首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Studies to eludicate the effect of heparin on the synthesis of extracellular matrix components by cultured human umbilical vein endothelial cells (EC) were conducted. Using pulse-labeling and ELISA techniques, we found that EC grown in the presence of heparin (90 micrograms/ml) and endothelial cell growth factor (ECGF) synthesized 50% less fibronectin (FN) than did ECGF-treated control cultures. No change in the synthesis of thrombospondin (TSP) was induced by heparin. The effect of heparin on EC FN synthesis was independent of whether the cells were cultivated on plastic or gelatin substrates. However, ECGF modulates the effect of heparin on EC synthesis of FN. RNA slot-blot analysis demonstrated that heparin treatment specifically decreased the steady-state mRNA levels for both FN and TSP in the cells. Steady-state levels of mRNA for two intracellular proteins, actin and tubulin, were unchanged. These data suggest that heparin decreases EC expression of FN at least in part by decreasing the amount of FN mRNA available for translation. The failure of heparin to inhibit TSP expression, although it reduces TSP mRNA levels, points to the possibility that the rate of EC synthesis of TSP is translationally or post-translationally regulated.  相似文献   

2.
Quiescent smooth muscle cells (SMC) in normal artery express a pattern of actin isoforms with alpha-smooth muscle (alpha SM) predominance that switches to beta predominance when the cells are proliferating. We have examined the relationship between the change in actin isoforms and entry of SMC into the growth cycle in an in vivo model of SMC proliferation (balloon injured rat carotid artery). alpha SM actin mRNA declined and cytoplasmic (beta + gamma) actin mRNAs increased in early G0/G1 (between 1 and 8 h after injury). In vivo synthesis and in vitro translation experiments demonstrated that functional alpha SM mRNA is decreased 24 h after injury and is proportional to the amount of mRNA present. At 36 h after injury, SMC prepared by enzymatic digestion were sorted into G0/G1 and S/G2 populations; only the SMC committed to proliferate (S/G2 fraction) showed a relative slight decrease in alpha SM actin and, more importantly, a large decrease in alpha SM actin mRNA. A switch from alpha SM predominance to beta predominance was present in the whole SMC population 5 d after injury. To determine if the change in actin isoforms was associated with proliferation, we inhibited SMC proliferation by approximately 80% with heparin, which has previously been shown to block SMC in late G0/G1 and to reduce the growth fraction. The switch in actin mRNAs and synthesis at 24 h was not prevented; however, alpha SM mRNA and protein were reinduced at 5 d in the heparin-treated animals compared to saline-treated controls. These results suggest that in vivo the synthesis of actin isoforms in arterial SMC depends on the mRNA levels and changes after injury in early G0/G1 whether or not the cells subsequently proliferate. The early changes in actin isoforms are not prevented by heparin, but they are eventually reversed if the SMC are kept in the resting state by the heparin treatment.  相似文献   

3.
The matrix upon which cells grow affects their morphology, growth rate, response to external stimuli, and protein synthesis. GH3 cells, a well-characterized rat pituitary tumor cell line, synthesize and secrete growth hormone and prolactin (Prl). These cells are rounded, attach loosely, and form clumps when plated on plastic. GH3 cells plated on an extracellular matrix (ECM) from bovine corneal endothelial cells become flattened and strongly adherent to the culture dish, and have an initial increased rate of proliferation. Cells cultured on plastic have a 48-hr lag period before the start of cell division; this can be shortened by increasing the concentration of serum in the medium. Since GH3 cells store little Prl, hormone release is a good index of Prl synthesis. Prl secretion from cells cultured on extracellular matrix is twice as great as from cells cultured on plastic. The increase in Prl secretion from cells grown on extracellular matrix paralleled by a concomitant increase in the accumulation of prolactin mRNA. Cells cultured on plastic secrete more Prl in response to TRH stimulation than do cells cultured on ECM. Cells grown on either surface were unresponsive to dopamine. Thus, culturing cells on ECM may change their morphology and affect the synthesis and regulation of specific cellular proteins and their mRNAs.  相似文献   

4.
We have affinity-fractionated rabbit antiactin immunoglobulins (IgG) into classes that bind preferentially to either muscle or nonmuscle actins. The pools of muscle- and nonmuscle-specific actin antibodies were used in conjunction with fluorescence microscopy to characterize the actin in vascular pericytes, endothelial cells (EC), and smooth muscle cells (SMC) in vitro and in situ. Nonmuscle-specific antiactin IgG stained the stress fibers of cultured EC and pericytes but did not stain the stress fibers of cultured SMC, although the cortical cytoplasm associated with the plasma membrane of SMC did react with nonmuscle-specific antiactin. Whereas the muscle-specific antiactin IgG failed to stain EC stress fibers and only faintly stained their cortical cytoplasm, these antibodies reacted strongly with the fiber bundles of cultured SMC and pericytes. Similar results were obtained in situ. The muscle-specific antiactin reacted strongly with the vascular SMC of arteries and arterioles as well as with the perivascular cells (pericytes) associated with capillaries and post-capillary venules. The non-muscle-specific antiactin stained the endothelium and the pericytes but did not react with SMC. These findings indicate that pericytes in culture and in situ possess both muscle and nonmuscle isoactins and support the hypothesis that the pericyte may represent the capillary and venular correlate of the SMC.  相似文献   

5.
In pulmonary vascular remodelling, the lining smooth muscle cells undergo various forms of growth involving cellular hypertrophy and hyperplasia. Differences in the growth pattern between central and peripheral regions suggested that cells from both should be obtained when investigating the cellular basis for the remodelling. Accordingly, we have obtained two smooth muscle cell types in culture: a cell from the central pulmonary artery (CC) and a cell morphologically similar to a pericyte (PC), from the periphery of the lung. Both cell types gave positive immunostaining for α-smooth muscle isoactin. In vivo, the α-isoactin was immunolocalized in the extracapillary vasculature. Quantitative two-dimensional gel electrophoresis of cell extracts showed that PC express more vimentin and gelsolin than CC. Despite the differences between PC and CC in the expression of cytoskeletal proteins, their response to growth factors was similar. Both cell types increased DNA synthesis when stimulated by exogenous PDGF-AB. This occurred in the absence of exogenous progression factors, but depended on a post-competence, suramin-sensitive mechanism that probably represents an autocrine progression factor. The cells were also stimulated by IGF-1 alone, in the absence of exogenous competence factors. At an IGF-1 concentration of 1 ng/ml, this response appeared specific for the IGF-1 receptor and was sensitive to pretreatment with pertussis toxin, thus implicating a role for a G protein. © 1994 wiley-Liss, Inc.  相似文献   

6.
The relationship between growth and cytodifferentiation was studied in cultured rat aortic smooth muscle cells (SMCs) using expression of the smooth muscle (SM)-specific isoactins (Vanderkerckhove, J., and K. Weber, 1979, Differentiation, 14:123-133) as a marker for differentiation in these cells. Isoactin expression was evaluated by: (a) measurements of fractional isoactin content and synthesis ([35S]methionine incorporation) by densitometric evaluation of two-dimensional isoelectric focusing sodium dodecyl sulfate gels, and (b) immunocytological examination using SM-specific isoactin antibodies. Results showed the following: (a) Loss of alpha-SM isoactin was not a prerequisite for initiation of cellular proliferation in primary cultures of rat aortic SMCs. (b) alpha-SM isoactin synthesis and content were low in subconfluent log phase growth cells but increased nearly threefold in density-arrested postconfluent cells. Conversely, beta-nonmuscle actin synthesis and content were higher in rapidly dividing subconfluent cultures than in quiescent postconfluent cultures. These changes were observed in primary and subpassaged cultures. (c) alpha-SM actin synthesis was increased by growth arrest of sparse cultures in serum-free medium (SFM; Libby, P., and K. V. O'Brien, 1983, J. Cell. Physiol., 115:217-223) but reached levels equivalent to density-arrested cells only after extended periods in SFM (i.e., greater than 5 d). (d) SFM did not further augment alpha-SM actin synthesis in postconfluent SMC cultures. (e) Serum stimulation of cells that had been growth-arrested in SFM resulted in a dramatic decrease in alpha-SM actin synthesis that preceded the onset of cellular proliferation. These findings demonstrate that cultured vascular SMCs undergo differential expression of isoactins in relation to their growth state and indicate that growth arrest promotes cytodifferentiation in these cells.  相似文献   

7.
Blood vessels are composed of endothelial cells (EC) and mural cells, and the interaction between EC and mural cells is essential for the development and maintenance of the vasculature. EC differentiate from bone marrow-derived endothelial progenitor cells (EPC). Recently, we established a conditionally immortalized bone marrow EPC-derived cell line, TR-BME2, and a brain capillary EC (BCEC) line, TR-BBB, from temperature-sensitive-SV40 T-antigen gene transgenic rats. To understand the function of EPC, it is important to analyze the difference between EPC and mature EC such as BCEC. In this study, we identified EPC-specific genes by means of subtractive hybridization between TR-BME2 and TR-BBB. There was no significant difference between TR-BME2 and TR-BBB in the mRNA level of annexin II, which is expressed in EC. In contrast, the mRNA level of smooth muscle cell (SMC) markers such as smooth muscle protein 22 (SM22), calvasculin, and platelet-derived growth factor (PDGF) receptor-beta, was higher in TR-BME2 than in TR-BBB. Moreover, the mRNA level of contractile SMC markers, such as smooth muscle alpha-actin and SM22, was increased in the absence of EC growth factors, such as vascular endothelial growth factor. The mRNA level of synthetic SMC markers, such as matrix Gla protein, was increased by the addition of PDGF-BB. The SMC derived from TR-BME2 showed an altered phenotype, from contractile-type to synthetic-type, when they were cultured in the absence of PDGF-BB. These results show that TR-BME2 cells have higher levels of SMC markers compared with mature EC, and can differentiate into contractile- or synthetic-type SMC.  相似文献   

8.
In culture, vascular smooth muscle cells (SMC) grow in a "hill-and-valley" (multilayered) pattern of organization. We have studied the growth, behavioral organization, and biosynthetic phenotype of rat aortic SMC exposed to purified platelet-derived growth regulatory molecules. We show that multilayered growth is not a constitutive feature of cultured SMC, and that beta-type transforming growth factor (TGF-beta) is the primary determinant of multilayered growth and the hill-and-valley pattern of organization diagnostic for SMC in culture. TGF-beta inhibited, in a dose-dependent manner, the serum- or platelet-derived growth factor-mediated proliferation of these cells in two-dimensional culture, but only when cells were plated at subconfluent densities. The ability of TGF-beta to inhibit SMC growth was inversely correlated to plating cell density. When SMC were plated at monolayer density (5 X 10(4) cells/cm2) to allow maximal cell-to-cell contact, TGF-beta potentiated cell growth. This differential response of SMC to TGF-beta may contribute to the hill-and-valley pattern of organization. Unlike its effect on other cell types, TGF-beta did not enhance the synthesis of fibronectin or its incorporation into the extracellular matrix. However, the synthesis of a number of other secreted proteins was altered by TGF-beta treatment. SMC treated with TGF-beta for 4 or 8 h secreted markedly enhanced amounts of an Mr 38,000-D protein doublet whose synthesis is known to be increased by heparin (another inhibitor of SMC growth), suggesting metabolic similarities between heparin- and TGF-beta-mediated SMC growth inhibition. The data suggest that TGF-beta may play an important and complex regulatory role in SMC proliferation and organization during development and after vascular injury.  相似文献   

9.
Extracellular matrix changes are often crucial inciting events for fibroproliferative disease. Epigenetic changes, specifically DNA methylation, are critical factors underlying differentiated phenotypes. We examined the dependency of matrix-induced fibroproliferation and SMC phenotype on DNA methyltransferases. The cooperativity of matrix with growth factors, cell density and hypoxia was also examined. Primary rat visceral SMC of early passage (0–2) were plated on native collagen or damaged/heat-denatured collagen. Hypoxia was induced with 3% O2 (balanced 5% CO2 and 95% N2) over 48 hours. Inhibitors were applied 2–3 hours after cells were plated on matrix, or immediately before hypoxia. Cells were fixed and stained for DNMT3A and smooth muscle actin (SMA) or smooth muscle myosin heavy chain. Illumina 450 K array of CpG sites was performed on bisulfite-converted DNA from smooth muscle cells on damaged matrix vs native collagen. Matrix exquisitely regulates DNMT3A localization and expression, and influences differentiation in SMCs exposed to denatured matrix +/− hypoxia. Analysis of DNA methylation signatures showed that Matrix caused significant DNA methylation alterations in a discrete number of CpG sites proximal to genes related to SMC differentiation. Matrix has a profound effect on the regulation of SMC phenotype, which is associated with altered expression, localization of DNMTs and discrete changes DNA methylation.  相似文献   

10.
The aim of this study was to determine the role of ECM components of bone in regulating the differentiation and function of cells of the osteoblast lineage. Rat UMR 201 cells, phenotypically preosteoblast, were plated onto plastic tissue culture dishes or dishes coated with gelled type I collagen or reconstituted basement membrane (matrigel). Acute cell attachment assays showed that cells adhered to substrates in the following order: collagen > matrigel ? plastic. Proliferation rate up to 96 hr were similar on each substrate. However, if cells were treated with 10?6 M retinoic acid (RA), proliferation rates were reduced compared with control for cells grown on collagen and matrigel but not on plastic. Morphological changes were matrix-specific; in subconfluent cultures, long thin processes were seen with cells grown on collagen and a pattern of interconnecting cell processes formed when cells were plated on matrigel. Striking differences were observed in the constitutive or RA-induced gene expression of cells grown on the different substrates. When cells plated on collagen were treated with RA, induction of mRNA for alkaline phosphatase (ALP) as well as ALP enzyme activity were much less than with cells grown on plastic. In contrast, RA treatment induced osteopontin (OP) mRNA expression more strongly in cells plated on collagen compared with plastic within 24 hr and this was maintained for 72 hr. RA treatment produced a two fold increase of pro-α 1(I) collagen mRNA in cells grown on plastic and matrigel but not in cells grown on collagen. Growth on collagen produced changes in the way UMR 201 cells responded to RA from which they did not fully recover in subsequent 48-hr growth periods on plastic. These results indicate that ECM components regulate the function of and are capable of modulating RA-induced differentiation of preosteoblasts. © 1993 Wiley-Liss, Inc.  相似文献   

11.
It is well known that arterial smooth muscle cells (SMC) of adult rats, cultured in a medium containing fetal calf serum (FCS), replicate actively and lose the expression of differentiation markers, such as desmin, smooth muscle (SM) myosin and alpha-SM actin. We report here that compared to freshly isolated cells, primary cultures of SMC from newborn animals show no change in the number of alpha-SM actin containing cells and a less important decrease in the number of desmin and SM myosin containing cells than that seen in primary cultures of SMC from adult animals; moreover, contrary to what is seen in SMC cultured from adult animals, they show an increase of alpha-SM actin mRNA level, alpha-SM actin synthesis and expression per cell. These features are partially maintained at the 5th passage, when the cytoskeletal equipment of adult SMC has further evolved toward dedifferentiation. Cloned newborn rat SMC continue to express alpha-SM actin, desmin and SM myosin at the 5th passage. Thus, newborn SMC maintain, at least in part, the potential to express differentiated features in culture. Heparin has been proposed to control proliferation and differentiation of arterial SMC. When cultured in the presence of heparin, newborn SMC show an increase of alpha-SM actin synthesis and content but no modification of the proportion of alpha-SM actin total (measured by Northern blots) and functional (measured by in vitro translation in a reticulocyte lysate) mRNAs compared to control cells cultured for the same time in FCS containing medium. This suggests that heparin action is exerted at a translational or post-translational level. Cultured newborn rat aortic SMC furnish an in vitro model for the study of several aspects of SMC differentiation and possibly of mechanisms leading to the establishment and prevention of atheromatous plaques.  相似文献   

12.
Induction of vascular smooth muscle alpha-isoactin expression in BC3H1 cells   总被引:18,自引:0,他引:18  
An isoactin analysis was performed on L-[35S]cysteine labeled BC3H1 cells to determine if these smooth muscle-like cells synthesize vascular smooth muscle actin. Three different NH2-terminal peptides were identified on thin layer electrophoretograms of DNase I-purified and trypsin-digested BC3H1 cell actin. Results obtained from secondary digestion with thermolysin or Staphylococcus aureus V8 protease showed that the most acidic NH2-terminal peptide was derived from vascular smooth muscle alpha-isoactin. Treatment of cell monolayers with serum-free medium caused a 3-fold increase in the level of alpha-isoactin expression and a concomitant decrease in the level of non-muscle beta- and gamma-isoactin. Cell-cell contact was required for induction of alpha-isoactin, and the effects of serum depletion on isoactin expression and cell growth were reversible. The intensity of about 11 out of 500 polypeptide spots on two-dimensional gels of BC3H1 cell polypeptides also was influenced by the culture conditions. The finding that smooth muscle isoactin expression was coupled to cell growth conditions indicate the potential usefulness of BC3H1 cells in studies of isoactin expression and utilization during vascular smooth muscle development.  相似文献   

13.
The effects of added soluble glycosaminoglycans (GAGs) on adhesion and neurite formation by cultured PC12 pheochromocytoma cells on several substrates were tested. PC12 cells adhere more rapidly to Petri plastic coated with fibronectin, laminin, poly-L-lysine, or conA, than to either uncoated Petri plastic or tissue culture plastic. Adhesion to poly-L-lysine, fibronectin- and laminin-coated dishes was significantly inhibited by added dextran sulfate and to a lesser extent heparin--but not by chondroitin sulfate. PC12 adhesion to fibronectin could also be totally inhibited by the putative fibronectin cell binding tetrapeptide L-arginyl-glycyl-L-aspartyl-L-serine (Pierschbacher, MD & Ruoslahti, E, Nature 309 (1984) 30). The inhibitory effects of combinations of this tetrapeptide and heparin or dextran sulfate (but not chondroitin sulfate or hyaluronic acid) were additive. Nerve growth factor (NGF) pretreatment increased the percentage of PC12 cells adherent to all substrates and reduced the GAG inhibition of adhesion. PC12 cells previously treated with NGF to induce morphologic differentiation will rapidly re-extend neurites when plated on all four substrates. On fibronectin and poly-L-lysine-coated dishes this neurite growth is inhibited by added heparin and dextran sulfate, while on laminin it is not. Neurite formation on fibronectin-coated dishes was also inhibited by low concentrations of fibronectin tetrapeptide. In summary, PC12 adhesion and neurite formation can be inhibited by sulfated GAGs on some substrates, including fibronectin, but not other substrates, suggesting that these cells have at least two independent molecular adhesion mechanisms.  相似文献   

14.
Calcitonin gene-related peptide (CGRP) is a neuropeptide present around vasculature very early during development, when smooth muscle cells (SMC) are still proliferating and not yet totally differentiated. We investigated the effects of CGRP on proliferation and differentiation of SMC in culture; 10(-7) M CGRP added in the medium of cultured smooth muscle cells every 2 days did not significantly changed cells growth rate in 1% FCS. At the opposite, this treatment modulated proliferation of cells grown in 10% FCS medium. Two distinct populations of SMC with different growth rates were obtained from our primary cultures. SMC which proliferated slowly in the presence of 10% fetal calf serum (FCS) had growth rates positively influenced by CGRP. The quantity of alpha-smooth actin expressed by these cells was not influenced by the peptide. On the contrary, SMC which proliferated more rapidly in 10% FCS medium had growth rate inhibited by CGRP. In these cells, CGRP significantly reduced the amount of expressed alpha-smooth actin, an index of SMC differentiation. In both cases, the peptide significantly increased the level of mRNA for all the actin genes. In the light of this dual role of CGRP, it can be presumed that this peptide controls smooth muscle cells proliferation and differentiation in vivo and could thus regulate the homeostasis of the vessel wall.  相似文献   

15.
We have isolated and characterized two cDNA clones from whole rat stomach, pRV alpha A-19 and pRE gamma A-11, which are specific for the alpha-vascular and gamma-enteric smooth muscle isoactins, respectively. The rat gamma-enteric smooth muscle actin contains a single amino acid substitution of a proline for a glutamine at position 359 of the mature peptide when compared with the chicken gizzard gamma-actin sequence (J. Vandekerckhove and K. Weber, FEBS Lett. 102:219, 1979). Sequence comparisons of the 5' and 3' untranslated (UT) regions of the two smooth muscle actin cDNAs demonstrate that these regions contain no apparent sequence similarities. Additional comparisons of the 5' UT regions of the two smooth muscle actin cDNAs to all other known actin sequences reveal no apparent sequence similarities for the rat gamma-enteric isoactin within the 15 base pairs of sequence currently available, while the rat alpha-vascular isoactin contains two separate sequences which are similar to sequences within the 5' UT regions of the human and chicken alpha-vascular actin genes. A similar comparison of the 3' UT regions of the two smooth muscle actins demonstrates that the alpha-vascular isoactins do not contain the high degree of cross-species sequence conservation observed for the other isoactins and that the gamma-enteric isoactin contains an inverted sequence of 52 nucleotides which is similar to a sequence found within the 3' UT regions of the human, chicken, and rat beta-cytoplasmic isoactins. These observations complicate the apparent cross-species conservation of isotype specificity of these domains previously observed for the other actin isoforms. Northern blot analysis of day 15 rat embryos and newborn, day 19 postbirth, and adult rats demonstrates that the day 15 rat embryo displays low to undetectable levels of smooth muscle isoactin mRNA expression. By birth, the stomach and small intestine show dramatic increases in alpha-vascular and gamma-enteric actin expression. These initially high levels of expression decrease through day 19 to adulthood. In the adult rat, the uterus and aorta differ in their content of smooth muscle isoactin mRNA. These results demonstrate that the gamma-enteric and alpha-vascular isoactin mRNAs are coexpressed to various degrees in tissues which contain smooth muscle.  相似文献   

16.
17.
SCA-9 cell line was developed from an induced tumor of mouse submandibular gland. We have studied some of the phenotypic characteristics of SCA cells cultured on different matrices. On plastic surface, the cells grow as a monolayer; on matrigel, they form branching structures and tubes, a phenomenon termed branching morphogenesis. EGF and HGF promoted cellular growth and branching morphogenesis which was inhibited by anti-EGF antibodies. We have performed RT-PCR and real-time quantitative RT-PCR of cells grown on plastic surface or on matrigel. Grown on plastic, the cells express EGF and renin 2, but no or only trace amounts of NGF. Growth on matrigel for 24 h resulted in a transient 21-fold increase in EGF mRNA and a 3371-fold increase in renin 2 mRNA. There was no change in NGF mRNA level. SCA-9 cells express mRNAs for receptors for the EGF family of ligands. On plastic, mainly ErbB1 and ErbB2 are expressed. Culture on matrigel resulted in 11-fold increase in mRNA levels for ErbB1 and ErbB2, and a 221-fold and 85-fold increase in the mRNA levels for ErbB3 and ErbB4, respectively. Small interfering RNAs siErbB3 and siErbB4 inhibited the growth of the cells grown on plastic or matrigel. Significant growth inhibition was seen also with siErbB1+siErbB3 and siErbB2+siErbB3. siErbB1 and siErbB2 also inhibited branching morphogenesis. Since SCA cells express EGF and receptors for EGF, EGF acts an autocrine regulator in promoting growth and branching morphogenesis. We conclude that SCA cells provide a useful model to analyze the mechanism of branching morphogenesis and the role of matrix in regulating expression of phenotypic characteristics of cultured cells.  相似文献   

18.
Rat aortic smooth muscle cells (SMC) have been established by retroviral delivery of the complementary DNA (cDNA) for the simian virus 40 large T antigen (SV40LT) and examined for SMC phenotypic markers and growth characteristics, including responsiveness to the antiproliferative effects of heparin. The transfected cells (SV40LT-SMC) maintain defined SMC characteristics for more than 215 population doublings (PD) as judged by muscle-specific actin expression and growth inhibition by heparin. SV40LT-SMC greater than 129 PD become transformed while SV40LT-SMC less than 77 PD resemble nontransfected SMC morphologically and are nontumorigenic. SV40LT-SMC apparently release a growth factor which acts in an autocrine fashion, since (1) suramin inhibits SV40LT-SMC proliferation, (2) SV40LT-SMC-conditioned medium (CM) contains mitogenic activity, and (3) SV40LT-SMC CM suppresses the binding of platelet-derived growth factor to SMC. Heparin (10-100 micrograms/ml) is a potent inhibitor of both early (less than 80 PD) and late-passage (greater than 80 PD) SV40LT-SMC proliferation. The antiproliferative effects of heparin are similar to those previously observed for SMC by several criteria; the dose-response inhibition curves are indistinguishable from those obtained with nontransfected cells, other glycosaminoglycans have little effect on SV40LT-SMC growth, the antiproliferative effects of heparin are reversed in the presence of epidermal growth factor, and heparin displays high-affinity saturable binding to SV40LT-SMC. In conclusion, SV40LT-SMC are a continuous line of SMC-like cells that are sensitive to the growth inhibitor, heparin. SV40LT-SMC should facilitate studies of heparin inhibition and may be applicable for the study of other SMC characteristics as well.  相似文献   

19.
Growth on a decorin matrix results in decreased human airway smooth muscle cell (HASMC) number, by decreasing proliferation and increasing apoptosis. We questioned whether these effects were related to abnormal extracellular matrix (ECM)-cell adhesion. HASMCs were seeded on decorin, biglycan, collagen type I or plastic. Actin organization and focal adhesion formation were assessed by staining for filamentous (F) and globular (G) actin, and vinculin, respectively. Gene expression for focal adhesion proteins, ECM molecules and HASMC receptors was measured. Protein levels for fibronectin, α(2), α(5), α(v) and β(3) integrin subunits and, focal adhesion kinase (FAK) were assessed. F-actin filaments were prominent in cells seeded on collagen I and plastic, less apparent in cells cultured on biglycan and faint in cells on decorin. Vinculin clustering was decreased in cells seeded on decorin and biglycan, as was vinculin gene expression. Compared to cells on plastic, cells on decorin had an increase in fibronectin gene expression. Seeding on decorin caused an increase in α(2) integrin subunit and platelet-derived growth factor receptor A gene expression. There was also an increase in α(2) and α(v) integrin subunit protein. Finally, FAK protein levels in cells seeded on decorin or biglycan were decreased compared to cells seeded on plastic or collagen I. Cells grown on proteoglycan matrices demonstrate evidence of abnormalities during many of the key processes involved in normal cell adhesion. Upregulation of cell surface receptor proteins, such as α(2) integrin subunit, may represent a compensatory mechanism to overcome poor adhesion induced by growth on these matrices.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号