共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Insulin like growth factor-1 selectively regulates the expression of matrix metalloproteinase-2 in malignant H-ras transformed cells 总被引:3,自引:0,他引:3
The present study is designed to investigate the effect of myocardial preconditioning with oxidative stress induced by pyrogallol or H2O2, on ischaemia-reperfusion induced myocardial injuiry. Isolated perfused rat heart was subjected to global ischaemia for 30 min followed by reperfusion for 120 min. Coronary effluent was analysed for LDH and CK release to assess the degree of cardiac injury. Myocardial infarct size was estimated macroscopically using TTC staining. Four episodes of preconditioning induced by pyrogallol or hydrogen peroxide (H2O2) or ischaemia markedly reduced LDH and CK release in coronary effluent and decreased myocardial infarct size. Administration of polymyxin B, a protein kinase C (PKC) inhibitor, during pyrogallol, H2O2 or ischaemic preconditioning markedly attenuated the cardioprotective effect of preconditioning produced with oxidative stress or ischaemia. These results suggest that preconditioning with oxidative stress may provide cardioprotection similar to ischaemic preconditioning, against ischaemia-reperfusion injury and this cardioprotective effect may be mediated through activation of PKC. 相似文献
4.
Early induction of ribonucleotide reductase gene expression by transforming growth factor beta 1 in malignant H-ras transformed cell lines. 总被引:7,自引:0,他引:7
R A Hurta S K Samuel A H Greenberg J A Wright 《The Journal of biological chemistry》1991,266(35):24097-24100
Previous investigations have indicated that the suppression of proliferation by transforming growth factor (TGF) beta 1 is often lost upon cellular transformation, and that proliferation of some tumors is stimulated by TGF-beta. The present study provides the first observation of a link between TGF-beta 1 regulation of this process and alterations in the expression of ribonucleotide reductase, a highly controlled rate-limiting step in DNA synthesis. A series of radiation and T24-H-ras-transformed mouse 10T1/2 cell lines exhibiting increasing malignant potential was evaluated for TGF-beta 1 induced alterations in ribonucleotide reductase M1 and M2 gene expression. Early increases in M1 and/or M2 message and protein levels were observed only in malignant cell lines. The TGF-beta 1 induced changes in M1 and/or M2 gene expression occurred prior to any detectable changes in the rates of DNA synthesis, supporting the novel concept that ribonucleotide reductase gene expression can be elevated by TGF-beta 1 without altering the proportion of cells in S phase. T24-H-ras-transformed 10T1/2 cells were transfected with a plasmid containing the coding region of TGF-beta 1 under the control of a zinc-sensitive metallothionein promoter. When these cells were cultured in the presence of zinc, a large induction of TGF-beta 1 message was observed within 1 h. Both M1 and M2 genes were also induced, with increased mRNA levels appearing 2 h after zinc treatment, or 1 h after TGF-beta 1 message levels were clearly elevated. In total, the data suggests a mechanism of autocrine stimulation of malignant cells by TGF-beta 1, in which early alterations in the regulation of ribonucleotide reductase may play an important role. 相似文献
5.
6.
7.
8.
9.
10.
Teresa Teruel Angela M. Valverde Manuel Benito Margarita Lorenzo 《Journal of cellular physiology》1996,166(3):577-584
The presence of transforming growth factor β1 (TGF-β1) for 24 or 48 h stimulated DNA synthesis, the percentage of cells in the S + G2/M phases of the cell cycle, and cell number, as compared to quiescent cells. The mitogenic capacity of TGF-β1 (1 pM) was similar to that shown by 10% fetal calf serum (FCS). TGF-β1 for 48 h increased by 5-fold the percentage of cells containing (3H)thymidine-labeled nuclei as compared to quiescent cells. In addition, single fetal brown adipocytes, showing their typical multilocular fat droplets phenotype, become positive for (3H)thymidine-labeled nuclei in response to TGF-β1. Moreover, TGF-β1 induced the mRNA expression of a complete set of proliferation-related genes, such as c-fos (30 min), c-myc and β-actin (2 h), and H-ras, cdc2 kinase, and glucose 6-phosphate dehydrogenase (G6PD) at 4 and 8 h, as compared to quiescent cells. Concurrently, TGF-β1 for 12 h increased the protein content of proliferating cellular nuclear antigen (PCNA) by 6-fold and p21-ras by 2-fold. Although our results demonstrate that TGF-β1 induces the expression of very early genes related to cell proliferation, TGF-β1 could be acting either as a mitogen or as a survival factor to induce proliferation in fetal brown adipocytes. © 1996 Wiley-Liss, Inc. 相似文献
11.
12.
13.
Ribonucleotide reductase is a highly regulated activity responsible for reducing ribonucleotides to deoxyribonucleotides, which are required for DNA synthesis and DNA repair. We have tested the hypothesis that malignant cell populations contain alterations in signal pathways important in controlling the expression of the two genes that code for ribonucleotide reductase, R1 and R2. A series of radiation and H-ras transformed mouse 10T1/2 cell lines with increasing malignant potential were exposed to stimulators of cAMP synthesis (forskolin and cholera toxin), an inhibitor of cAMP degradation (3-isobutyl-1-methylxanthine) and a biologically stable analogue of cAMP (8-bromo-cAMP). Dramatic elevations in the expression of the R1 and R2 genes at the message and protein levels were observed in malignant metastatic populations, which were not detected in the normal parental cell line or in cells capable of benign tumor formation. These changes in ribonucleotide reductase gene expression occurred without any detectable modifications in the rates of DNA synthesis, showing that they were regulated by a novel mechanism independent of the S phase of the cell cycle. Furthermore, studies with forskolin (a stimulator of the protein kinase A signal pathway) and the tumor promoter 12–0-tetradecanoylphorbol-13-acetate (a stimulator of the protein kinase C signal pathway), alone or in combination, indicated that their effects on R1 and R2 gene expression in a highly malignant cell line were greater than when they were tested individually, suggesting that the two pathways modulating R1 and R2 gene expression can cooperate to regulate ribonucleotide reduction, and interestingly this can occur in a synergistic fashion. Also, a direct relationship between H-ras expression and ribonucleotide reductase gene expression was observed; analysis of forskolin mediated elevations in R1 and R2 message levels closely correlated with the levels of H-ras expression in the various cell lines. In total, these studies demonstrate that ribonucleotide reductase expression is controlled by a complex process, and malignant ras transformed cells contain alterations in the regulation of signal transduction pathways that lead to novel modifications in ribonucleotide reductase gene expression. This signal mechanism, which is aberrantly regulated in malignant cells, may be related to regulatory pathways involved in determining ribonucleotide reductase expression in a S phase independent manner during periods of DNA repair. © 1994 Wiley-Liss, Inc. 相似文献
14.
15.
16.
Expression patterns of TGF-βs during embryogenesis and in adult reproductive organs, as well as the activities of these molecules in in vitro assays of biological processes relating to reproduction and development, have suggested that TGF-βs may play a role in both reproductive function and embryonic development. To investigate the function of TGF-β1 in vivo, the murine TGF-β1 gene was disrupted by gene targeting, and animals that lacked TGF-β1 activity were generated. Homozygous mutant animals were obtained which exhibited a multifocal inflammatory disease. However, the observed numbers of homozygous mutant offspring were less than expected, suggesting the occurrence of some type of prenatal lethality. This paper reviews the proposed role of the TGF-βs in reproductive and developmental processes and discusses observations obtained from the TGF-β1 gene-targeting experiments as they relate to these processes. © 1994 Wiley-Liss, Inc. 相似文献
17.
Using a cDNA probe and a two-site enzyme immunoassay, β-nerve growth factor (βNGF) synthesis was monitored in several mouse teratocarcinoma cell lines. Trace amounts of NGF mRNA were detected in the embryonal carcinoma (EC) PCC4, F9 and 1003 clones, whereas the myocardial (PCD1), myogenic (1168) and adipogenic (1246) clones contained significantly higher levels of NGF mRNA and secreted mature βNGF peptide in the culture medium. The 1003, 1168 and 1246 strains were derived from the same teratocarcinoma cell line and their ability or inability to synthesize the neurotrophic factor may reflect a developmental decision for divergent differentiation programs. Induction of NGF mRNA and protein synthesis was observed in a differentiated derivative of an SV40-transformed F9 clone which expresses the viral T antigen. Southern blot analysis of the genomic DNAs revealed no structural alterations of the NGF locus between teratocarcinoma cells that express the NGF gene and those that do not. Similar analysis of the DNA methylation pattern in C-C-G-G sequences using the Hpa II and Msp I isoschizomers indicated no methylation changes of the NGF gene in the teratocarcinoma DNAs. At least two, and probably all four, of the already mapped Msp I sites within the NGF gene are methylated in all teratocarcinoma DNAs examined, as well as in the male mouse submaxillary gland DNA, the organ richest in this factor. 相似文献
18.
Adult human skin fibroblasts were used as a model to study the effects of transforming growth factor beta (TGFβ) on the secreted plasminogen activator (PA) activity of cultured cells. TGFβ, at nanogram concentrations, enhanced the secretion of pro-PA from two fibroblast strains in a time- and dose-dependent manner. The induced enzymatic activity was inhibited by anti-urokinase antibodies and it co-migrated with purified urokinase in polyacrylamide gels. The secretion of PA activity was abolished when cycloheximide (0.1 μg/ml) was added to the cultures. The activity was thus dependent on protein synthesis rather than just on direct activation of a plasminogen proactivator. TGFβ had only a slight mitogenic effect on the test cells. Epidermal growth factor (EGF), platelet-derived growth factor (PDGF) and insulin were ineffective alone in inducing PA. Insulin, on the contrary, had an inhibitory effect on the TGFβ-induced PA activity. In addition to its effects on the secretion of PA, TGFβ enhanced the production of a proteinase inhibitor by these cells. The results suggest a role for TGFβ in the regulation of PA activity and pericellular proteolysis in fibroblastic cells. 相似文献
19.
Transforming growth factor β1 (TGFβ1) elevated the phosphoenolpyruvate carboxykinase (PEPCK) mRNA abundance in primary cultures of rat hepatocytes. Although this increase was not as large as the rise in PEPCK gene expression induced by the cAMP-elevating agents glucagon or isoproterenol, the effect of TGFβ1 was several-fold and concentration-dependent, with ED50 at about 2.5 pM, which is in the same concentration range as the previously found growth-inhibitory effect of TGFβ. The data show that the level of mRNA for PEPCK, an enzyme typically expressed in the liver, can be regulated in the same direction by TGFβ1 and cAMP. 相似文献
20.
During gastrulation, one of the most important morphogenetic events in sea urchin embryogenesis, the gut bends toward the ventral side to form an open mouth. Although the involvement of transforming growth factor‐β (TGF‐β) signals in the cell‐fate specification of the ectoderm and endoderm along the dorsal–ventral axis has been well reported, it remains unclear what controls the morphogenetic behavior of gut bending. Here, using two sea urchin species, Hemicentrotus pulcherrimus and Temnopleurus reevesii, we show that TGF‐β signals are required for gut bending toward the ventral side. To search for the common morphogenetic cue in these two species, we initially confirmed the expression patterns of the dorsal–ventral regulatory TGF‐β members, nodal, lefty, bmp2/4, and chordin, in T. reevesii because these factors are appropriate candidates to investigate the cue that starts gut bending, although genetic information about the body axes is entirely lacking in this species. Based on their expression patterns and a functional analysis of Nodal, the dorsal–ventral axis formation of T. reevesii is likely regulated by these TGF‐β members, as in other sea urchins. When the Alk4/5/7 signal was inhibited by its specific inhibitor, SB431542, before the late gastrula stage of T. reevesii, the gut was extended straight toward the anterior tip region, although the ectodermal dorsal–ventral polarity was normal. By contrast, H. pulcherrimus gut bending was sensitive to SB431542 until the prism stage. These data clearly indicate that gut bending is commonly dependent on a TGF‐β signal in sea urchins, but the timing of the response varies in different species. 相似文献