共查询到20条相似文献,搜索用时 15 毫秒
1.
Luowei Li Robert W. Tucker Henry Hennings Stuart H. Yuspa 《Journal of cellular physiology》1995,163(1):105-114
The role of intracellular Ca2+ in the regulation of Ca2+-induced terminal differentiation of mouse keratinocytes was investigated using the intracellular Ca2+ chelator 1,2-bis(o-aminophenoxy)-ethane-N, N, N′, N′-tetraacetic acid (BAPTA). A cell permeable acetoxymethyl (AM) ester derivative BAPTA (BAPTA/AM) was loaded into primary mouse keratinocytes in 0.05 mM Ca2+ medium, and then the cells were induced to differentiate by medium containing 0.12 or 0.5 mM Ca2+. Intracellular BAPTA loaded by BAPTA/AM (15–30 μM) inhibited the expression of epidermal differentiation-specific proteins keratin 1 (K1), keratin 10 (K10), filaggrin and loricrin as detected by immunoblotting. The differentiation-associated redistribution of E-cadherin on the cell membrane was delayed but not inhibited as determined by immunofluorescence. BAPTA also inhibited the expression of K1, K10 and Ioricrin mRNA. Furthermore, BAPTA prevented the decrease in DNA synthesis induced by 0.12 and 0.5 mM Ca2+, indicating the drug was inhibiting differentiation but was not toxic to keratinocytes. To evaluate the influence of BAPTA on intracellular Ca2+, the concentration of intracellular free Ca2+ (Cai) in BAPTA-loaded keratinocytes was examined by digital image analysis using the Ca2+-sensitive fluorescent probe fura-2, and Ca2+ influx was measured by 45Ca2+ uptake studies. Increase in extracellular Ca2+ (Cao) in the culture medium of keratinocytes caused a sustained increase in both Cai and Ca2+ localized to ionomycin-sensitive intracellular stores in keratinocytes. BAPTA lowered basal Cai concentration and prevented the Cai increase. After 12 hours of BAPTA treatment, the basal level of Cai returned to the control value, but the Ca2+ localized in intracellular stores was substantially decreased. 45Ca2+ uptake was initially (within 30 min) increased in BAPTA-loaded cells. However, the total 45Ca2+ accumulation over 24 hours in BAPTA-loaded cells remained unchanged from control values. These results indicate that keratinocytes can maintain Cai and total cellular Ca2+ content in the presence of increased amount of intracellular Ca2+ buffer (e.g., BAPTA) by depleting intracellular Ca2+ stores over a long period. The inhibition by BAPTA of keratinocyte differentiation marker expression may result from depletion of the Ca2+-stores since this is the major change in intracellular Ca2+ detected at the time keratinocytes express the differentiation markers. In contrast, the redistribution of E-cadherin on the cell membrane may be more directly associated with Cai change. © 1995 Wiley-Liss, Inc. 相似文献
2.
A comparison of normal epithelial cells with their transformed counterparts could lead to the definition of parameters related to growth and differentiation which are altered by viral transformation and which may be relevant to malignant changes in vivo. Using the SV40-transformed human keratinocyte line, SVK14, which exhibits characteristics of simple, nonkeratinizing epithelia, we have shown that IGF I stimulation of these cells results in extensive multilayering, increased cell size, accumulation of involucrin, modulation of keratin 18 and expression of keratins 14 and 10, whilst T-antigen expression is maintained in the multilayered cells. Since T-antigen expression is correlated directly with impairment of stratification and differentiation, it is interesting that treatment of SVK14 with a single growth factor. IGF I, results in molecular events characteristic of differentiating normal keratinocytes. 相似文献
3.
P. G. Sacks S. M. Parnes J. C. Price H. Risemberg J. C. Goldstein M. Marko D. F. Parsons 《In vitro cellular & developmental biology. Plant》1985,21(2):99-107
Summary The differentiation of epithelial tissue in organ cultures of murine buccal mucosa, various human oral mucosa, and human newborn
foreskin was found to be dependent on the calcium concentration of the culture media. In low calcium medium (≤0.07 mM) epithelial differentiation was inhibited. The original stratifying layers separate and can be removed, producing a destratified
explant. Histologically such an explant consits of a dorsal epithelial layer of basal keratinocytes resting on an intact basal
lamina with subjacent stroma. At 0.01 mM calcium, the epithelial layer was one to two cells thick whereas at 0.07 mM it could be three or more layers in thickness with the most superficial cells being spread over the underlying cells. In
addition to differentiation, keratinocyte migration over the sides of the explant (epiboly) and epithelial proliferation as
determined by [3H]thymidine autoradiography were reduced by culture in low calcium medium. Redifferentiation occurs upon return to normal
calcium levels (1.8 mM); addition of hydrocortisone to low calcium media was found to facilitate this redifferentiation.
This investigation was supported by NIH Grant CA29255 from the National Cancer Institute, PHS/DHHS, and by NIH Grant RR01219
supporting the New York State High-Voltage Electron Microscope as a National Biotechnology Resource, awarded by the Division
of Research Resources, PHS/DHHS. 相似文献
4.
Commitment to differentiation and expression of early differentiation markers in murine keratinocytes in vitro are regulated independently of extracellular calcium concentrations 总被引:5,自引:0,他引:5
下载免费PDF全文

《The Journal of cell biology》1993,123(4):909-919
In the epidermis, one of the earliest characterized events in keratinocyte differentiation is the coordinate induction of a pair of keratins specifically expressed in suprabasal cells, keratin 1 (K1) and keratin 10 (K10). Both in vivo and in vitro, extracellular calcium is necessary for several biochemical and structural changes during keratinocyte differentiation. However, it has been unclear if calcium serves as a differentiation signal in keratinocytes. In these studies, expression of suprabasal keratin mRNA and protein is used to test whether the initial differentiation of primary mouse keratinocytes in vitro is dependent on changes in the concentration of extracellular calcium. K1 mRNA was expressed at low levels in cultures of keratinocytes growing on plastic in 0.05 mM calcium but in attached cells was not further induced by increases in the concentration of extracellular calcium. Suspension of the keratinocytes into semi-solid medium induced a rapid and substantial increase in both expression of K1 mRNA and in the percentage of cells expressing suprabasal keratin proteins. The induction was unaffected by the concentration of calcium in the semi-solid medium and could not be enhanced by exposing attached cells to higher calcium before suspension. The induction of K1 mRNA could be inhibited by exposure of the keratinocytes to either EGF or fibronectin. These results suggest that commitment of mouse keratinocytes to terminal differentiation is independent of extracellular calcium and may be regulated primarily by extracellular factors other than calcium. 相似文献
5.
Calcium plays a crucial role in the normal and abnomal cell metabolism.The role of calcium in the differentiation process of murine erythroleukemia cells(MELC)remains controversial.Here,based upon quantitative measurement of fluorescence in single cells,a method was developed to investigate the intracellular free calcium[Ca^2 ]i concentration and DNA contents simultaneously,by employing the fluorescent probe,fluo-3 acetoxymethyl ester and DNA dye Hoechst 33342.During MELC differentiation.[Ca^2 ]i concentration incresed.We also demonstrated that calcium ionophore,A23187,enhanced the HMB-induced MELC differentiation,while verapamil,an inhibitor of calcuim uptake,slightly reduced differentiation.These results suggested that an increase in the [Ca^2 ]i level was an essential step in HMBA-induced MELC differentiation. 相似文献
6.
Owens DW Brunton VG Parkinson EK Frame MC 《Biochemical and biophysical research communications》2000,269(2):369-376
The origin of the signal for keratinocyte differentiation is still unknown. Here, we show that Ca(2+)- and density-induced translocation of E-cadherin, but not P-cadherin, is accompanied by induction of differentiation-specific proteins in cultured keratinocytes. Antibodies that artificially cluster cell-surface E-cadherin in low extracellular Ca(2+) also induce differentiation-specific proteins, implicating E-cadherin as a determinant of keratinocyte differentiation in vitro. 相似文献
7.
Expression of murine epidermal differentiation markers is tightly regulated by restricted extracellular calcium concentrations in vitro 总被引:19,自引:3,他引:19
下载免费PDF全文

Epidermal differentiation is characterized by a series of coordinated morphological and biochemical changes which result in a highly specialized, highly organized, stratified squamous epithelium. Among the specific markers expressed in differentiating epidermis are (a) two early spinous cell proteins, keratins 1 and 10 (K1 and K10); and (b) two later granular cell proteins, filaggrin and a cornified envelope precursor (CE). In vitro, epidermal basal cells are selectively cultured in 0.05 mM Ca2+ medium, and terminal differentiation is induced when the Ca2+ concentration is increased to 1 mM. However, only a small fraction of the cells express the markers K1, K10, CE, or filaggrin in the higher Ca2+ medium. To explore the factors required for marker expression, cultured epidermal cells were exposed to intermediate Ca2+ concentrations and extracts were analyzed using specific antibody and nucleic acid probes for the four markers of interest. These studies revealed that marker expression was enhanced at a restricted concentration of Ca2+ in the medium of 0.10-0.16 mM. At this Ca2+ concentration, both protein and mRNA levels for each marker were substantially increased, whereas at higher or lower Ca2+ concentrations they were diminished or undetected. The percentage of cells expressing each marker was increased two- to threefold in the permissive Ca2+ medium as determined by immunofluorescence analysis. This optimal level of Ca2+ was required both to initiate and sustain marker expression. At the permissive Ca2+ concentration, expression of the markers was sequential and similar to the order of appearance in vivo. K1 was expressed within 8-12 h and K10 was expressed in the ensuing 12-24-h period. CE and filaggrin were expressed in the subsequent 24 h. Inhibition of K1 expression by cycloheximide suggested that an inducible protein was involved. Other investigators have determined that a shallow Ca2+ gradient exists in epidermis, where the basal cells and spinous cells are in a Ca2+ environment substantially below serum Ca2+ levels. These in vitro results suggest that the Ca2+ environment is a fundamental regulator of expression of epidermal differentiation markers and provide an explanation for the existence of the Ca2+ gradient in vivo. 相似文献
8.
J Moscat T P Fleming C J Molloy M Lopez-Barahona S A Aaronson 《The Journal of biological chemistry》1989,264(19):11228-11235
Balb/MK keratinocytes require epidermal growth factor for proliferation and terminally differentiate in response to elevated extracellular Ca2+ concentrations. The molecular pathways controlling cell differentiation in this system have yet to be established. We show that a dramatic and sustained activation of phosphoinositide metabolism is produced upon addition of Ca2+ to Balb/MK cultures. The pattern of inositol trisphosphate isomers released in response to Ca2+ challenge appeared to be atypical. Inositol 1,3,4-trisphosphate release was observed by 30s and was produced earlier than any alteration in inositol 1,4,5-trisphosphate levels. Concomitant with the liberation of inositol phosphates, an increased production of diacylglycerol was observed. Despite a 3-fold increase in diacylglycerol levels detected even at 12 h after Ca2+ addition, no evidence of functional activation or down-regulation of protein kinase C was found. This was established by measuring p80 phosphorylation, epidermal growth factor binding, and protein kinase C levels by immunoblotting. Analysis of the diacylglycerol generated following Ca2+ addition to Balb/MK cells revealed that a significant proportion of that lipid was an alkyl ether glyceride molecular species. Therefore, it is possible that this diacylglycerol molecular species may play a role in the Ca2+-induced differentiation program of Balb/MK cells through mechanisms other than stimulation of classical protein kinase C. 相似文献
9.
10.
Sodium butyrate induces histone hyperacetylation and differentiation of murine embryonal carcinoma cells 总被引:3,自引:1,他引:3
下载免费PDF全文

Cells from embryonal carcinoma (EC) lines 6050AJ and PCC4.aza 1R differentiate in response to treatment with sodium butyrate as well as retinoic acid (RA) or hexamethylenebisacetamide (HMBA). Murine 6050AJ EC cells exposed to sodium butyrate possess hyperacetylated forms of histones H4 and altered forms of histones H2a and H2b, whereas histones from cells treated with other inducers appear to be unaffected. These results might indicate that the mechanism by which sodium butyrate promotes differentiation of EC cells is different from the ways in which RA and HMBA act. Differentiation-defective PCC4(RA)-1 EC cells fail to respond to RA, presumably because they possess minimal amounts of active binding protein for RA (cRABP). Sodium butyrate treatment of these cells results in only a modest level of differentiation. On the other hand, exposure to sodium butyrate plus RA leads to extensive differentiation. As is the case with 6050AJ cells, PCC4(RA)-1 cells treated with sodium butyrate also contain hyperacetylated histones. Furthermore, these cells now possess high levels of cRABP. The latter observations suggest that sodium butyrate has the ability to reactivate a silent cRABP gene in PCC4(RA)-1 cells and thereby lead to extensive differentiation via the retinoid pathway when RA is added. 相似文献
11.
The stimulatory effects of sodium fluoride (NaF) on bone formation have been explained solely by its activation of osteoblasts. However, whether and how NaF acts on the osteoclast lineage is poorly understood. We previously found that NaF differentiates HL-60 cells to granulocytic cells. To further test this action, we have employed here primary cultures of progenitor cells derived from murine bone marrow. NaF at subtoxic concentrations (<0.5 mM) significantly up-regulated activities of several intracellular enzymes (lactate dehydrogenase, beta-glucuronidase, acid phosphatase), cellular reduction of nitroblue tetrazolium, and nitric oxide (NO) production; which are all accepted as general differentiation markers. NaF (<0.5 mM) also up-regulated granulocyte-specific markers (chloroacetate esterase, cell surface antigens [Mac-1, Gr-1]) but not any of the monocyte-specific markers (nonspecific esterase, cell surface antigens [F4/80, MOMA-2]). Although other general differentiation markers (phagocytosis, adhesion, appearance, nuclear:cytoplasmic ratio) were not appreciably influenced by NaF, essentially in support of our previous data from HL-60 cells, the present findings suggest that NaF induces early differentiation of bone marrow hemopoietic progenitor cells along the granulocytic pathway but not the monocytic pathway that is linked to osteoclast formation. Therefore, in addition to its potent stimulatory effects on osteoblastic bone formation, NaF applied to patients with osteoporosis could be expected to indirectly reduce osteoclastic bone resorption. 相似文献
12.
T R Baeker E R Simons T L Rothstein 《Journal of immunology (Baltimore, Md. : 1950)》1987,138(8):2691-2697
Cytochalasin promotes the progression of anti-immunoglobulin-treated B lymphocytes to S phase. However, the intracellular events induced by cytochalasin which may mediate signaling for progression have not been elucidated. In this study, the effect of cytochalasin on the level of intracellular free calcium in murine splenic B lymphocytes was assessed by using the fluorescent calcium indicator Indo-1. Cytochalasins A, B, D, and E induced a rapid and sustained elevation of intracellular free calcium. The calcium response to cytochalasin derived largely from the influx of extracellular calcium, although a small, transient elevation in intracellular calcium persisted when the suspension medium was made calcium-free with EGTA, implicating an intracellular source for a portion of the calcium response. Single cell fluorescence studies revealed that cytochalasin elicited a calcium response in most splenic B cells in suspension, indicating that this phenomenon is not restricted to a subpopulation of responding B cells. Phorbol esters inhibited the B cell calcium response to cytochalasin, and an established response to cytochalasin was rapidly and completely reversed by subsequently administered phorbol ester. T cells that lack the cytochalasin pathway showed a markedly diminished calcium response that was only apparent at higher cytochalasin concentration. However, B cells from xid-defective [CBA/N X DBA/2]F1 males, which fail to respond to anti-immunoglobulin plus cytochalasin, showed a calcium response to cytochalasin similar to that of phenotypically normal F1 females. These data, along with the finding that the rise in intracellular calcium occurred in naive B cells as well as B cells previously treated with anti-immunoglobulin, suggest that there is no clear association between the calcium response induced by cytochalasin and the ability of cytochalasin to stimulate progression to S phase. However, this effect of cytochalasin may suggest a connection between actin filaments and calcium influx in B cells. 相似文献
13.
14.
Langlois S Maher AC Manias JL Shao Q Kidder GM Laird DW 《The Journal of biological chemistry》2007,282(41):30171-30180
To understand the role of connexin43 (Cx43) in epidermal differentiation, we reduced Cx43 levels by RNA-mediated interference knockdown and impaired its functional status by overexpressing loss-of-function Cx43 mutants associated with the human disease oculodentodigital dysplasia (ODDD) in rat epidermal keratinocytes. When Cx43 expression was knocked down by 50-75%, there was a coordinate 55-65% reduction in Cx26 level, gap junction-based dye coupling was reduced by 60%, and transepithelial resistance decreased. Importantly, the overall growth and differentiation of Cx43 knockdown organotypic epidermis was severely impaired as revealed by alterations in the levels of the differentiation markers loricrin and involucrin and by reductions in vital and cornified layer thicknesses. Conversely, although the expression of Cx43 mutants reduced the coupling status of rat epidermal keratinocytes by approximately 80% without altering the levels of endogenous Cx43 or Cx26, their ability to differentiate was not altered. In addition, we used a mouse model of ODDD and found that newborn mice harboring the loss-of-function Cx43(G60S) mutant had slightly reduced Cx43 levels, whereas Cx26 levels, epidermis differentiation, and barrier function remained unaltered. This properly differentiated epidermis was maintained even when Cx43 and Cx26 levels decreased by more than 70% in 3-week-old mutant mice. Our studies indicate that Cx43 and Cx26 collectively co-regulate epidermal differentiation from basal keratinocytes but play a more minimal role in the maintenance of established epidermis. Altogether, these studies provide an explanation as to why the vast majority of ODDD patients, where Cx43 function is highly compromised, do not suffer from skin disease. 相似文献
15.
16.
Since the involvement of calcium ions in the regulation of cell division and differentiation has been proposed, in this study we have examined the effect of extracellular calcium and of calcium-modulating agents on the DMSO-induced differentiation of murine erythroleukaemia cells. Neither proliferation nor differentiation of these cells was affected by calcium deprivation in the culture medium. Moreover, calcium-chelating agents or agents blocking intracellular calcium uptake induced a marked inhibition of cell differentiation. Intracellular calcium antagonists induced inhibition when cells were grown in a calcium-deprived medium. In contrast, murine erythroleukaemia cell differentiation was unaffected by agents that increased intracellular concentration of calcium. Our results indicate that a mobilization of calcium is indispensable for eliciting full cellular response, but the increase in intracellular level of this cation is not sufficient for complete signal transduction. It is likely that a marked alteration of the intracellular calcium system and availability could be responsible for the independence of our cell system from calcium modulation. 相似文献
17.
18.
Shirai Y Yoshimura Y Yawaka Y Hasegawa T Kikuiri T Takeyama S Matsumoto A Oguchi H 《Biochemical and biophysical research communications》1999,265(2):484-488
We have been researching with the purpose of understanding the hard organization mineralization-suppression mechanism under a low calcium environment. So far, we have discerned clearly that the femur of an incubated newborn rat under a low calcium environment will develop bone formation dyscrasia such as hypertrophy of the caput. In this experiment, MC3T3-E1 (E1) cells, which are osteoblast-like cells, and mouse bone marrow were incubated in a coculture system under a low calcium environment and manifestation of osteoblast cells and their ability to resorb were examined. The results suggested that as the calcium concentration in the medium decreased manifestation of osteoclast cells increased, and as the degree of mineralization of E1 cells advanced, the number of manifestation of osteoblast cells decreased. We, therefore, report that there is a possibility that extracellular calcium concentrations involve the process of differentiation of bone marrow cells into osteoblast cells. 相似文献
19.
Human S100A7 (psoriasin) is highly expressed in psoriasis and other inflammatory diseases; however, the function of S100A7 in wound repair remains largely unknown. Here we demonstrated that skin injury increased the expression of S100A7. Damaged cells from wounded skin induced the expression of S100A7 via the activation of Toll-like receptor 3 (TLR3) followed by the activation of p38 MAPK. S100A7, in turn, acted on keratinocytes to induce the expression of terminal differentiation marker gene loricrin through the activation of p38 MAPK and caspase-1. The differentiation of keratinocytes induced by S100A7 resulted in skin stratification, thus efficiently promoting wound closure. Taken together, our results demonstrate that the activation of TLR3 accelerates wound closure via the induction of S100A7 to induce keratinocyte differentiation. These findings also provide new insights into the development of different forms of treatment with skin wounds. 相似文献
20.
Yoon HK Sohn KC Lee JS Kim YJ Bhak J Yang JM You KH Kim CD Lee JH 《Biochemical and biophysical research communications》2008,377(2):662-667
Terminal differentiation of skin keratinocytes is a vertically directed multi-step process that is tightly controlled by the sequential expression of a variety of genes. We previously investigated the gene expression profile and found that many of differentiation-related genes expressed in a temporally regulated manner. In this study, we attempted to find the hub-molecules and their intracellular signaling networks during keratinocyte differentiation using in silico analysis of data obtained from previous studies. We used protein-protein interaction prediction software called PSIMAP, and drew a hypothetical signaling network. We chose one candidate hub-molecule SHC1 that were predicted to link EGFR and MAPK signal, and then evaluated the protein-protein interactions experimentally. As predicted, SHC1 bound to the MEK1 in an EGF-regulated manner. Furthermore, SHC1 bound to the MEK1 and p38 MAPK in a keratinocyte differentiation dependent manner. These results demonstrate that in silico protein-protein interaction prediction system can be used to efficiently and cost-effectively select the experimental candidates. 相似文献