首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Activation of cells is frequently followed by tyrosine phosphorylation of proteins. To quantify this process, we developed a ratiometric enzyme-linked immunosorbent assay (ELISA) using epidermal growth factor receptors (EGFR) as a model. Microtiter dishes were coated with anti-EGFR monoclonal antibodies to capture the receptor followed by parallel detection of receptor and phosphotyrosine content with secondary antibodies. The ratio of these two parameters was found to directly reflect EGFR activation and was insensitive to the effect of receptor downregulation. Our assay could resolve differences in EGFR activation due to small changes (less than 1 ng/ml) in ligand. We found that phosphotyrosine detection by ELISA was 8- to 32-fold more sensitive than Western blot detection and could be reliably detected using as little as 4 ng of cellular lysate. Detection of EGFR levels by ELISA was 30 times more sensitive than Western blot analysis and was reliable for as low as 8 ng of cellular lysate per well. Because of the wide linear range of the ELISA, we could directly compare receptor activation in cell types with different EGFR expression levels. Our assay provides a rapid and sensitive method of determining EGFR activation status and could be easily modified to evaluate any tyrosine-phosphorylated protein.  相似文献   

2.
The erbB-2 gene product, gp185erbB-2, displays a potent transforming effect when overexpressed in NIH 3T3 cells. In addition, it possesses constitutively high levels of tyrosine kinase activity in the absence of exogenously added ligand. In this study, we demonstrate that its carboxy-terminal domain exerts an enhancing effect on erbB-2 kinase and transforming activities. A premature termination mutant of the erbB-2 protein, lacking the entire carboxy-terminal domain (erbB-2 delta 1050), showed a 40-fold reduction in transforming ability and a lowered in vivo kinase activity for intracellular substrates. When the carboxy-terminal domain of erbB-2 was substituted for its analogous region in the epidermal growth factor receptor (EGFR) (EGFR/erbB-2COOH chimera), it conferred erbB-2-like properties to the EGFR, including transforming ability in the absence of epidermal growth factor, elevated constitutive autokinase activity in vivo and in vitro, and constitutive ability to phosphorylate phospholipase C-gamma. Conversely, a chimeric erbB-2 molecule bearing an EGFR carboxy-terminal domain (erbB-2/EGFRCOOH chimera) showed reduced transforming and kinase activity with respect to the wild-type erbB-2 and was only slightly more efficient than the erbB-2 delta 1050 mutant. Thus, we conclude that the carboxy-terminal domains of erbB-2 and EGFR exert different regulatory effects on receptor kinase function and biological activity. The up regulation of gp185erbB-2 enzymatic activity exerted by its carboxy-terminal domain can explain, at least in part, its constitutive level of kinase activity.  相似文献   

3.
Epidermal growth factor (EGF) receptor protein kinase activity, estimated by the use of peptide substrates, was reduced by as much as 70% after the treatment of intact A431 human carcinoma cells with EGF. The apparent decrease in protein kinase activity was observed after immunoprecipitation of the receptor or after purification of the receptor by lectin chromatography. By the use of [35S]methionine, it was determined that the total amount of receptor obtained was the same whether or not cells were treated with EGF. EGF stimulated the purified receptor protein kinase activity in vitro; however, the EGF-stimulated activity of receptor from EGF-treated cells continued to be reduced by as much at 70% compared to the EGF-stimulated activity from untreated cells. The reduction in receptor protein kinase activity induced by EGF may represent a feedback mechanism by which responsiveness to the growth factor is regulated.  相似文献   

4.
We demonstrate in this report that the epidermal growth factor (EGF) receptor from rat liver can be isolated by calmodulin affinity chromatography by binding in the presence of Ca2+ and elution with a Ca(2+)-chelating agent. The bulk of the EGF receptor is not eluted by a NaCl gradient in the presence of Ca2+. We ascertained the identity of the isolated receptor by immunoblot and immunoprecipitation using a polyclonal antibody against an EGF receptor from human origin. The purified receptor is autophosphorylated in tyrosine residues in an EGF-stimulated manner, and EGF-dependent phosphorylation of serine residues was also detected. Both the EGF and the transforming growth factor-alpha stimulate the tyrosine-directed protein kinase activity of the isolated receptor with similar affinities. Furthermore, we demonstrate that calmodulin inhibits the EGF-dependent tyrosine-directed protein kinase activity associated to the receptor in a concentration-dependent manner. This inhibition is partially Ca2+ dependent and is not displaced by increasing the concentration of EGF up to an EGF/calmodulin ratio of 10 (mol/mol). In addition, calmodulin was phosphorylated in an EGF-stimulated manner in the presence of a basic protein (histone) as cofactor and in the absence, but not in the presence, of Ca2+.  相似文献   

5.
The relationship between epidermal growth factor receptor (EGF-R) protein tyrosine kinase activation and ligand-induced receptor dimerization was investigated using several bivalent anti-EGF-R antibodies directed against various receptor epitopes. In A431 membrane preparations and permeabilized cells, all antibodies were able to activate the EGF-R tyrosine kinase, as measured by EGF-R autophosphorylation and phosphorylation of other substrates on tyrosine residues. EGF-R tyrosine kinase activation correlated strongly with the induction of EGF-R dimerization. (i) Both processes specifically occurred in a narrow antibody concentration range; (ii) both processes required the presence of detergent; and (iii) both processes depended on antibody bivalence since monovalent Fab fragments were inactive yet regained full activity after cross-linking by a second bivalent antibody. These data demonstrate that antibody bivalence is essential and sufficient for EGF-R activation and that activation occurs regardless of the EGF-R epitope recognized. Finally, EGF-R dimerization was shown not to depend on receptor autophosphorylation since it still occurred in the absence of ATP. Also, partial inhibition of the tyrosine kinase activity by the specific EGF-R tyrosine kinase inhibitor tyrphostin AG 213 did not affect formation of EGF-R dimers. Taken together these results demonstrate that induction of EGF-R dimerization is sufficient and in case of antibody action, essential, for activation of the EGF-R tyrosine kinase and thus provide strong support for an intermolecular mechanism of EGF-R tyrosine kinase activation.  相似文献   

6.
Oncoprotein 18 or stathmin was isolated from bovine brain, characterized and novel features of its function as a microtubule depolymerizing factor were tested.The effect of phosphorylation of stathmin on its function as a microtubule depolymerizing factor has been tested in vitro. Five different protein kinases, protein kinase A, MAP kinase, cdc2 kinase, glycogen synthase kinase 3 and casein kinase 2, were used to modify stathmin, since it is known that these kinases could phosphorylate several residues that are modified in vivo and could have important roles in stathmin function. The residues phosphorylated in vitro by the different protein kinases were identified and in some cases they correspond to those modified in vivo.Recombinant unphosphorylated stathmin and native stathmin, which was previously dephosphorylated with alkaline phosphatase, showed similar microtubule depolymerizing activity. This activity is higher than that of stathmin phosphorylated by protein kinase A, MAP kinase or cdc 2 kinase, whereas phosphorylation of the protein with casein kinase 2 or glycogen synthase kinase 3 resulted in a slight increase of the depolymerizing activity.  相似文献   

7.
Signal attenuation from ligand-activated epidermal growth factor receptor (EGFR) is mediated in part by receptor endocytosis and trafficking to the lysosomal degradative compartment. Uncoupling the activated EGFR from endocytosis and degradation has emerged as a mechanism for oncogenic activation of the EGFR. The Abl nonreceptor tyrosine kinase is activated by ligand-stimulated EGFR, but the role of Abl in EGFR signaling has not been defined. Here we uncovered a novel role for the activated Abl kinase in the regulation of EGFR endocytosis. We show that activated Abl impairs EGFR internalization. Moreover, we show that activated Abl phosphorylates the EGFR primarily on tyrosine 1173, and that mutation of this site to phenylalanine restores ligand-dependent endocytosis of the EGFR in the presence of activated Abl. Furthermore, we show that activated Abl allows the ligand-activated EGFR to escape Cbl-dependent down-regulation by inhibiting the accumulation of Cbl at the plasma membrane in response to epidermal growth factor stimulation and disrupting the formation of the EGFR.Cbl complex without affecting Cbl protein stability. These findings reveal a novel role for Abl in promoting increased cell-surface expression of the EGFR and suggest that Abl/EGFR signaling may cooperate in human tumors.  相似文献   

8.
Rheumatoid arthritis (RA) is an autoimmune synovitis characterized by the formation of pannus and the destruction of cartilage and bone in the synovial joints. Although immune cells, which infiltrate the pannus and promote inflammation, play a prominent role in the pathogenesis of RA, other cell types also contribute. Proliferation of synovial fibroblasts, for example, underlies the formation of the pannus, while proliferation of endothelial cells results in neovascularization, which supports the growth of the pannus by supplying it with nutrients and oxygen. The synovial fibroblasts also promote inflammation in the synovium by producing cytokines and chemokines. Finally, osteoclasts cause the destruction of bone. In this study, we show that erlotinib, an inhibitor of the tyrosine kinase epidermal growth factor receptor (EGFR), reduces the severity of established collagen-induced arthritis, a mouse model of RA, and that it does so by targeting synovial fibroblasts, endothelial cells, and osteoclasts. Erlotinib-induced attenuation of autoimmune arthritis was associated with a reduction in number of osteoclasts and blood vessels, and erlotinib inhibited the formation of murine osteoclasts and the proliferation of human endothelial cells in vitro. Erlotinib also inhibited the proliferation and cytokine production of human synovial fibroblasts in vitro. Moreover, EGFR was highly expressed and activated in the synovium of mice with collagen-induced arthritis and patients with RA. Taken together, these findings suggest that EGFR plays a central role in the pathogenesis of RA and that EGFR inhibition may provide benefits in the treatment of RA.  相似文献   

9.
Dimerization of epidermal growth factor receptor (EGFR) leads to the activation of its tyrosine kinase. To elucidate whether dimerization is responsible for activation of the intracellular tyrosine kinase domain or just plays a role in the stabilization of the active form, the activated status of wild-type EGFR moiety in the heterodimer with kinase activity-deficient mutant receptors was investigated. The kinase activity of the wild-type EGFR was partially activated by EGF in the heterodimer with intracellular domain deletion (sEGFR) or ATP binding-deficient mutant (K721A) EGFRs, while the wild-type EGFR in the heterodimer of wild-type and phosphate transfer activity-deficient mutant receptor D813N could be fully activated. After treatment with EGF, the ATP binding affinity and the V(max) of the wild-type EGFR increased. In the presence of sEGFR, a similar increase in the affinity for ATP was observed, but V(max) did not change. A two-step activation mechanism for EGFR was proposed: upon binding of EGF, the affinity for ATP increased and then, as a result of interaction between the neighboring tyrosine kinase domain, V(max) increased.  相似文献   

10.
Biosignalling via lectins may involve modulation of protein kinase activities. This aspect of the biological action of mammalian and plant lectins has been investigated for their effect on the activity of the isolated epidermal growth factor receptor (EGFR). The constitutive tyrosine kinase activity of the epidermal growth factor receptor from rat liver, isolated by calmodulin-affinity chromatography, was activated by concanavalin A (ConA), and wheat germ agglutinin (WGA) to a similar extent as the measured enhancement induced by EGF. In contrast, two mannose-specific lectins, the mannan-binding protein (MBP) and serum amyloid P component (SAP), isolated from human serum, have inhibitory effects, both in the absence and presence of EGF. The differential effects of these lectins were tested using as phosphorylatable substrates a co-polymer of glutamic acid-tyrosine, as well as calmodulin. However, two galactoside-specific lectins, the laminin-binding -galactoside-binding 14 kDa lectin, isolated from bovine heart (14K-BHL), and the /-galactoside-binding lectin, isolated from mistletoe (Viscum album L.) leaves (VAA), do not inhibit the EGFR tyrosine kinase activity. The sugar dependence of the lectin-mediated action was studied by inhibition assays. Mannose and a mannose-containing neoglycoprotein prevent the activating effect of ConA, and N-acetyl-D-glucosamine partially prevents the activation produced by WGA. However, mannose and mannose-containing neoglycoprotein were ineffective to reduce the inhibitory effect of MBP or SAP. Although the response to binding of ConA and WGA was different to that of MBP or SAP with respect to the tyrosine kinase activity of the EGFR, it should be noted that the four lectins inhibited the binding of [125I]EGF to its receptor with similar efficiency.Abbreviations EGF epidermal growth factor - EGFR epidermal growth factor receptor - ConA concanavalin A - MBP mannan-binding protein - SAP serum amyloid P component - WGA wheat germ agglutinin - 14K-BHL bovine heart 14 kDa lectin - VAA Viscum album L. (mistletoe) agglutinin - EGTA [ethylenebis(oxyethylenenitrilo)]-tetraacetic acid; poly(Glu:Tyr)-co-polymer of L-glutamic acid and L-tyrosine - Hepes 4-(2-hydroxyethyl)-1-piperazinethanesulfonic acid - Tris tris(hydroxymethyl)-aminomethane - DSS suberic acid bis(N-hydroxy-succinimide ester) - PMSF phenylmethanesulfonyl fluoride - Man mannose - Gal galactose - BSA bovine serum albumin - Man-BSA neoglycoprotein containing -D-mannose - Lac-BSA neoglycoprotein containing -lactose - Gal-BSA neoglycoprotein containing galactose  相似文献   

11.
In our previous study, butein, a chalcone derivative, was found to be an inhibitor of tyrosine kinases and the inhibition was ATP-competitive. In this work, chalcone and seven chalcone derivatives were used to analyse the relationship between the structure of these compounds and their inhibition of tyrosine kinase activity. Three of chalcone derivatives, including butein, marein and phloretin, were found to have an ability to inhibit the tyrosine kinase activity of epidermal growth factor receptor (EGFR) in vitro. IC(50) was 8 microM for butein, 19 microM for marein and 25 microM for phloretin. The structural characterisations of these inhibitors suggest that the hydroxylations at C4 and C4' of these molecules may be required for them to act as EGFR tyrosine kinase inhibitors. The inhibition of EGF-induced EGFR tyrosine phosphorylation by butein was also observed in human hepatocellular carcinoma HepG2 cells, while marein and phloretin were inactive at the doses tested. Molecular modelling suggests that butein, marein and phloretin can be docked into the ATP binding pocket of EGFR. Hydrogen bonds and hydrophobic interaction appear to be important in the binding of these inhibitors to EGFR.  相似文献   

12.
The EGFR is a validated anticancer target whose successful exploitation has added novel agents to our current treatment protocols. Subsets of patients have shown to benefit the most from these therapies, and though these differential responses have yet to be completely defined, they are mostly of genetic nature. Egfr amplifications have shown to increase sensitivity to both small molecule inhibitors and specific monoclonal antibodies targeting the EGFR. A somatic/germline egfr intron 1 CA repeat sequence polymorphism has shown to have an important role in the control of EGFR protein expression, and has been linked to an increased risk of familial breast cancer, a worse outcome in patients with colorectal cancer, and anti-EGFR treatment efficacy in preclinical models. Egfr activating mutations have been recently described in lung cancer linking a cluster of genotypes with sensitivity to EGFR tyrosine kinase pharmacological inhibition. Despite the initial excitement that this discovery elicited, follow-up reports have not unequivocally confirmed this finding, and these drugs have been solidly efficacious both in individual patients and in diseases generally lacking egfr mutations such as pancreas cancer. We are witnessing exciting developments in the field of the pharmacogenomics of cancer, and this has particularly evolved in the area pertaining EGFR tyrosine kinase inhibitors. This review will discuss the background and currently available preclinical and clinical data.  相似文献   

13.
The Ca2+- and phospholipid-dependent protein kinase (C-kinase) binds tightly in the presence of Ca2+ to purified membranes of A431 human epidermoid carcinoma cells. The major membrane substrate for C-kinase is the epidermal growth factor (EGF) receptor. Phosphorylation of the EGF receptor is Ca2+-dependent and occurs at threonine and serine residues. After tryptic digestion of the receptor, three major phosphothreonine-containing peptides were identified. These are identical with three new phosphopeptides present in the EGF receptor isolated from A431 cells treated with either of the tumor promoters 12-O-tetradecanoylphorbol 13-acetate or teleocidin. C-kinase catalyzes phosphorylation at these same sites in purified EGF receptor protein. These results indicate that, in A431 cells exposed to tumor promoters, C-kinase catalyzes phosphorylation of a significant population of EGF receptor molecules. This phosphorylation of EGF receptors results in decreased self-phosphorylation of the EGF receptor at tyrosine residues both in vivo and in vitro and in decreased EGF-stimulated tyrosine kinase activity in vivo.  相似文献   

14.
Eph, Elk, and Eck are prototypes of a large family of transmembrane protein-tyrosine kinases, which are characterized by a highly conserved cysteine-rich domain and two fibronectin type III repeats in their extracellular regions. Despite the extent of the Eph family, no extracellular ligands for any family member have been identified, and hence, little is known about the biological and biochemical properties of these receptor-like tyrosine kinases. In the absence of a physiological ligand for the Elk receptor, we constructed chimeric receptor molecules, in which the extracellular region of the Elk receptor is replaced by the extracellular, ligand-binding domain of the epidermal growth factor (EGF) receptor. These chimeric receptors were expressed in NIH 3T3 cells that lack endogenous EGF receptors to analyze their signaling properties. The chimeric EGF-Elk receptors became glycosylated, were correctly localized to the plasma membrane, and bound EGF with high affinity. The chimeric receptors underwent autophosphorylation and induced the tyrosine phosphorylation of a specific set of cellular proteins in response to EGF. EGF stimulation also induced DNA synthesis in fibroblasts stably expressing the EGF-Elk receptors. In contrast, EGF stimulation of these cells did not lead to visible changes in cellular morphology, nor did it induce loss of contact inhibition in confluent monolayers or growth in semisolid media. The Elk cytoplasmic domain is therefore able to induce tyrosine phosphorylation and DNA synthesis in response to an extracellular ligand, suggesting that Elk and related polypeptides function as ligand-dependent receptor tyrosine kinases.  相似文献   

15.
Aim: We have reported the in vitro and in vivo anticancer activities of 6-(methylsulfinyl)hexyl isothiocyanate (6-MITC) derived from a Japanese spice, wasabi. In order to obtain some clues about the mechanism of the anticancer activity, we have studied the effect of alkyl isothiocyanates (MITCs) on protein kinase activities. Methods: The anti-autophosphorylation activity of MITCs with respect to the epidermal growth factor (EGF)-stimulated receptor kinase of A431 epidermoid carcinoma cells was examined by incorporation of radioactive ATP into an acid-insoluble fraction. Their anti-phosphorylation activity with respect to the non-receptor protein kinase was analyzed by a standard SDS-PAGE method. Results: All the tested MITCs interfered with the EGF-stimulated receptor kinase activity in a dose-dependent manner, although their effects were less than 1/10 of that of erbstatin in μg/ml. On the other hand, the MITCs did not interfere with non-receptor kinases (kinase A, kinase C, tyrosine kinase and calmodulin dependent kinase III), but enhanced non-receptor tyrosine kinase. Discussion: A possible anticancer mechanism of MITCs may involve the suppression of EGF receptor kinase activity and augmentation of non-receptor PTK.  相似文献   

16.
An increase in the intracellular cAMP concentration induces tyrosine phosphorylation of the epidermal growth factor receptor (EGFR) followed by activation of extracellular signal-regulated kinases 1/2 (ERK1/2). In this report we demonstrate that these effects of cAMP are mediated via activation of protein kinase A (PKA). Chemical inhibition of PKA suppressed forskolin-induced EGFR tyrosine phosphorylation and ERK1/2 activation in PC12 cells. Furthermore, forskolin failed to induce significant tyrosine phosphorylation of the EGFR and ERK1/2 activation in PKA-defective PC12 cells. Forskolin-induced EGFR tyrosine phosphorylation was also observed in A431 cells and in membranes isolated from these cells. Phosphoamino acid analysis indicated that the recombinant catalytic subunit of PKA elicited phosphorylation of the EGFR on both tyrosine and serine but not threonine residues in A431 membranes. Together, our data indicate that activation of PKA mediates the effects of cAMP on the EGFR and ERK1/2. While PKA may directly phosphorylate the EGFR on serine residues, PKA-induced tyrosine phosphorylation of the EGFR occurs by an indirect mechanism.  相似文献   

17.
Increasing evidence supports the hypothesis that tannic acid, a plant polyphenol, exerts anticarcinogenic activity in chemically induced cancers. In the present study, tannic acid was found to strongly inhibit tyrosine kinase activity of epidermal growth factor receptor (EGFr) in vitro (IC50 = 323 nM). In contrast, the inhibition by tannic acid of p60(c-src) tyrosine kinase (IC50 = 14 microM) and insulin receptor tyrosine kinase (IC50 = 5 microM) was much weaker. The inhibition of EGFr tyrosine kinase by tannic acid was competitive with respect to ATP and non-competitive with respect to peptide substrate. In cultured cells, growth factor-induced tyrosine phosphorylation of growth factor receptors, including EGFr, platelet-derived growth factor receptor, and basic fibroblast growth factor receptor, was inhibited by tannic acid. No inhibition of insulin-induced tyrosine phosphorylation of insulin receptor and insulin-receptor substrate-1 was observed. EGF-stimulated growth of HepG2 cells was inhibited in the presence of tannic acid. The inhibition of serine/threonine-specific protein kinases, including cAMP-dependent protein kinase, protein kinase C and mitogen-activated protein kinase, by tannic acid was only detected at relatively high concentration, IC50 being 3, 325 and 142 microM respectively. The molecular modeling study suggested that tannic acid could be docked into the ATP binding pockets of either EGFr or insulin receptor. These results demonstrate that tannic acid is an in vitro potent inhibitor of EGFr tyrosine kinase.  相似文献   

18.
Herstatin is an autoinhibitor of the ErbB family consisting of subdomains I and II of the human epidermal growth factor receptor 2 (ErbB-2) extracellular domain and a novel C-terminal domain encoded by an intron. Herstatin binds to human epidermal growth factor receptor 2 and to the epidermal growth factor receptor (EGFR), blocking receptor oligomerization and tyrosine phosphorylation. In this study, we characterized several early steps in EGFR activation and investigated downstream signaling events induced by epidermal growth factor (EGF) and by transforming growth factor alpha (TGF-alpha) in NIH3T3 cell lines expressing EGFR with and without herstatin. Herstatin expression decreased EGF-induced EGFR tyrosine phosphorylation and delayed receptor down-regulation despite receptor occupancy by ligand with normal binding affinity. Akt stimulation by EGF and TGF-alpha, but not by fibroblast growth factor 2, was almost completely blocked in the presence of herstatin. Surprisingly, EGF and TGF-alpha induced full activation of MAPK in duration and intensity and stimulated association of the EGFR with Shc and Grb2. Although MAPK was fully stimulated, herstatin expression prevented TGF-alpha-induced DNA synthesis and EGF-induced proliferation. The herstatin-mediated uncoupling of MAPK from Akt activation was also observed in Chinese hamster ovary cells co-transfected with EGFR and herstatin. These findings show that herstatin expression alters EGF and TGF-alpha signaling profiles, culminating in inhibition of proliferation.  相似文献   

19.
Biological responses to epidermal growth factor (EGF) depend on the ligand-stimulated protein tyrosine kinase activity of its receptor. To further characterize the enzymatic activity of the EGF receptor, the baculovirus expression system was used to express the cytoplasmic protein tyrosine kinase domain of the EGF receptor. Spodoptera frugiperda (Sf9) cells infected with recombinant baculovirus correctly expressed an active tyrosine kinase domain of the EGF receptor as demonstrated by 35S metabolic labeling, immunoblotting with anti-EGF receptor and anti-phosphotyrosine antibodies, and autophosphorylation analysis. The kinase domain (Mr 66,000) was purified to near homogeneity using a monoclonal anti-phosphotyrosine antibody column, providing 0.5 mg of kinase domain/liter of Sf9 cells (23% yield). The purified kinase domain exhibited a strong preference for Mn2+ compared to Mg2+. The specific activity of the kinase domain was low compared to purified, EGF-activated EGF receptor. However, the addition of sphingosine or ammonium sulfate greatly increased the activity of the kinase domain to equal or exceed the activity of ligand-activated holo EGF receptor. These results indicate that the addition of sphingosine or ammonium sulfate to the purified kinase domain can mimic the effect of EGF to induce a conformation of the holo EGF receptor which is optimal for tyrosine kinase activity. Deletion of the ligand binding domain, analogous to that which occurs in erb B, is not sufficient to fully activate the kinase, implying that EGF causes conformational changes additional to removal of an inhibitory constraint.  相似文献   

20.
Epidermal growth factor receptor (EGFR) was functionally reconstituted into liposome membrane. Triton X-100 was removed by Bio-beads SM-2. More than 80% of the reconstituted EGFR possessed right-side-out orientation with the EGF binding side facing the medium. The tyrosine kinase assay of the EGFR was carried out in the presence of the antibiotic alamethicin. The reconstituted EGFR tyrosine kinase was well activated by EGF. The influence of lipid composition on tyrosine kinase activity was investigated. Introduction of cholesterol into the dioleoylphophatidylcholine (DOPC) liposome membrane resulted in the decrease of tyrosine kinase activity. The tyrosine kinase activity of EGFR in distearylphosphatidylcholine liposome was much lower than that of EGFR-DOPC proteoliposome. Results indicated the importance of membrane fluidity on the apparent tyrosine kinase activity of reconstituted EGFR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号