected containing additional small amounts of fast myosin and occasional type IIA fibers had small amounts of slow myosin. Based on the observation of various fiber types in which slow and fast myosin coexist we propose a dynamic continuum of fibers encompassing all fiber types.  相似文献   

20.
Summary By combining enzyme histochemistry for fiber typing with immunohistochemistry for slow and fast myosin a correlation between fiber type and myosin type was sought in human skeletal muscle. Fiber typing was done by staining for myofibrillar ATPases after preincubation at discriminating pH values. Myosin types were discriminated using type specific anti-rabbit myosin antibodies shown to cross-react with human myosin and were visualized by a protein A-peroxidase method. Type I fibers were shown to contain slow myosin only, type IIA and IIB fibers fast myosin only, and type IIC fibers both myosins in various proportions. When muscle biopsies from well-trained athletes were investigated essentially the same staining pattern was observed. However, rarely occurring type I fibers with high glycolytic activity were detected containing additional small amounts of fast myosin and occasional type IIA fibers had small amounts of slow myosin. Based on the observation of various fiber types in which slow and fast myosin coexist we propose a dynamic continuum of fibers encompassing all fiber types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号