首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Particle-loaded monoliths containing a polymethacrylamide backbone were prepared by suspending a silica-based chiral phase in the mixture of the monomers followed by in-situ polymerization in the capillary. As chiral selector l-4-hydroxyproline chemically bonded to 3 microm silica particles was used following the separation principle of ligand-exchange. Electrolytes containing Cu(II) ions were used. Amino acid enantiomers were separated by capillary-LC and CEC, whereby the latter showed the better resolution properties. For the chiral separation of alpha-hydroxy acids the EOF was reversed by copolymerizing diallyldimethylammonium chloride instead of vinylsulfonic acid as charge providing agent. Short columns of 6 cm were found to be sufficient in the case of CEC for baseline separations of amino acids with alpha values up to 5.  相似文献   

2.
This work deals with the application of stereoselective antibodies against L-T3 as a tailor-made chiral selector in micro-HPLC. The separations were performed in microbore columns using commercially available anti-L-T3 antibodies chemically bonded to 5 microm silica gel. The enantiomers of T3 were baseline separated under mild continuous isocratic elution conditions using 10 mM phosphate buffer, pH 7.4. The D-enantiomer eluted with the void volume, while the L-enantiomer was retained by the antibody phase and eluted second. An indirect competitive and non-competitive enzyme linked immunosorbent assay (ELISA) was used for testing the stereoselectivity of anti-L-T3 antibodies.  相似文献   

3.
Particle-loaded monoliths containing a polymethacrylamide backbone were prepared by suspending a silica-based chiral phase in the mixture of the monomers followed by in-situ polymerization in the capillary. As chiral selector l-4-hydroxyproline chemically bonded to 3 μm silica particles was used following the separation principle of ligand-exchange. Electrolytes containing Cu(II) ions were used. Amino acid enantiomers were separated by capillary-LC and CEC, whereby the latter showed the better resolution properties. For the chiral separation of α-hydroxy acids the EOF was reversed by copolymerizing diallyldimethylammonium chloride instead of vinylsulfonic acid as charge providing agent. Short columns of 6 cm were found to be sufficient in the case of CEC for baseline separations of amino acids with α values up to 5.  相似文献   

4.
Wang P  Liu D  Jiang S  Gu X  Zhou Z 《Chirality》2007,19(2):114-119
Amylopectin-tris(phenylcarbamate) was synthesized and coated to aminopropylsilica to prepare chiral stationary phase. The chiral separations of fungicide enantiomers were performed by the CSP using high-performance liquid chromatography. Mobile phase was n-hexane and isopropanol, and flow rate was 1.0 ml/min. Detection wavelength was 230 nm. The influence of the percentage of isopropanol in the mobile phase on the separations was studied. Twelve chiral fungicides were tested and seven of them were found to show stereoselectivity on the CSP. The enantiomers of metalaxyl and benalaxyl got near baseline separations and myclobutanil, hexconazole, tebuconazole, uniconazole, and paclobutrazol enantiomers were completely separated. The decreasing percentage of isopropanol in the mobile phase resulted in better separation and longer analysis time. The enantiomers were identified by a circular dichroism (CD) detector and the CD spectra of the individual enantiomers were also studied by online scanning.  相似文献   

5.
Tan X  Hou S  Wang M 《Chirality》2007,19(7):574-580
A novel chiral packing material for high-performance liquid chromatography (HPLC) was prepared by connecting (R)-1-phenyl-2-(4-methylphenyl) ethylamine (PTE) amide derivative of (S)-isoleucine to aminopropyl silica gel through 2-amino-3,5-dinitro-1-carboxamido-benzene unit. This chiral stationary phase was applied to the enantioselective and diastereoselective separation of five pyrethroid insecticides by HPLC under normal phase condition. To achieve satisfactory baseline separation an optimization of the variables of mobile phase composition was required. The two enantiomers of fenpropathrin and four stereoisomers of fenvalerate were baseline separated using hexane-1,2-dichloroethane-2-propanol as mobile phase. The results show that the enantioselectivity of CSP is better than Pirkle type 1-A column for these compounds. Only partial separations for the cypermethrin and cyfluthrin stereoisomers were observed. Seven peaks and eight peaks were observed for cypermethrin and cyfluthrin, respectively. The elution orders were assigned by using different stereoisomer-enriched products.  相似文献   

6.
Maria Pawlowska 《Chirality》1991,3(2):136-138
The paper demonstrates that the technique of solvent generated liquid--solid chromatography can be used to create normal phase systems for chiral separations. The chiral adsorption layer was generated by pumping a binary hexane:ethanol eluent containing a small fraction of permethylated β-cyclodextrin through a column packed with microparticulate silica. This technique leads to columns with good time stability and reproducibility. The possibility of generating normal phase systems with permethylated β-cyclodextrin as chiral component via the mobile phase broadens the range of phase system which can be used to separate enantiomers by HPLC.  相似文献   

7.
The effect of particle size and pore size of the aminopropylated silica support for cellulose tris(phenylcarbamate) and tris(3,5-dimethylphenylcarbamate) chiral HPLC phases was investigated. It was necessary to reduce phase loading below 20% w/w as pore size and particle size were reduced, but high efficiency columns could be prepared at a 15% w/w loading on 5 and 2.5 μm supports with 120-Å-diameter pores. The 2.5 μm phase permits the use of relatively high flow rates and very efficient enantioselective separations of a range of chiral compounds could be achieved in less than 3 min. © 1994 Wiley-Liss, Inc.  相似文献   

8.
Malathion is a widely used chiral phosphorus insecticide, which has a more toxic chiral metabolite malaoxon. In this work, the enantiomers of malathion and malaoxon were separated by high-performance liquid chromatography-mass/mass (HPLC-MS/MS) with chiral columns using acetonitrile/water or methanol/water as mobile phase, and the chromatographic conditions were optimized. Based on the chiral separation, the chiral residue analysis methods for the enantiomers in soil, fruit, and vegetables were set up. Two pairs of the enantiomers were better separated on CHIRALPAK IC chiral column, and baseline simultaneous separations of malathion and malaoxon enantiomers were achieved with acetonitrile/water (40/60, v/v) as mobile phase at a flow rate of 0.5 mL/min. The elution orders were −/+ for both malathion and malaoxon measured by an optical rotation detector. The chiral residue analysis in soil, fruit, and vegetables was validated by linearity, recovery, precision, limit of detection (LOD), and limit of quantification (LOQ). The LODs and LOQs for the enantiomers of malathion were 1 μg/kg and 3–5 μg/kg and 0.08 μg/kg and 0.20–0.25 μg/kg for malaoxon enantiomers. Good linear calibration curves for each enantiomer in the matrices were obtained within the concentration range of 0.02–12 mg/L. The mean recoveries of the enantiomers of malathion and malaoxon ranged from 82.26% to 109.04%, with RSDs of 0.71–8.63%.The results confirmed that this method was capable of simultaneously determining the residue of malathion and malaoxon in food and environmental matrix on an enantiomeric level.  相似文献   

9.
Very great advances have been made in the field of direct optical resolution of organic compounds by chromatographic techniques. Chiral capillary gas chromatography now permits a determination of the enantiomeric composition of a few nanograms of a compound present in a mixture of many others. Coupled with high resolution mass spectrometry the technique will additionally permit structural elucidation; of great interest in pheromone research and related areas. Analytical separations of enantiomers are now also carried out by high-performance liquid chromatography (HPLC) methods based on a variety of principles. Basically, two main types are used, differing as to whether the mobile phase has to be a chiral medium or not. Two-dimensional HPLC, whereby compounds separated on a non-chiral column are progressively and automatically transferred to a chiral column for optical resolution, has been used successsfully for chiral amino acid separations. Many different chiral sorbents for preparative LC and HPLC resolutions have been prepared; some of these are now used in columns capable of producing pure enantiomers from a given racemate at a rate of the order of one gram/hour in continuous, automatic HPLC procedures. Apart from all important applications of these results of optical resolution technology, an increased knowledge of the underlying chiral recognition phenomena responsible for enantioselection has also been achieved.  相似文献   

10.
A chiral capillary monolithic column for capillary electrochromatography (CEC) was prepared by covalent bonding of cellulose tris(3,5-dimethylphenylcarbamate) (CDMPC) on the silica monolithic matrix within the confine of a 50-microm i.d. bare fused silica capillary. Several pairs of enantiomers including neutral and basic analytes were baseline resolved on the newly prepared chiral capillary monolithic column in CEC with aqueous mobile phases. Fast enantioseparation was achieved due to the favorable dynamic properties of silica monolith. The covalent bonding of CDMPC as the chiral stationary phase for CEC also enabled the use of THF in mobile phase for enantioseparation of prazquantel by overcoming the incompatibility of THF and the physically coated CDMPC on a column.  相似文献   

11.
Cellulose tris(3,5-dimethylphenylcarbamate) (CDMPC) was coated on large-pore silica gels and used as a chiral stationary phase (CSP) for high-performance liquid chromatographic separation of enantiomers. The influences of pore size of silica gel, coating amount of CDMPC, coating solvent, and column temperature on chiral discrimination were investigated. CSPs prepared with a large-pore silica gel having a small surface area showed higher chiral recognition. The amount of CDMPC adsorbed on the silica gel influenced the chiral recognition of some racemates. Loading capacity of racemates increased with an increase of the amount of CDMPC supported on the silica gel, and a CSP coated with 45% CDMPC by weight can be used for both analytical and semi-preparative scale separations. The CDMPC, coated using acetone as the coating solvent, exhibited, in many cases, higher enantioselectivity than that obtained with tetrahydrofuran F as the coating solvent. © 1996 Wiley-Liss, Inc.  相似文献   

12.
Pyriproxyfen is a chiral insecticide, and over 10 metabolites have been identified in the environment. In this work the separations of the enantiomers of pyriproxyfen and its six chiral metabolites were studied by high‐performance liquid chromatography (HPLC). Both normal phase and reverse phase were applied using the chiral columns Chiralpak IA, Chiralpak IB, Chiralpak IC, Chiralcel OD, Chiralcel OD‐RH, Chiralpak AY‐H, Chiralpak AD‐H, Chiracel OJ‐H, (R,R)‐Whelk‐O 1, and Lux Cellulose‐3. The effects of the chromatographic parameters such as mobile phase composition and temperature on the separations were investigated and the enantiomers were identified with an optical rotation detector. The enantiomers of these targets could obtain complete separations (resolution factor Rs > 1.5) on Chiralpak IA, Chiralpak IB, Chiralcel OD, Chiralpak AY‐H, or Chiracel OJ‐H under normal conditions. Chiralcel OJ‐H showed the best chiral separation results with n‐hexane as mobile phase and isopropanol (IPA) as modifier. The simultaneous enantiomeric separation of pyriproxyfen and four chiral metabolites was achieved on Chiralcel OJ‐H under optimized condition: n‐hexane/isopropanol = 80/20, 15°C, flow rate of 0.8 ml/min, and UV detection at 230 nm. The enantiomers of pyriproxyfen and the metabolites A , C , and D obtained complete separations on Chiralpak IA, Chiralpak IC, and Lux Cellulose‐3 under reverse phase using acetonitrile/water as the mobile phase. The retention factors (k) and selectivity factors (α) decreased with increasing temperature, and the separations were better under low temperature in most cases. The work is of significance for the investigation of the environmental behaviors of pyriproxyfen on an enantiomeric level. Chirality 28:245–252, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

13.
This paper deals with the chiral separation of triiodothyronine (T3) and thyroxine (T4) by HPLC and micro-HPLC. The separation of T3 and T4 is of great pharmaceutical and clinical interest, since the enantiomers exhibit different pharmacological activities. The HPLC measurements were performed on a chiral stationary ligand-exchange phase using l-4-hydroxyproline bonded via 3-glycidoxypropyltrimethoxysilane to silica gel as a selector. Also a chiral teicoplanin (Chirobiotic ™®) phase was used.

In micro-HPLC the chiral separation behaviour of l-4-hydroxyproline, and of the macrocyclic antibiotics teicoplanin and teicoplanin aglycone was investigated for the enantioseparation of T3 and T4. l-4-Hydroxyproline was bonded to 3 μm and the glycopeptide antibiotics were bonded to 3.5 μm silica gel and separations were accomplished by microbore HPLC columns (10 cm × 1 mm I.D.). With both techniques and all chiral selectors investigated T3 and T4 were baseline resolved. micro-HPLC was found to be superior to analytical HPLC with respect to low consumption of packing material, mobile phase and analyte.  相似文献   


14.
Intact and fragmented cellobiohydrolase II (CBH II) were immobilized to silica and used as chiral stationary phases (CSPs) for liquid chromatographic separations of enantiomers. Both acidic and basic chiral compounds could be resolved into their enantiomers on these phases. The enantioselectivities obtained on intact CBH II and its core were almost equivalent. Comparisons were also made with CBH I silica. It was found that the new materials show quite different chiral and chromatographic properties. The enzymatic activity of the CBH II in free solution was influenced by alprenolol and mexiletine, both separated on the corresponding CSP. It indicates that the sites for catalysis and for chiral recognition overlap. © 1995 Wiley-Liss, Inc.  相似文献   

15.
High-performance liquid chromatographic methods were developed for the separation of the enantiomers of 12 beta-lactams. Direct separations were performed on chiral stationary phases (CSPs) containing cellulose-tris-3,5-dimethylphenyl carbamate (Chiralcel OD-RH and OD-H columns), the macrocyclic glycopeptide antibiotic teicoplanin (Chirobiotic T column), or teicoplanin aglycone (Chirobiotic TAG column) as the chiral selector. It was clearly established that, with teicoplanin-based columns, the teicoplanin aglycone was most often responsible for the enantioseparation of the beta-lactams. The difference in enantioselective free energy between the aglycone CSP and the teicoplanin CSP was in the range between 0.02 and 0.97 kJ mol(-1) for these beta-lactam stereoisomer separations. The separations were carried out with high selectivity and resolution, and the method was therefore suitable for monitoring of the enantiomeric excess after chiral synthesis. The Chirobiotic and Chiralcel columns appear to be highly complementary to one another. The best separation of this class of beta-lactam compound could be obtained using the Chirobiotic TAG in the polar-organic mode plus the Chiralcel OD-H in the normal-phase mode. The elution sequence was also determined.  相似文献   

16.
High‐performance liquid chromatographic methods were developed for the separation of the enantiomers of 19 β‐lactams. The direct separations were performed on chiral stationary phases containing either amylose‐tris‐3,5‐dimethylphenyl carbamate, (Kromasil® AmyCoat? column) or cellulose‐tris‐3,5‐dimethylphenyl carbamate, (Kromasil® CelluCoat? column) as chiral selector. The different methods were compared in systematic chromatographic examinations. The separations were carried out with good selectivity and resolution. The AmyCoat? and CelluCoat? columns appear to be highly complementary. The best separations of bi‐ and tricyclic β‐lactam stereoisomers were obtained with the AmyCoat? column, whereas the 4‐aryl‐substituted β‐lactams were better separated on the CelluCoat? column. The elution sequence was determined in all cases; no general rule could be established. Chirality 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
Direct enantiomeric separations of 17 chiral amidotetralins by means of high performance liquid chromatography were performed on stationary phases composed of tris(3,5-dimethylphenylcarbamate) derivatives of cellulose and amylose, coated on silica gel. The enantiomers of 15 out of 17 amidotetralins were resolved with a resolution of more than 1.5 by at least one of the chiral stationary phases. The stationary phases showed complementary results with regard to the separation of the amidotetralins, that is, pairs that did not separate on the cellulose-type column were well separated on the amylose-type column, and vice versa. There was no significant correlation between the chromatographic properties of the chiral stationary phases. © 1993 Wiley-Liss, Inc.  相似文献   

18.
This paper deals with the chiral separation of Fmoc- and Z-derivatives of natural and unnatural sulfur containing amino acids by micro-HPLC. The separations were carried out in microbore columns packed with a new material based on Ristocetin A bonded to 3.5 microm silica gel. The columns were run in the normal phase, polar organic mode as well as in the reversed phase mode, whereby best results were obtained with the reversed-phase mode using mixtures of triethylamine acetate (TEAA) buffer and methanol as mobile phases.  相似文献   

19.
Novel particle-loaded monolithic capillary electrochromatography (CEC) phases for chiral separations were prepared via ring-opening metathesis polymerization (ROMP) within the confines of fused silica columns with 200 microm i.d. using norborn-2-ene (NBE), 1,4,4a,5,8,8a-hexahydro-1,4,5,8,exo,endo-dimethanonaphthalene (DMN-H6) as monomers, 2-propanol and toluene as porogens, RuCl2(PCy3)2(CHPh) as initiator and silica-based particles containing the chiral selector. By suspending silica particles bearing the chiral selector in the polymerization mixture, particle-based monoliths are easily prepared. This approach has several advantages compared to particle-based separation media: (i) the concept of particle-based monoliths is broadly applicable, as any silica-based chiral phase can be used; (ii) they are inexpensive to prepare; and (iii) the manufacturing process is very simple, no sophisticated packing procedures or the preparation of end frits are required. To show the usefulness of this concept for chiral CEC, the chiral separation performance of particle-loaded CEC monoliths bearing teicoplanin aglycone, chemically bonded to 3 microm silica gel, was investigated for a set of glycyl-dipeptides. Particle-loaded ROMP CEC monoliths showed good separation performance for glycyl-dipeptides.  相似文献   

20.
Lavison G  Thiébaut D 《Chirality》2003,15(7):630-636
A stationary phase derived from ristocetin was evaluated for chiral separation in subcritical fluid chromatography. Separation of various enantiomers having different structures and pK(a) values were investigated using carbon dioxide and polar modifiers. The influence of modifiers, additives, temperature, and mobile phase flow rate on separations is presented. It is concluded that this stationary phase can be used for SFC despite its structural similarity with protein-derived stationary phases that can only be used in HPLC. The separation mechanisms could not be elucidated or predicted using these initial experiments. The separations of warfarin and, especially, efavirenz demonstrate the potential of this type of stationary phase for rapid SFC chiral separations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号