首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ability of staurosporine, a potent inhibitor of protein kinase C, to block certain cellular events initiated by 12-O-tetradecanoylphorbol-13-acetate (TPA) and epidermal growth factor (EGF) was examined. Treatment of MDA468 breast cancer cells with TPA decreases EGF binding to the cell surface and this effect is blocked by pretreatment with staurosporine with an IC50 of 30 nM. Either 10(-9) M EGF or 100 ng/ml TPA stimulated the accumulation of both EGF receptor and TGF-alpha mRNA and staurosporine (50 nM) completely abolished these mRNA accumulations. Staurosporine did not block EGF-stimulated tyrosine phosphorylation of its receptor as measured by immunoblotting with anti-phosphotyrosine antibodies. The ability of staurosporine to block the mRNA responses of either EGF or TPA suggests that these two agents have common signaling pathways and it implies a role for protein kinase C in the control of EGF receptor and TGF-alpha expression.  相似文献   

2.
The implication of protein kinase C in the phenomenon of pancreatic acinar cell desensitization to carbamylcholine, caerulein and the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) was investigated using a potent PKC inhibitor, staurosporine. At a concentration of 1 microM, staurosporine caused a maximum 64% inhibition of amylase release from rat pancreatic acini stimulated by 100 nM TPA. At 100 nM, staurosporine reduced by 50 to 55% amylase secretion elicited by maximal concentrations of carbamylcholine or caerulein without affecting their potency. Staurosporine was also able to prevent completely desensitization by TPA of the subsequent secretory response to carbamylcholine and caerulein. Furthermore, staurosporine also totally prevented desensitization by caerulein of the subsequent secretory response to caerulein. In contrast, staurosporine only partially prevented desensitization by carbamylcholine of the subsequent secretory response to carbamylcholine. These results indicate that staurosporine is a potent inhibitor of protein kinase C as it inhibited the secretory response to carbamylcholine, caerulein and TPA. They also suggest that desensitization of the secretory response induced by TPA and caerulein used a common pathway involving protein kinase C activation. Finally, desensitization by carbamylcholine is more complex as it is only partially prevented at staurosporine; therefore, protein kinase C activation seems to be one of the factors involved.  相似文献   

3.
We examined the effect of basic fibroblast growth factor (bFGF) on the activation of phosphatidylcholine-hydrolyzing phospholipase D in osteoblast-like MC3T3-E1 cells. bFGF stimulated both the formations of choline (EC50 was 30 ng/ml) and inositol phosphates (EC50 was 10 ng/ml). Calphostin C, an inhibitor of protein kinase C (PKC), had little effect on the bFGF-induced formation of choline. bFGF stimulated the formation of choline also in PKC down regulated cells. Genistein and methyl 2,5-dihydroxycinnamate, inhibitors of protein tyrosine kinases, significantly suppressed the bFGF-induced formation of choline. Sodium orthovanadate, an inhibitor of protein tyrosine phosphatases, enhanced the bFGF-induced formation of choline. In vitro kinase assay for FGF receptors revealed that FGF receptor 1 and 2 were autophosphorylated after FGF stimulation. bFGF dose-dependently stimulated DNA synthesis of these cells. These results strongly suggest that bFGF activates phosphatidylcholine-hydrolyzing phospholipase D through the activation of tyrosine kinase, but independently of PKC activated by phosphoinositide hydrolysis in osteoblast-like cells. © 1996 Wiley-Liss, Inc.  相似文献   

4.
To investigate a possible regulatory role of protein kinase C (PKC) on collagen-induced phospholipase activity, human platelets were prelabelled with either [3H] arachidonic acid or [14C]stearic acid and stimulated with collagen (2 micrograms/ml) in the presence or absence of the protein kinase inhibitor, staurosporine (1 microM). The collagen-induced release of [3H]arachidonic acid and formation of [14C]stearoyl-labelled lysophospholipids was inhibited by prior incubation with staurosporine, as was the formation of 3H-labelled thromboxane B2, thereby suggesting inhibition of the collagen-induced phospholipase A2 activity. The degradation of phosphatidylinositol (PI) and elevation of phosphatidic acid (PA) in platelets prelabelled with either radiotracer were also completely blocked by staurosporine pretreatment, indicating a suppression of collagen-stimulated phospholipase C activity. Suppressed phospholipase C activity may have been due to diminished thromboxane A2 formation since treatment with the dual cyclo-oxygenase/lipoxygenase inhibitor, BW755C, also resulted in an inhibition of the collagen-stimulated loss of 14C-labelled PI and rise in PA by 75-80%. Our results suggest that protein kinase, possible PKC, may be involved in the regulation of these phospholipases in collagen-stimulated human platelets.  相似文献   

5.
6.
Basic fibroblast growth factor is increasingly implicated in cellular growth, differentiation, angiogenesis and oncogenesis. In culture, basic fibroblast growth factor greatly improved the growth rate of bovine brain cortex capillary endothelial cells. Down-regulation of protein kinase C by prolonged treatment with phorbol esters prevented the mitogenic effect of basic fibroblast growth factor on capillary endothelial cells. Furthermore, staurosporine, a potent protein kinase inhibitor, showed strong antiproliferative activity against basic fibroblast growth factor-induced endothelial cell growth. Similarly, the chemotaxis effect of basic fibroblast growth factor on capillary endothelial cells was abolished by down-regulation of protein kinase C or by staurosporine treatment. Therefore, it is suggested that protein kinase C could account for part of the angiogenic effect of basic fibroblast growth factor.  相似文献   

7.
The motility of zoospores is critical in the disease cycles of Peronosporomycetes that cause devastating diseases in plants, fishes, vertebrates, and microbes. In the course of screening for secondary metabolites, we found that ethyl acetate extracts of a marine Streptomyces sp. strain B5136 rapidly impaired the motility of zoospores of the grapevine downy mildew pathogen Plasmopara viticola at 0.1 μg/ml. The active principle in the extracts was identified as staurosporine, a known broad-spectrum inhibitor of protein kinases, including protein kinase C (PKC). In the presence of staurosporine (2 nM), zoospores moved very slowly in their axis or spun in tight circles, instead of displaying straight swimming in a helical fashion. Compounds such as K-252a, K-252b, and K-252c structurally related to staurosporine also impaired the motility of zoospores in a similar manner but at varying doses. Among the 22 known kinase inhibitors tested, the PKC inhibitor chelerythrine was the most potent to arrest the motility of zoospores at concentrations starting from 5 nM. Inhibitors that targeted kinase pathways other than PKC pathways did not practically show any activity in impairing zoospore motility. Interestingly, both staurosporine (5 nM) and chelerythrine (10 nM) also inhibited the release of zoospores from the P. viticola sporangia in a dose-dependent manner. In addition, staurosporine completely suppressed downy mildew disease in grapevine leaves at 2 μM, suggesting the potential of small-molecule PKC inhibitors for the control of peronosporomycete phytopathogens. Taken together, these results suggest that PKC is likely to be a key signaling mediator associated with zoosporogenesis and the maintenance of flagellar motility in peronosporomycete zoospores.  相似文献   

8.
Bradykinin is a multifunctional mediator of inflammation believed to have a role in asthma, a disorder associated with remodeling of extracellular connective tissue. Using contraction of collagen gels as an in vitro model of wound contraction, we assessed the effects of bradykinin tissue on remodeling. Human fetal lung fibroblasts were embedded in type I collagen gels and cultured for 5 days. After release, the floating gels were cultured in the presence of bradykinin. Bradykinin significantly stimulated contraction in a concentration- and time-dependent manner. Coincubation with phosphoramidon augmented the effect of 10(-9) and 10(-8) M bradykinin. A B2 receptor antagonist attenuated the effect of bradykinin, whereas a B1 receptor antagonist had no effect, suggesting that the effect is mediated by the B2 receptor. An inhibitor of intracellular Ca2+ mobilization abolished the response; addition of EGTA to the culture medium attenuated the contraction of control gels but did not modulate the response to bradykinin. In contrast, the phospholipase C inhibitor U-73122 and the protein kinase C inhibitors staurosporine and GF-109203X attenuated the responses. These data suggest that by augmenting the contractility of fibroblasts, bradykinin may have an important role in remodeling of extracellular matrix that may result in tissue dysfunction in chronic inflammatory diseases, such as asthma.  相似文献   

9.
A three-dimensional collagen lattice can provide skin fibroblasts with a cell culture environment that simulates normal dermis. Such a collagen matrix environment regulates interstitial collagenase (type I metalloproteinase [MMP-1], collagenase-1) and collagen receptor α2 subunit mRNA expression in both unstimulated or platelet-derived growth factor–stimulated dermal fibroblasts (Xu, J., and R.A.F. Clark. 1996. J. Cell Biol. 132:239–249). Here we report that the collagen gel can signal protein kinase C (PKC)-ζ activation in human dermal fibroblasts. An in vitro kinase assay demonstrated that autophosphorylation of PKC-ζ immunoprecipitates was markedly increased by a collagen matrix. In contrast, no alteration in PKC-ζ protein levels or intracellular location was observed. DNA binding activity of nuclear factor κB (NF-κB), a downstream regulatory target of PKC-ζ, was also increased by fibroblasts grown in collagen gel. The composition of the NF-κB/Rel complexes that contained p50, was not changed. The potential role of PKC-ζ in collagen gel–induced mRNA expression of collagen receptor α2 subunit and human fibroblast MMP-1 was assessed by the following evidence. Increased levels of α2 and MMP-1 mRNA in collagen gel–stimulated fibroblasts were abrogated by bisindolylmaleimide GF 109203X and calphostin C, chemical inhibitors for PKC, but retained when cells were depleted of 12-myristate 13-acetate (PMA)–inducible PKC isoforms by 24 h of pretreatment with phorbol PMA. Antisense oligonucleotides complementary to the 5′ end of PKC-ζ mRNA sequences significantly reduced the collagen lattice–stimulated α2 and MMP-1 mRNA levels. Taken together, these data indicate that PKC-ζ, a PKC isoform not inducible by PMA or diacylglycerol, is a component of collagen matrix stimulatory pathway for α2 and MMP-1 mRNA expression. Thus, a three-dimensional collagen lattice maintains the dermal fibroblast phenotype, in part, through the activation of PKC-ζ.  相似文献   

10.
Staurosporine induced the association of purified protein kinase C (PKC) with inside-out vesicles from erythrocyte membranes. This effect was Ca2+ and concentration dependent, and maximum PKC translocation was observed at 50 nM staurosporine and 0.5 microM Ca2+, or higher. A significant effect of staurosporine was already obtained at free Ca2+ concentrations in the range found in resting cells. Under these conditions, the PKC activator 4-phorbol 12,13-dibutyrate was by itself inactive, but enhanced translocation by staurosporine. Protein phosphorylation by staurosporine-translocated PKC was inhibited in the presence or absence of phorbol esters. Translocation and inhibition of PKC occurred in the same staurosporine concentration range.  相似文献   

11.
Fibroblast-mediated collagen gel contraction has been used as an in vitro model of tissue remodeling. Thrombin is one of the mediators present in the milieu of airway inflammation and may be involved in airway tissue remodeling. We have previously reported that thrombin stimulates fibroblast-mediated collagen gel contraction partially through the PAR1/PKCε signaling pathway [Q. Fang, X. Liu, S. Abe, T. Kobayashi, X.Q. Wang, T. Kohyama, M. Hashimoto, T. Wyatt, S.I. Rennard, Thrombin induces collagen gel contraction partially through PAR1 activation and PKC-ε, Eur. Respir. J. 24 (2004) 918-924]. Here, we further report that the delta-isoform of PKC (PKCδ) is also activated by thrombin and involved in the thrombin-mediated augmentation of collagen gel contraction. Thrombin (10 nM) significantly increased PKCδ activity (over 5-fold increase after 15-30 min stimulation) and stimulated phosphorylation of PKCδ. Rottlerin, a PKCδ inhibitor, completely inhibited activation of PKCδ and partially blocked collagen gel contraction stimulated by thrombin. Similarly, PKCδ-specific siRNA significantly inhibited PKCδ activation without affecting PKCε expression and activation. Furthermore, suppression of PKCδ by siRNA resulted in partial blockade of thrombin-augmented collagen gel contraction. These results suggest that thrombin contributes to the tissue remodeling in inflammatory airways and lung diseases at least partially through both PKCδ and PKCε signaling.  相似文献   

12.
To learn more about the relationship between extracellular matrix organization, cell shape, and cell growth control, we studied DNA synthesis by fibroblasts in collagen gels that were either attached to culture dishes or floating in culture medium during gel contraction. After 4 days of contraction, the collagen density (initially 1.5 mg/ml) reached 22 mg/ml in attached gels and 55 mg/ml in floating gels. After contraction, attached collagen gels were well organized; collagen fibrils were aligned in the plane of cell spreading; and fibroblasts had an elongated, bipolar morphology. Floating collagen gels, however, were unorganized; collagen fibrils were arranged randomly; and fibroblasts had a stellate morphology. DNA synthesis by fibroblasts in contracted collagen gels was suppressed if the gels were floating in medium but not if the gels were attached, and inhibition was independent of the extent of gel contraction. Therefore, growth of fibroblasts in contracted collagen gels could be regulated by differences in extracellular matrix organization and cell shape independently of extracellular matrix density. We also compared the responses of fibroblasts in contracted collagen gels and monolayer culture to peptide growth factors including fibroblast growth factor, platelet-derived growth factor, transforming growth factor-beta, and interleukin 1. Cells in floating collagen gels were generally unresponsive to any of the growth factors. Cells in attached collagen gels and monolayer culture were affected similarly by fibroblast growth factor but not by the others. Our results indicate that extracellular matrix organization influenced not only cell growth, but also fibroblast responsiveness to peptide growth factors.  相似文献   

13.
The attachment of primary rat hepatocytes and fibroblasts to collagen type I is mediated by non-RGD-dependent β1 integrin matrix receptors. In this report we describe a novel 96-well microtiter plate assay for the quantification of fibroblast-mediated contraction of floating collagen type I gels. Fetal calf serum and platelet-derived growth factor (PDGF), but not transforming growth factor-β1, stimulated primary rat heart fibroblasts and normal human diploid fibroblasts (AG 1518) to contract collagen gels to less than 10% of the initial gel volume within a 24-h incubation period. Rabbit polyclonal antibodies directed to the rat hepatocyte integrin β1-chain inhibited the PDGF-stimulated collagen gel contraction. The inhibitory activity on contraction of the anti-β1 integrin IgG could be overcome by adding higher doses of PDGF. The contraction process was not blocked by anti-fibronectin IgG nor by synthetic peptides containing the tripeptide Arg-Gly-Asp (RGD), in concentrations that readily blocked fibroblast attachment to fibronectin-coated planar substrates. Autologous fibronectin or control peptides containing the tripeptide Arg-Gly-Glu were without effect. Immunofluorescence microscopy on fibroblasts grown within collagen gels revealed a punctate distribution of the β1 integrin and a lack of detectable levels of endogenously produced fibronectin. Collectively these data suggest a role for integrin collagen receptors with affinity for collagen fibers, distinct from the previously described RGD-dependent fibronectin receptors, in the fibronectin-independent PDGF-stimulated collagen gel contraction process.  相似文献   

14.
The intracellular mechanisms controlling mechano-dependent production of the two extracellular matrix proteins collagen XII and fibronectin were analyzed. Fibroblasts were cultured on either tensed (attached) or released (floating) collagen type-I gels, respectively. Collagen XII and fibronectin production was three- to fivefold higher under tensed than under released conditions. The general inhibitor of tyrosine phosphorylation, genistein (50 microM), and the MAP kinase inhibitor PD98059 (20 microM) selectively reduced collagen XII accumulation by tensed cultures. Addition of PD98059, but not genistein, downregulated tensile stress-induced tyrosine phosphorylation levels of ERK1/2 and focal adhesion kinase. Staurosporine as well as pretreatment with phorbol ester, which constitute means to downregulate classical and novel PKC activity, specifically blocked collagen XII but not fibronectin accumulation in tensed fibroblasts. ERK1/2 phosphorylation levels were not affected by staurosporine treatment. Chronic exposure to the protein kinase C inhibitors bisindolylmaleimide and calphostin C blocked increased production of both fibronectin and collagen XII from cells under tension. The data manifest that the mechano-dependent production of collagen XII and fibronectin requires separate pathways. The FAK-ERK1/2 pathway, a genistein-sensitive tyrosine kinase, and a distinct classical/novel PKC appear selectively required for increased production of collagen XII in cells under tensile stress, whereas fibronectin induction is regulated by a different PKC-dependent pathway.  相似文献   

15.
Nerve growth factor-stimulated mitogen-activated protein kinase (pp42/44MAP) kinase was characterized by sequential column chromatography on DEAE-Sephacel, phenyl-Sepharose CL4B, and S-200. The kinase displayed an apparent molecular mass of 42 kDa and reacted with an antiphosphotyrosine antibody. Peptide mapping of myelin basic protein revealed the presence of one phosphopeptide that was phosphorylated on Thr-97. pp42/44MAP kinase activity was dependent on Mg2+ and inhibited by K252a both in vitro and in vivo. Nerve growth factor-stimulated kinase activation was diminished by down-regulation of protein kinase C with 200 nM 12-phorbol 13-myristate acetate or with staurosporine (1 nM), a protein kinase C inhibitor. Genistein, a protein tyrosine kinase inhibitor, blocked nerve growth factor-mediated neurite extension as well as diminished activation of pp42/44MAP kinase. Our data demonstrate that activation of this kinase system by nerve growth factor displays a requirement for both protein kinase C as well as protein tyrosine kinase. In addition, other agents that are capable of promoting neurite outgrowth in PC12 cells, such as fibroblast growth factor or dibutyryl cyclic AMP, do so independently of activating this kinase system.  相似文献   

16.
Membranes from the human hepatoma cell line HepG2 mediate the phosphorylation on tyrosine of the asialoglycoprotein receptor. Manganese was the preferred divalent for phosphorylation although magnesium was effective at an 8-fold higher concentration. Calcium was ineffective at promoting phosphorylation and zinc was inhibitory. The protein kinase inhibitor staurosporine blocked asialoglycoprotein receptor phosphorylation on tyrosine in nanomolar concentrations (IC50 = 70 nM). In contrast another protein kinase C inhibitor, H7, was not inhibitory, suggesting that the effect of staurosporine was not mediated by protein kinase C inhibition. Concentrations of staurosporine that inhibit receptor phosphorylation by greater than 90% did not inhibit the phosphorylation of other protein substrates identified on SDS-polyacrylamide gels. These data suggest that staurosporine selectively and directly inhibits a membrane-associated tyrosine protein kinase.  相似文献   

17.
Fluid production in Locusta Malpighian tubules was stimulated by corpora cardiaca extract (c. 100%) and dibutyryl cAMP (c. 50%). Chelerythrine and staurosporine (Protein kinase C, PKC inhibitors) inhibited it in the range 0.07-60&mgr;M (IC(50)3&mgr;M), whereas Rp-cAMP (Protein kinase A, PKA inhibitor) caused inhibition over the concentration range 10-1000&mgr;M (IC(50)264&mgr;M). The protein phosphatase inhibitor, okadaic acid, was also inhibitory over the concentration range 0.1-1000nM (IC(50) 91nM). CC extract stimulation increased fluid [Na(+)] from 41 to 59mM and decreased [K(+)] from 127 to 107mM; stimulation with cAMP had no such effect. The PKC inhibitors reduced the [K(+)] in the secreted fluid from 126 to 107mM but had no effect on the [Na(+)]. Subsequent addition of CC extract stimulated fluid production and caused an increase in [Na(+)] from 41 to about 50mM. The addition of Rp-cAMP reduced fluid production but caused a decrease in [Na(+)] from 37 to 28mM and an increase in its [K(+)] from 124 to 148mM. Fluid production by Rp-cAMP inhibited tubules was not stimulated by corpora cardiaca extract or cAMP, but [Na(+)] rose to 36mM. Protein phosphorylation plays a role in the regulation of fluid production probably via the apical and basal membrane cation transporters.  相似文献   

18.
Normal human melanocytes, which rarely undergo mitosis in vivo, require many growth factors and growth-stimulating agents in vitro, such as basic fibroblast growth factor (bFGF) and cyclic adenosine monophosphate-stimulating agents or 12-0-tetrade-canoylphorbol 13-acetate (TPA), to proliferate. TPA, known as a protein kinase C (PKC)-activator, supports normal human melanocyte growth and influences on melanocyte dendrite formation. We have further confirmed the role of the PKC-mediated pathway in the TPA-dependent melanocyte functions—i.e., proliferation, morphology, and adhesion—using Calphostin C (CPC), a highly specific PKC inhibitor. Melanocytes require the continual presence of TPA for growth in culture. Addition of 8 nM TPA to the medium increased melanocyte growth by 198.4 ± 2.3% of that without TPA. The growth induction by TPA was suppressed by the addition of 10 nM CPC at the level comparable to that without TPA without any morphological alterations. Significant levels of PKC were detected in melanocytes chronically exposed to TPA as determined by Western blotting. A long-term exposure to TPA (more than 5 days) resulted in marked reduction of melanocyte adhesion to plastic cell culture dishes, both uncoated and coated with type IV collagen. By the addition of 10 nM CPC in the adhesion assay, the melanocyte adhesion was further inhibited in both conditions. These results indicated the critical involvement of PKC activation in the TPA-dependent melanocyte functions. Continuous activation of PKC by TPA is implicated in melanocyte growth stimulation. TPA also has effects on melanocyte morphology, causing the formation of long extended dendrites with little cytoplasm. However, inhibition of PKC activation by CPC does not affect the melanocyte morphology, and CPC reduces melanocyte adhesion to uncoated or type IV collagen coated plastic cell culture dishes.  相似文献   

19.
The signal transduction mechanism of protein kinase FA /GSK-3α by tyrosine phosphorylation in A431 cells was investigated using calphostin C as an inhibitor for protein kinase C (PKC). Kinase Fa /GSK-3α could be tyrosine-dephosphorylated and inactivated to ∼ 10% of control in a concentration-dependent manner by 0.1–10 μM calphostin C (IC50, ∼ 1 μM), as demonstrated by immunoprecipitation of kinase Fa /GSK-3α from cell extracts, followed by phosphoamino acid analysis and by immunodetection in an antikinase Fa /GSK-3α immunoprecipitate kinase assay. In sharp contrast, down-regulation of PKC by 0.05 μM calphostin C (IC50, ∼ 0.05 μM for inhibiting PKC in cells) or by tumor promoter phorbol ester TPA was found to have stimulatory effect on the cellular activity of kinase Fa /GSK-3α, when processed under identical conditions. Furthermore, TPA-mediated down-regulation of PKC was found to have no effect on calphostin C-mediated tyrosine dephosphorylation/inactivation of kinase Fa /GSK-3α. Taken together, the results provide initial evidence that the PKC inhibitor calphostin C may induce tyrosine dephosphorylation/inactivation of kinase Fa /GSK-3α in a pathway independent of TPA-mediated down-regulation of PKC, representing a new mode of signal transduction for the regulation of this multisubstrate/multifunctional protein kinase by calphostin C in cells. Since kinase Fa /GSK-3α is a possible carcinoma dedifferentiation/progression-promoting factor, the results further suggest calphostin C as a potential anticancer drug involved in blocking carcinoma dedifferentiation/progression, possibly via inactivation of protein kinase FA /GSK-3α in tumor cells. © 1996 Wiley-Liss, Inc.  相似文献   

20.
Interleukin 1 or tumor necrosis factor alpha can cause a transient down-modulation of epidermal growth factor (EGF) binding to quiescent fibroblast monolayers; the effect results from a reduction in EGF receptor (EGF-R) affinity and appears to be mediated by a protein kinase C (PKC)-independent mechanism. Here we show transient increases in EGF-R serine/threonine phosphorylation which are temporally coordinated with the effects on EGF binding; we also demonstrate that the cytokine-mediated phosphorylations, unlike those caused by PKC activators, have little discernible effect upon intrinsic EGF-R-associated tyrosine kinase activity. Cytokine-mediated EGF-R phosphorylation is resistant to staurosporine, an extremely potent inhibitor of PKC. Analysis of tryptic 32P-phosphopeptides reveals that Thr654, the unique site of PKC-mediated phosphorylation, is not phosphorylated in cytokine-treated cells, but a different, relatively acidic, peptide containing phosphoserine can be detected instead.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号