首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper an attempt has been made to estimate several missing values in replicated latin square designs. The explicit computable expressions for the non-iterative least squares estimates of the missing values are presented for particular patterns of missing values.  相似文献   

2.
In the present study an attempt has been made to esttimate several missing values in cross-over designs. When the observations are missing in a particular pattern, explicit expressions are given for the estimators of the missing values. This procedure is illustrated with the help of a numerical example.  相似文献   

3.
MOTIVATION: Microarray data are used in a range of application areas in biology, although often it contains considerable numbers of missing values. These missing values can significantly affect subsequent statistical analysis and machine learning algorithms so there is a strong motivation to estimate these values as accurately as possible before using these algorithms. While many imputation algorithms have been proposed, more robust techniques need to be developed so that further analysis of biological data can be accurately undertaken. In this paper, an innovative missing value imputation algorithm called collateral missing value estimation (CMVE) is presented which uses multiple covariance-based imputation matrices for the final prediction of missing values. The matrices are computed and optimized using least square regression and linear programming methods. RESULTS: The new CMVE algorithm has been compared with existing estimation techniques including Bayesian principal component analysis imputation (BPCA), least square impute (LSImpute) and K-nearest neighbour (KNN). All these methods were rigorously tested to estimate missing values in three separate non-time series (ovarian cancer based) and one time series (yeast sporulation) dataset. Each method was quantitatively analyzed using the normalized root mean square (NRMS) error measure, covering a wide range of randomly introduced missing value probabilities from 0.01 to 0.2. Experiments were also undertaken on the yeast dataset, which comprised 1.7% actual missing values, to test the hypothesis that CMVE performed better not only for randomly occurring but also for a real distribution of missing values. The results confirmed that CMVE consistently demonstrated superior and robust estimation capability of missing values compared with other methods for both series types of data, for the same order of computational complexity. A concise theoretical framework has also been formulated to validate the improved performance of the CMVE algorithm. AVAILABILITY: The CMVE software is available upon request from the authors.  相似文献   

4.
Multiple imputation has become a widely accepted technique to deal with the problem of incomplete data. Typically, imputation of missing values and the statistical analysis are performed separately. Therefore, the imputation model has to be consistent with the analysis model. If the data are analyzed with a mixture model, the parameter estimates are usually obtained iteratively. Thus, if the data are missing not at random, parameter estimation and treatment of missingness should be combined. We solve both problems by simultaneously imputing values using the data augmentation method and estimating parameters using the EM algorithm. This iterative procedure ensures that the missing values are properly imputed given the current parameter estimates. Properties of the parameter estimates were investigated in a simulation study. The results are illustrated using data from the National Health and Nutrition Examination Survey.  相似文献   

5.
MOTIVATION: Significance analysis of differential expression in DNA microarray data is an important task. Much of the current research is focused on developing improved tests and software tools. The task is difficult not only owing to the high dimensionality of the data (number of genes), but also because of the often non-negligible presence of missing values. There is thus a great need to reliably impute these missing values prior to the statistical analyses. Many imputation methods have been developed for DNA microarray data, but their impact on statistical analyses has not been well studied. In this work we examine how missing values and their imputation affect significance analysis of differential expression. RESULTS: We develop a new imputation method (LinCmb) that is superior to the widely used methods in terms of normalized root mean squared error. Its estimates are the convex combinations of the estimates of existing methods. We find that LinCmb adapts to the structure of the data: If the data are heterogeneous or if there are few missing values, LinCmb puts more weight on local imputation methods; if the data are homogeneous or if there are many missing values, LinCmb puts more weight on global imputation methods. Thus, LinCmb is a useful tool to understand the merits of different imputation methods. We also demonstrate that missing values affect significance analysis. Two datasets, different amounts of missing values, different imputation methods, the standard t-test and the regularized t-test and ANOVA are employed in the simulations. We conclude that good imputation alleviates the impact of missing values and should be an integral part of microarray data analysis. The most competitive methods are LinCmb, GMC and BPCA. Popular imputation schemes such as SVD, row mean, and KNN all exhibit high variance and poor performance. The regularized t-test is less affected by missing values than the standard t-test. AVAILABILITY: Matlab code is available on request from the authors.  相似文献   

6.
Missing data is a common issue in research using observational studies to investigate the effect of treatments on health outcomes. When missingness occurs only in the covariates, a simple approach is to use missing indicators to handle the partially observed covariates. The missing indicator approach has been criticized for giving biased results in outcome regression. However, recent papers have suggested that the missing indicator approach can provide unbiased results in propensity score analysis under certain assumptions. We consider assumptions under which the missing indicator approach can provide valid inferences, namely, (1) no unmeasured confounding within missingness patterns; either (2a) covariate values of patients with missing data were conditionally independent of treatment or (2b) these values were conditionally independent of outcome; and (3) the outcome model is correctly specified: specifically, the true outcome model does not include interactions between missing indicators and fully observed covariates. We prove that, under the assumptions above, the missing indicator approach with outcome regression can provide unbiased estimates of the average treatment effect. We use a simulation study to investigate the extent of bias in estimates of the treatment effect when the assumptions are violated and we illustrate our findings using data from electronic health records. In conclusion, the missing indicator approach can provide valid inferences for outcome regression, but the plausibility of its assumptions must first be considered carefully.  相似文献   

7.
While microarrays make it feasible to rapidly investigate many complex biological problems, their multistep fabrication has the proclivity for error at every stage. The standard tactic has been to either ignore or regard erroneous gene readings as missing values, though this assumption can exert a major influence upon postgenomic knowledge discovery methods like gene selection and gene regulatory network (GRN) reconstruction. This has been the catalyst for a raft of new flexible imputation algorithms including local least square impute and the recent heuristic collateral missing value imputation, which exploit the biological transactional behaviour of functionally correlated genes to afford accurate missing value estimation. This paper examines the influence of missing value imputation techniques upon postgenomic knowledge inference methods with results for various algorithms consistently corroborating that instead of ignoring missing values, recycling microarray data by flexible and robust imputation can provide substantial performance benefits for subsequent downstream procedures.  相似文献   

8.
Bayesian (via Gibbs sampling) and empirical BLUP (EBLUP) estimation of fixed effects and breeding values were compared by simulation. Combinations of two simulation models (with or without effect of contemporary group (CG)), three selection schemes (random, phenotypic and BLUP selection), two levels of heritability (0.20 and 0.50) and two levels of pedigree information (0% and 15% randomly missing) were considered. Populations consisted of 450 animals spread over six discrete generations. An infinitesimal additive genetic animal model was assumed while simulating data. EBLUP and Bayesian estimates of CG effects and breeding values were, in all situations, essentially the same with respect to Spearman''s rank correlation between true and estimated values. Bias and mean square error (MSE) of EBLUP and Bayesian estimates of CG effects and breeding values showed the same pattern over the range of simulated scenarios. Methods were not biased by phenotypic and BLUP selection when pedigree information was complete, albeit MSE of estimated breeding values increased for situations where CG effects were present. Estimation of breeding values by Bayesian and EBLUP was similarly affected by joint effect of phenotypic or BLUP selection and randomly missing pedigree information. For both methods, bias and MSE of estimated breeding values and CG effects substantially increased across generations.  相似文献   

9.
Analysts often estimate treatment effects in observational studies using propensity score matching techniques. When there are missing covariate values, analysts can multiply impute the missing data to create m completed data sets. Analysts can then estimate propensity scores on each of the completed data sets, and use these to estimate treatment effects. However, there has been relatively little attention on developing imputation models to deal with the additional problem of missing treatment indicators, perhaps due to the consequences of generating implausible imputations. However, simply ignoring the missing treatment values, akin to a complete case analysis, could also lead to problems when estimating treatment effects. We propose a latent class model to multiply impute missing treatment indicators. We illustrate its performance through simulations and with data taken from a study on determinants of children's cognitive development. This approach is seen to obtain treatment effect estimates closer to the true treatment effect than when employing conventional imputation procedures as well as compared to a complete case analysis.  相似文献   

10.
Microarray experiments generate data sets with information on the expression levels of thousands of genes in a set of biological samples. Unfortunately, such experiments often produce multiple missing expression values, normally due to various experimental problems. As many algorithms for gene expression analysis require a complete data matrix as input, the missing values have to be estimated in order to analyze the available data. Alternatively, genes and arrays can be removed until no missing values remain. However, for genes or arrays with only a small number of missing values, it is desirable to impute those values. For the subsequent analysis to be as informative as possible, it is essential that the estimates for the missing gene expression values are accurate. A small amount of badly estimated missing values in the data might be enough for clustering methods, such as hierachical clustering or K-means clustering, to produce misleading results. Thus, accurate methods for missing value estimation are needed. We present novel methods for estimation of missing values in microarray data sets that are based on the least squares principle, and that utilize correlations between both genes and arrays. For this set of methods, we use the common reference name LSimpute. We compare the estimation accuracy of our methods with the widely used KNNimpute on three complete data matrices from public data sets by randomly knocking out data (labeling as missing). From these tests, we conclude that our LSimpute methods produce estimates that consistently are more accurate than those obtained using KNNimpute. Additionally, we examine a more classic approach to missing value estimation based on expectation maximization (EM). We refer to our EM implementations as EMimpute, and the estimate errors using the EMimpute methods are compared with those our novel methods produce. The results indicate that on average, the estimates from our best performing LSimpute method are at least as accurate as those from the best EMimpute algorithm.  相似文献   

11.
Summary Various studies have estimated covariance components as half the difference between the variance component of the sum of the variable values, for each observation, and the sum of the corresponding variable variance components. Although the variance components for the separate variables can be computed using all available data, the variance components of the sum can be computed only from those observations with records for both variables. Previous studies have suggested eliminating observations with missing data, because of possible selection bias. The effect of missing data on estimates of covariance components and genetic correlations was tested on sample beef cattle data and simulated data by randomly deleting differing proportions of records of one variable for each pair of variables analyzed. Estimates of genetic correlations computed with observations with missing data eliminated, were more accurate than estimates computed using all available data. Furthermore, when observations with missing data were included, estimates of genetic correlation far outside the parameter space were common. Therefore, this method should be used only if observations with missing data have been eliminated.  相似文献   

12.
Many quantitative genetic statistics are functions of variance components, for which a large number of replicates is needed for precise estimates and reliable measures of uncertainty, on which sound interpretation depends. Moreover, in large experiments the deaths of some individuals can occur, so methods for analysing such data need to be robust to missing values. We show how confidence intervals for narrow-sense heritability can be calculated in a nested full-sib/half-sib breeding design (males crossed with several females) in the presence of missing values. Simulations indicate that the method provides accurate results, and that estimator uncertainty is lowest for sampling designs with many males relative to the number of females per male, and with more females per male than progenies per female. Missing data generally had little influence on estimator accuracy, thus suggesting that the overall number of observations should be increased even if this results in unbalanced data. We also suggest the use of parametrically simulated data for prior investigation of the accuracy of planned experiments. Together with the proposed confidence intervals an informed decision on the optimal sampling design is possible, which allows efficient allocation of resources.  相似文献   

13.
MOTIVATION: Clustering technique is used to find groups of genes that show similar expression patterns under multiple experimental conditions. Nonetheless, the results obtained by cluster analysis are influenced by the existence of missing values that commonly arise in microarray experiments. Because a clustering method requires a complete data matrix as an input, previous studies have estimated the missing values using an imputation method in the preprocessing step of clustering. However, a common limitation of these conventional approaches is that once the estimates of missing values are fixed in the preprocessing step, they are not changed during subsequent processes of clustering; badly estimated missing values obtained in data preprocessing are likely to deteriorate the quality and reliability of clustering results. Thus, a new clustering method is required for improving missing values during iterative clustering process. RESULTS: We present a method for Clustering Incomplete data using Alternating Optimization (CIAO) in which a prior imputation method is not required. To reduce the influence of imputation in preprocessing, we take an alternative optimization approach to find better estimates during iterative clustering process. This method improves the estimates of missing values by exploiting the cluster information such as cluster centroids and all available non-missing values in each iteration. To test the performance of the CIAO, we applied the CIAO and conventional imputation-based clustering methods, e.g. k-means based on KNNimpute, for clustering two yeast incomplete data sets, and compared the clustering result of each method using the Saccharomyces Genome Database annotations. The clustering results of the CIAO method are more significantly relevant to the biological gene annotations than those of other methods, indicating its effectiveness and potential for clustering incomplete gene expression data. AVAILABILITY: The software was developed using Java language, and can be executed on the platforms that JVM (Java Virtual Machine) is running. It is available from the authors upon request.  相似文献   

14.
The problem of missing data is common in all fields of science. Various methods of estimating missing values in a dataset exist, such as deletion of cases, insertion of sample mean, and linear regression. Each approach presents problems inherent in the method itself or in the nature of the pattern of missing data. We report a method that (1) is more general in application and (2) provides better estimates than traditional approaches, such as one-step regression. The model is general in that it may be applied to singular matrices, such as small datasets or those that contain dummy or index variables. The strength of the model is that it builds a regression equation iteratively, using a bootstrap method. The precision of the regressed estimates of a variable increases as regressed estimates of the predictor variables improve. We illustrate this method with a set of measurements of European Upper Paleolithic and Mesolithic human postcranial remains, as well as a set of primate anthropometric data. First, simulation tests using the primate data set involved randomly turning 20% of the values to "missing". In each case, the first iteration produced significantly better estimates than other estimating techniques. Second, we applied our method to the incomplete set of human postcranial measurements. MISDAT estimates always perform better than replacement of missing data by means and better than classical multiple regression. As with classical multiple regression, MISDAT performs when squared multiple correlation values approach the reliability of the measurement to be estimated, e.g., above about 0. 8.  相似文献   

15.
The method of combining ability analysis of diallel crosses for Griffing method-3 for one and two missing observations has been presented. The formulae for estimating the parameters, the variances of different estimates and the sum of squares for various effects have been presented. The given analysis can easily be extended for the case of missing of more than two observations. The procedure of analysis has been illustrated through an example.  相似文献   

16.
F G Giesbrecht 《Biometrics》1986,42(2):437-448
This paper presents an organized solution to the problem of computing inter- and intrablock analyses of incomplete block designs, based on the modified maximum likelihood principle proposed by Patterson and Thompson (1971, Biometrika 58, 545-554). The calculations are set out to be easily programmed on a microcomputer. The method is attractive because it is simple, yet sufficiently general to handle a wide class of designs, including partially balanced incomplete block designs, designs with unequal block sizes, designs with missing values, and generally unbalanced split-plot experiments.  相似文献   

17.
Protecting against nonrandomly missing data in longitudinal studies   总被引:1,自引:0,他引:1  
C H Brown 《Biometrics》1990,46(1):143-155
Nonrandomly missing data can pose serious problems in longitudinal studies. We generally have little knowledge about how missingness is related to the data values, and longitudinal studies are often far from complete. Two approaches that have been used to handle missing data--use of maximum likelihood with an ignorable mechanism and direct modeling of the missing data mechanism--have the disadvantage of not giving consistent estimates under important classes of nonrandom mechanisms. We introduce two protective estimators, that is, estimators that retain their consistency over a wide range of nonrandom mechanisms. We compare these protective estimators using longitudinal data from a mental health panel study. We also investigate their robustness to certain departures from normality.  相似文献   

18.
In this paper an attempt has been made to reduce the computational complexities involved in estimation of several missing values. As a result it has been shown that one can estimate m missing values by developing only k (≤m) linear equations, where m and k are respectively the number of missing values and missing cells. The procedure is also illustrated with the help of a numerical example.  相似文献   

19.
The importance of lipids for cell function and health has been widely recognized, e.g., a disorder in the lipid composition of cells has been related to atherosclerosis caused cardiovascular disease (CVD). Lipidomics analyses are characterized by large yet not a huge number of mutually correlated variables measured and their associations to outcomes are potentially of a complex nature. Differential network analysis provides a formal statistical method capable of inferential analysis to examine differences in network structures of the lipids under two biological conditions. It also guides us to identify potential relationships requiring further biological investigation. We provide a recipe to conduct permutation test on association scores resulted from partial least square regression with multiple imputed lipidomic data from the LUdwigshafen RIsk and Cardiovascular Health (LURIC) study, particularly paying attention to the left-censored missing values typical for a wide range of data sets in life sciences. Left-censored missing values are low-level concentrations that are known to exist somewhere between zero and a lower limit of quantification. To make full use of the LURIC data with the missing values, we utilize state of the art multiple imputation techniques and propose solutions to the challenges that incomplete data sets bring to differential network analysis. The customized network analysis helps us to understand the complexities of the underlying biological processes by identifying lipids and lipid classes that interact with each other, and by recognizing the most important differentially expressed lipids between two subgroups of coronary artery disease (CAD) patients, the patients that had a fatal CVD event and the ones who remained stable during two year follow-up.  相似文献   

20.
The novel two-step serologic sensitive/less sensitive testing algorithm for detecting recent HIV seroconversion (STARHS) provides a simple and practical method to estimate HIV-1 incidence using cross-sectional HIV seroprevalence data. STARHS has been used increasingly in epidemiologic studies. However, the uncertainty of incidence estimates using this algorithm has not been well described, especially for high risk groups or when missing data is present because a fraction of sensitive enzyme immunoassay (EIA) positive specimens are not tested by the less sensitive EIA. Ad hoc methods used in practice provide incorrect confidence limits and thus may jeopardize statistical inference. In this report, we propose maximum likelihood and Bayesian methods for correctly estimating the uncertainty in incidence estimates obtained using prevalence data with a fraction missing, and extend the methods to regression settings. Using a study of injection drug users participating in a drug detoxification program in New York city as an example, we demonstrated the impact of underestimating the uncertainty in incidence estimates using ad hoc methods. Our methods can be applied to estimate the incidence of other diseases from prevalence data using similar testing algorithms when missing data is present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号