首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prions arise when the cellular prion protein (PrPC) undergoes a self-propagating conformational change; the resulting infectious conformer is designated PrPSc. Frequently, PrPSc is protease-resistant but protease-sensitive (s) prions have been isolated in humans and other animals. We report here that protease-sensitive, synthetic prions were generated in vitro during polymerization of recombinant (rec) PrP into amyloid fibers. In 22 independent experiments, recPrP amyloid preparations, but not recPrP monomers or oligomers, transmitted disease to transgenic mice (n = 164), denoted Tg9949 mice, that overexpress N-terminally truncated PrP. Tg9949 control mice (n = 174) did not spontaneously generate prions although they were prone to late-onset spontaneous neurological dysfunction. When synthetic prion isolates from infected Tg9949 mice were serially transmitted in the same line of mice, they exhibited sPrPSc and caused neurodegeneration. Interestingly, these protease-sensitive prions did not shorten the life span of Tg9949 mice despite causing extensive neurodegeneration. We inoculated three synthetic prion isolates into Tg4053 mice that overexpress full-length PrP; Tg4053 mice are not prone to developing spontaneous neurological dysfunction. The synthetic prion isolates caused disease in 600–750 days in Tg4053 mice, which exhibited sPrPSc. These novel synthetic prions demonstrate that conformational changes in wild-type PrP can produce mouse prions composed exclusively of sPrPSc.  相似文献   

2.
Prion diseases are fatal neurodegenerative disorders caused by an aberrant accumulation of the misfolded cellular prion protein (PrPC) conformer, denoted as infectious scrapie isoform or PrPSc. In inherited human prion diseases, mutations in the open reading frame of the PrP gene (PRNP) are hypothesized to favor spontaneous generation of PrPSc in specific brain regions leading to neuronal cell degeneration and death. Here, we describe the NMR solution structure of the truncated recombinant human PrP from residue 90 to 231 carrying the Q212P mutation, which is believed to cause Gerstmann-Sträussler-Scheinker (GSS) syndrome, a familial prion disease. The secondary structure of the Q212P mutant consists of a flexible disordered tail (residues 90–124) and a globular domain (residues 125–231). The substitution of a glutamine by a proline at the position 212 introduces novel structural differences in comparison to the known wild-type PrP structures. The most remarkable differences involve the C-terminal end of the protein and the β2–α2 loop region. This structure might provide new insights into the early events of conformational transition of PrPC into PrPSc. Indeed, the spontaneous formation of prions in familial cases might be due to the disruptions of the hydrophobic core consisting of β2–α2 loop and α3 helix.  相似文献   

3.
Prions are proteinaceous infectious agents responsible for fatal neurodegenerative diseases in animals and humans. They are essentially composed of PrPSc, an aggregated, misfolded conformer of the ubiquitously expressed host-encoded prion protein (PrPC). Stable variations in PrPSc conformation are assumed to encode the phenotypically tangible prion strains diversity. However the direct contribution of PrPSc quaternary structure to the strain biological information remains mostly unknown. Applying a sedimentation velocity fractionation technique to a panel of ovine prion strains, classified as fast and slow according to their incubation time in ovine PrP transgenic mice, has previously led to the observation that the relationship between prion infectivity and PrPSc quaternary structure was not univocal. For the fast strains specifically, infectivity sedimented slowly and segregated from the bulk of proteinase-K resistant PrPSc. To carefully separate the respective contributions of size and density to this hydrodynamic behavior, we performed sedimentation at the equilibrium and varied the solubilization conditions. The density profile of prion infectivity and proteinase-K resistant PrPSc tended to overlap whatever the strain, fast or slow, leaving only size as the main responsible factor for the specific velocity properties of the fast strain most infectious component. We further show that this velocity-isolable population of discrete assemblies perfectly resists limited proteolysis and that its templating activity, as assessed by protein misfolding cyclic amplification outcompetes by several orders of magnitude that of the bulk of larger size PrPSc aggregates. Together, the tight correlation between small size, conversion efficiency and duration of disease establishes PrPSc quaternary structure as a determining factor of prion replication dynamics. For certain strains, a subset of PrP assemblies appears to be the best template for prion replication. This has important implications for fundamental studies on prions.  相似文献   

4.
Prion diseases are characterized by the conversion of the soluble protease-sensitive host-encoded prion protein (PrPC) into its aggregated, protease-resistant, and infectious isoform (PrPSc). One of the earliest events occurring in cells following exposure to an exogenous source of prions is the cellular uptake of PrPSc. It is unclear how the biochemical properties of PrPSc influence its uptake, although aggregate size is thought to be important. Here we show that for two different strains of mouse prions, one that infects cells (22L) and one that does not (87V), a fraction of PrPSc associated with distinct sedimentation properties is preferentially taken up by the cells. However, while the fraction of PrPSc and the kinetics of uptake were similar for both strains, PrPSc derived from the 87V strain was disaggregated more rapidly than that derived from 22L. The increased rate of PrPSc disaggregation did not correlate with either the conformational or aggregate stability of 87V PrPSc, both of which were greater than those of 22L PrPSc. Our data suggest that the kinetics of disaggregation of PrPSc following cellular uptake is independent of PrPSc stability but may be dependent upon some component of the PrPSc aggregate other than PrP. Rapid disaggregation of 87V PrPSc by the cell may contribute, at least in part, to the inability of 87V to infect cells in vitro.  相似文献   

5.
Infectious prions contain a self-propagating, misfolded conformer of the prion protein termed PrPSc. A critical prediction of the protein-only hypothesis is that autocatalytic PrPSc molecules should be infectious. However, some autocatalytic recombinant PrPSc molecules have low or undetectable levels of specific infectivity in bioassays, and the essential determinants of recombinant prion infectivity remain obscure. To identify structural and functional features specifically associated with infectivity, we compared the properties of two autocatalytic recombinant PrP conformers derived from the same original template, which differ by >105-fold in specific infectivity for wild-type mice. Structurally, hydrogen/deuterium exchange mass spectrometry (DXMS) studies revealed that solvent accessibility profiles of infectious and non-infectious autocatalytic recombinant PrP conformers are remarkably similar throughout their protease-resistant cores, except for two domains encompassing residues 91-115 and 144-163. Raman spectroscopy and immunoprecipitation studies confirm that these domains adopt distinct conformations within infectious versus non-infectious autocatalytic recombinant PrP conformers. Functionally, in vitro prion propagation experiments show that the non-infectious conformer is unable to seed mouse PrPC substrates containing a glycosylphosphatidylinositol (GPI) anchor, including native PrPC. Taken together, these results indicate that having a conformation that can be specifically adopted by post-translationally modified PrPC molecules is an essential determinant of biological infectivity for recombinant prions, and suggest that this ability is associated with discrete features of PrPSc structure.  相似文献   

6.
PrPSc is the only known component of the scrapie prion. The difference between PrPSc and its normal isoform PrPc is probably conformational, since no difference has been found in the amino acid sequence or postranslational modifications between both proteins. Heparan sulfate (HS) has been shown to be a component of amyloid plaques in a number of diseases including the prion diseases. We now present evidence that PrP can specifically bind to heparin-like compounds and that this interaction might have a physiological significance. HS can increase the concentration of PrP in normal neuroblastoma cells, whereas low molecular weight heparin (LMWH) does not. In contrast, LMWH and other heparin-like molecules, excluding HS, can inhibit the synthesis of PrPSc in scrapie infected cells and reverse their phenotype back to normal as judged by measurement of PrPSc by immunoblotting and by infectivity experiments. Whether an interaction between PrP and glycosaminoglycans plays a direct role in the conversion of PrPc into PrPSc remains to be established. © 1993 Wiley-Liss, Inc.  相似文献   

7.
Prions are infectious agents causing fatal neurodegenerative diseases of humans and animals. In humans, these have sporadic, acquired and inherited aetiologies. The inherited prion diseases are caused by one of over 30 coding mutations in the human prion protein (PrP) gene (PRNP) and many of these generate infectious prions as evidenced by their experimental transmissibility by inoculation to laboratory animals. However, some, and in particular an extensively studied type of Gerstmann-Sträussler-Scheinker syndrome (GSS) caused by a PRNP A117V mutation, are thought not to generate infectious prions and instead constitute prion proteinopathies with a quite distinct pathogenetic mechanism. Multiple attempts to transmit A117V GSS have been unsuccessful and typical protease-resistant PrP (PrPSc), pathognomonic of prion disease, is not detected in brain. Pathogenesis is instead attributed to production of an aberrant topological form of PrP, C-terminal transmembrane PrP (CtmPrP). Barriers to transmission of prion strains from one species to another appear to relate to structural compatibility of PrP in host and inoculum and we have therefore produced transgenic mice expressing human 117V PrP. We found that brain tissue from GSS A117V patients did transmit disease to these mice and both the neuropathological features of prion disease and presence of PrPSc was demonstrated in the brains of recipient transgenic mice. This PrPSc rapidly degraded during laboratory analysis, suggesting that the difficulty in its detection in patients with GSS A117V could relate to post-mortem proteolysis. We conclude that GSS A117V is indeed a prion disease although the relative contributions of CtmPrP and prion propagation in neurodegeneration and their pathogenetic interaction remains to be established.  相似文献   

8.
Mammalian prions refold host glycosylphosphatidylinositol-anchored PrPC into β-sheet–rich PrPSc. PrPSc is rapidly truncated into a C-terminal PrP27-30 core that is stable for days in endolysosomes. The nature of cell-associated prions, their attachment to membranes and rafts, and their subcellular locations are poorly understood; live prion visualization has not previously been achieved. A key obstacle has been the inaccessibility of PrP27-30 epitopes. We overcame this hurdle by focusing on nascent full-length PrPSc rather than on its truncated PrP27-30 product. We show that N-terminal PrPSc epitopes are exposed in their physiological context and visualize, for the first time, PrPSc in living cells. PrPSc resides for hours in unexpected cell-surface, slow moving strings and webs, sheltered from endocytosis. Prion strings observed by light and scanning electron microscopy were thin, micrometer-long structures. They were firmly cell associated, resisted phosphatidylinositol-specific phospholipase C, aligned with raft markers, fluoresced with thioflavin, and were rapidly abolished by anti-prion glycans. Prion strings and webs are the first demonstration of membrane-anchored PrPSc amyloids.  相似文献   

9.
Summary 1. Vaccination-induced anti-prion protein antibodies are presently regarded as a promising approach toward treatment of prion diseases. Here, we investigated the ability of five peptides corresponding to three different regions of the bovine prion protein (PrP) to elicit antibodies interfering with PrPSc propagation in prion-infected cells. 2. Rabbits were immunized with free nonconjugated peptides. Obtained immune sera were tested in enzyme-linked immunosorbent assay (ELISA) and immunoblot for their binding to recombinant PrP and cell-derived pathogenic isoform (PrPSc) and normal prion protein (PrPc), respectively. Sera positive in all tests were chosen for PrPSc inhibition studies in cell culture. 3. All peptides induced anti-peptide antibodies, most of them reacting with recombinant PrP. Moreover, addition of the serum specific to peptide 95–123 led to a transient reduction of PrPSc levels in persistently prion-infected cells. 4. Thus, anti-PrP antibodies interfering with PrPSc propagation were induced with a prion protein peptide nonconjugated to a protein carrier. These results point to the potential application of the nonconjugated peptide 95–123 for the treatment of prion diseases.  相似文献   

10.
Mammalian prions     
Upon prion infection, abnormal prion protein (PrPSc) self-perpetuate by conformational conversion of α-helix-rich PrPC into β sheet enriched form, leading to formation and deposition of PrPSc aggregates in affected brains. However the process remains poorly understood at the molecular level and the regions of PrP critical for conversion are still debated. Minimal amino acid substitutions can impair prion replication at many places in PrP. Conversely, we recently showed that bona fide prions could be generated after introduction of eight and up to 16 additional amino acids in the H2-H3 inter-helix loop of PrP. Prion replication also accommodated the insertions of an octapeptide at different places in the last turns of H2. This reverse genetic approach reveals an unexpected tolerance of prions to substantial sequence changes in the protease-resistant part which is associated with infectivity. It also demonstrates that conversion does not require the presence of a specific sequence in the middle of the H2-H3 area. We discuss the implications of our findings according to different structural models proposed for PrPSc and questioned the postulated existence of an N- or C-terminal prion domain in the protease-resistant region.  相似文献   

11.
Prions consist of PrPSc, a misfolded version of the cellular protein PrPC. They occur in a variety of strains that share the amino acid sequence of PrP but differ in phenotypic properties, such as cell tropism and pathogenicity; strain-ness is attributed to the conformation of PrPSc. To gain insight as to how susceptibility of cells to a given prion strain comes about, we compared amplification of RML prions by PMCA, using cell lysates from related, RML-resistant and RML-susceptible cell lines as substrate. We found that both lysates supported amplification of RML PrPSc equally well, despite a 280-fold difference in the susceptibility of the cells from which they were derived. Thus, susceptibility is an attribute of the intact cell.  相似文献   

12.
Different transmissible spongiform encephalopathy (TSE)-associated forms of prion protein (e.g. PrPSc) can vary markedly in ultrastructure and biochemical characteristics, but each is propagated in the host. PrPSc propagation involves conversion from its normal isoform, PrPC, by a seeded or templated polymerization mechanism. Such a mechanism is also the basis of the RT-QuIC and eQuIC prion assays which use recombinant PrP (rPrPSen) as a substrate. These ultrasensitive detection assays have been developed for TSE prions of several host species and sample tissues, but not for murine models which are central to TSE pathogenesis research. Here we have adapted RT-QuIC and eQuIC to various murine prions and evaluated how seeding activity depends on glycophosphatidylinositol (GPI) anchoring and the abundance of amyloid plaques and protease-resistant PrPSc (PrPRes). Scrapie brain dilutions up to 10−8 and 10−13 were detected by RT-QuIC and eQuIC, respectively. Comparisons of scrapie-affected wild-type mice and transgenic mice expressing GPI anchorless PrP showed that, although similar concentrations of seeding activity accumulated in brain, the heavily amyloid-laden anchorless mouse tissue seeded more rapid reactions. Next we compared seeding activities in the brains of mice with similar infectivity titers, but widely divergent PrPRes levels. For this purpose we compared the 263K and 139A scrapie strains in transgenic mice expressing P101L PrPC. Although the brains of 263K-affected mice had little immunoblot-detectable PrPRes, RT-QuIC indicated that seeding activity was comparable to that associated with a high-PrPRes strain, 139A. Thus, in this comparison, RT-QuIC seeding activity correlated more closely with infectivity than with PrPRes levels. We also found that eQuIC, which incorporates a PrPSc immunoprecipitation step, detected seeding activity in plasma from wild-type and anchorless PrP transgenic mice inoculated with 22L, 79A and/or RML scrapie strains. Overall, we conclude that these new mouse-adapted prion seeding assays detect diverse types of PrPSc.  相似文献   

13.
The mammalian prions replicate by converting cellular prion protein (PrPC) into pathogenic conformational isoform (PrPSc). Variations in prions, which cause different disease phenotypes, are referred to as strains. The mechanism of high-fidelity replication of prion strains in the absence of nucleic acid remains unsolved. We investigated the impact of different conformational characteristics of PrPSc on conversion of PrPC in vitro using PrPSc seeds from the most frequent human prion disease worldwide, the Creutzfeldt-Jakob disease (sCJD). The conversion potency of a broad spectrum of distinct sCJD prions was governed by the level, conformation, and stability of small oligomers of the protease-sensitive (s) PrPSc. The smallest most potent prions present in sCJD brains were composed only of∼20 monomers of PrPSc. The tight correlation between conversion potency of small oligomers of human sPrPSc observed in vitro and duration of the disease suggests that sPrPSc conformers are an important determinant of prion strain characteristics that control the progression rate of the disease.  相似文献   

14.
The structure of the infectious prion protein (PrPSc), which is responsible for Creutzfeldt-Jakob disease in humans and bovine spongiform encephalopathy, has escaped all attempts at elucidation due to its insolubility and propensity to aggregate. PrPSc replicates by converting the non-infectious, cellular prion protein (PrPC) into the misfolded, infectious conformer through an unknown mechanism. PrPSc and its N-terminally truncated variant, PrP 27–30, aggregate into amorphous aggregates, 2D crystals, and amyloid fibrils. The structure of these infectious conformers is essential to understanding prion replication and the development of structure-based therapeutic interventions. Here we used the repetitive organization inherent to GPI-anchorless PrP 27–30 amyloid fibrils to analyze their structure via electron cryomicroscopy. Fourier-transform analyses of averaged fibril segments indicate a repeating unit of 19.1 Å. 3D reconstructions of these fibrils revealed two distinct protofilaments, and, together with a molecular volume of 18,990 Å3, predicted the height of each PrP 27–30 molecule as ~17.7 Å. Together, the data indicate a four-rung β-solenoid structure as a key feature for the architecture of infectious mammalian prions. Furthermore, they allow to formulate a molecular mechanism for the replication of prions. Knowledge of the prion structure will provide important insights into the self-propagation mechanisms of protein misfolding.  相似文献   

15.
《朊病毒》2013,7(4):371-374
Prions consist of PrPSc, a misfolded version of the cellular protein PrPC. They occur in a variety of strains that share the amino acid sequence of PrP but differ in phenotypic properties, such as cell tropism and pathogenicity; strain-ness is attributed to the conformation of PrPSc. To gain insight as to how susceptibility of cells to a given prion strain comes about, we compared amplification of RML prions by PMCA, using cell lysates from related, RML-resistant and RML-susceptible cell lines as substrate. We found that both lysates supported amplification of RML PrPSc equally well, despite a 280-fold difference in the susceptibility of the cells from which they were derived. Thus, susceptibility is an attribute of the intact cell.  相似文献   

16.

Background

A hallmark of the prion diseases is the conversion of the host-encoded cellular prion protein (PrPC) into a disease related, alternatively folded isoform (PrPSc). The accumulation of PrPSc within the brain is associated with synapse loss and ultimately neuronal death. Novel therapeutics are desperately required to treat neurodegenerative diseases including the prion diseases.

Principal Findings

Treatment with glimepiride, a sulphonylurea approved for the treatment of diabetes mellitus, induced the release of PrPC from the surface of prion-infected neuronal cells. The cell surface is a site where PrPC molecules may be converted to PrPSc and glimepiride treatment reduced PrPSc formation in three prion infected neuronal cell lines (ScN2a, SMB and ScGT1 cells). Glimepiride also protected cortical and hippocampal neurones against the toxic effects of the prion-derived peptide PrP82–146. Glimepiride treatment significantly reduce both the amount of PrP82–146 that bound to neurones and PrP82–146 induced activation of cytoplasmic phospholipase A2 (cPLA2) and the production of prostaglandin E2 that is associated with neuronal injury in prion diseases. Our results are consistent with reports that glimepiride activates an endogenous glycosylphosphatidylinositol (GPI)-phospholipase C which reduced PrPC expression at the surface of neuronal cells. The effects of glimepiride were reproduced by treatment of cells with phosphatidylinositol-phospholipase C (PI-PLC) and were reversed by co-incubation with p-chloromercuriphenylsulphonate, an inhibitor of endogenous GPI-PLC.

Conclusions

Collectively, these results indicate that glimepiride may be a novel treatment to reduce PrPSc formation and neuronal damage in prion diseases.  相似文献   

17.
One hallmark of prion diseases is the accumulation of the abnormal isoform PrPSc of a normal cellular glycoprotein, PrPc, which is characterized by a high content of β-sheet structures and by its partial resistance to proteinase K. It was hypothesized that the PrP region comprising amino acid residues 109 to 122 [PrP(109–122)], which spontaneously forms amyloid when it is synthesized as a peptide but which does not display significant secondary structure in the context of the full-length PrPc molecule, should play a role in promoting the conversion into PrPSc. By using persistently scrapie-infected mouse neuroblastoma (Sc+-MNB) cells as a model system for prion replication, we set out to design dominant-negative mutants of PrPc that are capable of blocking the conversion of endogenous, wild-type PrPc into PrPSc. We constructed a deletion mutant (PrPcΔ114–121) lacking eight codons that span most of the highly amyloidogenic part, AGAAAAGA, of PrP(109–122). Transient transfections of mammalian expression vectors encoding either wild-type PrPc or PrPcΔ114–121 into uninfected mouse neuroblastoma cells (Neuro2a) led to overexpression of the respective PrPc versions, which proved to be correctly localized on the extracellular face of the plasma membrane. Transfection of Sc+-MNB cells revealed that PrPcΔ114–121 was not a substrate for conversion into a proteinase K-resistant isoform. Furthermore, its presence led to a significant reduction in the steady-state levels of PrPSc derived from endogenous PrPc. Thus, we showed that the presence of amino acids 114 to 121 of mouse PrPc plays an important role in the conversion process of PrPc into PrPSc and that a deletion mutant lacking these codons indeed behaves as a dominant-negative mutant with respect to PrPSc accumulation. This mechanism could form a basis for a new gene therapy and/or a prevention concept for prion diseases.  相似文献   

18.
BackgroundCultured cell lines infected with prions produce an abnormal isoform of the prion protein (PrPSc). In this study, two types of cells persistently infected with prion were treated with curcumin-related compounds. We found that the compounds behave differently in neuroblastoma neuro-2a (N2a) cells infected with different prion strains.MethodsCurcumin and related compounds were applied to the two types of persistently prion infected cells to analyze the different activities of the compounds.ResultsIn ScN2a cells, which were infected with the Rocky Mountain Laboratory prion strain, two of the six compounds significantly reduced the PrPSc level in a dose-dependent manner. On the other hand, in N167 cells, effective suppression of the total amount of PrPSc was not observed; instead, two other compounds promoted the formation of covalently linked PrPSc dimers.ConclusionsChemometric analysis was used to determine the factors that contributed to the different effects of the six compounds. It showed that the ability to form hydrogen bonds, such as phenolic hydroxyl groups, and hydrophobic molecular properties predominantly contributed to the reduction of the PrPSc level in the ScN2a cells and the dimer formation of PrPSc in the N167 cells, respectively.General significanceThe extracted information can be used to delineate the differences among prion strains and to design compounds that are directed toward their respective activities.  相似文献   

19.
The clinicopathological phenotypes of sporadic Creutzfeldt-Jakob disease (sCJD) correlate with the allelotypes (M or V) of the polymorphic codon 129 of the human prion protein (PrP) gene and the electrophoretic mobility patterns of abnormal prion protein (PrPSc). Transmission of sCJD prions to mice expressing human PrP with a heterologous genotype (referred to as cross-sequence transmission) results in prolonged incubation periods. We previously reported that cross-sequence transmission can generate a new prion strain with unique transmissibility, designated a traceback phenomenon. To verify experimentally the traceback of sCJD-VV2 prions, we inoculated sCJD-VV2 prions into mice expressing human PrP with the 129M/M genotype. These 129M/M mice showed altered neuropathology and a novel PrPSc type after a long incubation period. We then passaged the brain homogenate from the 129M/M mouse inoculated with sCJD-VV2 prions into other 129M/M or 129V/V mice. Despite cross-sequence transmission, 129V/V mice were highly susceptible to these prions compared to the 129M/M mice. The neuropathology and PrPSc type of the 129V/V mice inoculated with the 129M/M mouse-passaged sCJD-VV2 prions were identical to those of the 129V/V mice inoculated with sCJD-VV2 prions. Moreover, we generated for the first time a type 2 PrPSc-specific antibody in addition to type 1 PrPSc-specific antibody and discovered that drastic changes in the PrPSc subpopulation underlie the traceback phenomenon. Here, we report the first direct evidence of the traceback in prion infection.Creutzfeldt-Jakob disease (CJD) is a lethal transmissible neurodegenerative disease caused by an abnormal isoform of prion protein (PrPSc), which is converted from the normal cellular isoform (PrPC) (1, 23). The genotype (M/M, M/V, or V/V, where M and V are allelotypes) at polymorphic codon 129 of the human prion protein (PrP) gene and the type (type 1 or type 2) of PrPSc in the brain are major determinants of the clinicopathological phenotypes of sporadic CJD (sCJD) (15-18). Type 1 and type 2 PrPSc are distinguishable according to the size of the proteinase K-resistant core of PrPSc (PrPres) (21 and 19 kDa, respectively), reflecting differences in the proteinase K cleavage site (at residues 82 and 97, respectively) (15, 18). According to this molecular typing system, sCJD can be classified into six subgroups (MM1, MM2, MV1, MV2, VV1, or VV2).The homology of the PrP genes between inoculated animals and the inoculum determines the susceptibility to prion infection. Transmission of sCJD prions to mice expressing human PrP with a nonhomologous genotype (referred to as cross-sequence transmission) results in a relatively long incubation period (10, 12). Meanwhile, the cross-sequence transmission can generate a new prion strain. Transmission of sCJD-VV2 prions to mice expressing human PrP with the 129M/M genotype generates unusual PrPres intermediate in size between type 1 and type 2 (10). We have designated this unusual PrPres with an upward size shift (Sh+) from the inoculated type 2 template MM[VV2]2Sh+ PrPres, where the notation is of the following form: host genotype [type of inoculated prion] type of generated PrPres.Similar to the MM[VV2]2Sh+ PrPres, the intermediate-sized PrPres has been observed in the plaque-type of dura mater graft-associated CJD (p-dCJD) (10, 13). Furthermore, a transmission study using p-dCJD prions revealed that PrP-humanized mice with the 129V/V genotype were highly susceptible to p-dCJD prions despite cross-sequence transmission (10). In addition, these 129V/V mice inoculated with p-dCJD prions produced type 2 PrPres (10). These findings suggest that p-dCJD could be caused by cross-sequence transmission of sCJD-VV2 prions to individuals with the 129M/M genotype. We have designated this phenomenon “traceback.” The traceback phenomenon was discovered for the first time by a transmission study using variant CJD (vCJD) prions (2). Mice expressing bovine PrP were highly susceptible to vCJD prions because vCJD was caused by cross-sequence transmission of bovine spongiform encephalopathy prions to human. These findings suggest that a traceback study can be a powerful tool to identify the origin of prions (2, 10, 11). However, the traceback phenomenon has not been verified experimentally despite the abundant circumstantial evidence described above.To verify the traceback of sCJD-VV2 prions, we inoculated sCJD-VV2 prions into PrP-humanized mice with the 129M/M genotype as an experimental model of p-dCJD. Thereafter, we inoculated these MM[VV2]2Sh+ prions into PrP-humanized mice with the 129M/M or 129V/V genotype and compared the incubation period, neuropathology, and the type of PrPres in the brain. Here, we report the first direct evidence of the traceback in prion infection.  相似文献   

20.
The conversion of the cellular form of the prion protein (PrPC) to an abnormal, alternatively folded isoform (PrPSc) is the central event in prion diseases or transmissible spongiform encephalopathies. Recent studies have demonstrated de novo generation of murine prions from recombinant prion protein (recPrP) after inoculation into transgenic and wild-type mice. These so-called synthetic prions lead to novel prion diseases with unique neuropathological and biochemical features. Moreover, the use of recPrP in an amyloid seeding assay can specifically detect and amplify various strains of prions. We employed this assay in our experiments and analyzed in detail the morphology of aggregate structures produced under defined chemical constraints. Our results suggest that changes in the concentration of guanidine hydrochloride can lead to different kinetic traces in a typical thioflavin T(ThT) assay. Morphological and structural analysis of these aggregates by atomic force microscopy indicates a variation in the structure of the PrP molecular assemblies.In particular, ThT positive PrP aggregates produced from rec mouse PrP residues 89 to 230 lead to mostly oligomeric structures at low concentrations of guanidine hydrochloride, while more amyloidal structures were observed at higher concentrations of the denaturant. These findings highlight the presence of numerous and complex pathways in deciphering prion constraints for infectivity and toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号