首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yolk formation in the oocytes of the free-living, marine copepod, Labidocera aestiva (order Calanoida) involves both autosynthetic and heterosynthetic processes. Three morphologically distinct forms of endogenous yolk are produced in the early vitellogenic stages. Type 1 yolk spheres are formed by the accumulation and fusion of dense granules within vesicular and lamellar cisternae of endoplasmic reticulum. A granular form of type 1 yolk, in which the dense granules within the cisternae of endoplasmic reticulum do not fuse, appears to be synthesized by the combined activity of endoplasmic reticulum and Golgi complexes. Type 2 yolk bodies subsequently appear in the ooplasm but their formation could not be attributed to any particular oocytic organelle. In the advanced stages of vitellogenesis, a single narrow layer of follicle cells becomes more developed and forms extensive interdigitations with the oocytes. Extra-oocytic yolk precursors appear to pass from the hemolymph into the follicle cells and subsequently into the oocytes via micropinocytosis. Pinocytotic vesicles fuse in the cortical ooplasm to form heterosynthetically derived type 3 yolk bodies.  相似文献   

2.
An analysis of differentiating oocytes of the gastropod, Ilyanassa obsoleta, has been made by techniques of light and electron microscopy. Early previtellogenic oocytes are limited by a smooth surfaced oolemma and are associated with each other by maculae adhaerentes. Previtellogenic oocytes are also distinguished by a large nucleus containing randomly dispersed aggregates of chromatin. Within the ooplasm are Golgi complexes, mitochondria and a few cisternae of the rough endoplasmic reticulum. When vitellogenesis begins, the oolemma becomes morphologically specialized by the formation of microvilli. One also notices an increase in the number of organelles and inclusions such as lipid droplets. During vitellogenesis there is a dilation of the saccules of the Golgi complexes and cisternae of the endoplasmic reticulum. Associated with the Golgi complexes are small protein-carbohydrate yolk precursors encompassed by a membrane. These increase in size by fusing with each other. The “mature” yolk body is a membrane-bounded structure with a central striated core and a granular periphery. At maturity a major portion of the ooplasmic constituents such as as mitochondria and lipid droplets occupy the animal region while the bulk of the population of yolk bodies are situated in the vegetal hemisphere. The follicle cells incompletely encompass the developing oocyte. In addition to the regularly occurring organelles, follicle cells are characterized by the presence of large quantities of rough endoplasmic reticulum and Golgi complexes whose saccules are filled with a dense substance. Associated with the Golgi saccules are secretory droplets of varied size. Amongst the differentiating oocytes and follicle cells are Leydig cells. These cells are characterized by a large vacuole containing glycogen. A possible function for the follicle and Leydig cells is discussed.  相似文献   

3.
In a hydrozoan jellyfish, the female gonad is differentiated from a specialized region of the epidermis near the manubrium. Changes in the oocytes during growth and vitellogenesis are described as observed with electron microscopic and cytochemical techniques. Three major types of yolk are formed; these include lipid, glycogen, and membrane-bound granules consisting of both protein and carbohydrate. The latter first appear evident within vesicular and cisternal elements of the numerous Golgi complexes. The orientation and structural variations noted between the endoplasmic reticulum and forming face of the Golgi complexes suggest that the protein component of the yolk granules may be transferred from the cisternae of the endoplasmic reticulum to the Golgi complex where it is joined to carbohydrate perhaps synthesized by the Golgi complexes. Stages in the release of the precursor yolk material sequestered in cisternal elements of the Golgi complexes are illustrated. The presence of coated and uncoated vesicles in the Golgi regions and their possible role in intracellular transport are described and discussed. The presence and possible method of morphogenesis of vesiculate yolk bodies are also described. What appear to represent invaginations of the oolemma extend into the ooplasm and display a special orientation with respect to lamellae of the rough-surfaced endoplasmic reticulum. Intraooplasmic synthesis appears to constitute the major pathway for protein-carbohydrate yolk deposition.  相似文献   

4.
Summary

Oogenesis in the marine turbellarian proseriat Monocelis lineata was investigated at the ultrastructural level. Oocyte differentiation is not synchronous so that successive stages of germ cell maturation were simultaneously detected in each of the two ovaries. Each developing oocyte is enveloped by follicle cell projections which are presumably involved in a morphologically undetectable support of vitellogenesis. The main features evidenced during oocyte differentiation are: (1) The synthesis of cortical granules by the rough endoplasmic reticulum and Golgi complex, occurring in the earlier stages of oogenesis; (2) The synthesis of yolk globules by the rough endoplasmic reticulum (RER) and Golgi complex, occurring in the later stages of oogenesis, namely late meiotic prophase I. Neither morphologically visible endocytotic activity, nor the presence of intercellular bridges, nor even the development of microvilli were observed at the oolemma or cortical ooplasm, so that the sole mechanism of vitellogenesis appears to be autosynthetic. The significance of these findings is discussed in relation to the taxonomic position of M. lineata and more generally in relation to the phylogenetic history of the class Turbellaria.  相似文献   

5.
We carried out a complete study of oogenesis in Centropages typicus using structural, ultrastructural and cytochemical data. The usual stages of oogenesis, i.e. germinative phase, premeiosis, primary and secondary vitellogenesis, were found. The latter two stages were the most typical. Primary vitellogenesis consisted of endogenous yolk accumulations; these substances, probably of lipoprotein or lipoglycoprotein nature, were produced at the granular endoplasmic reticulum level and then stocked in the reticulum cavities. During secondary vitellogenesis, endogenous yolk production continued, but we mainly observed the development of exogenous yolk accumulation (lipid droplets and protein globules) in the ooplasm. These accumulations resulted from the fusion of very numerous pinocytotic vesicles arising from the oolemma and containing substances probably brought to the oocytes by the hemolymph. The effect of various proteases on the vitellus globules caused a more or less marked digestion of their contents, tending to prove their protein nature. The end of vitellogenesis was marked by the appearance of vacuolar formations with dense lamellae which could correspond to cortical granules.  相似文献   

6.
The ultrastructural features of oocyte differentiation were studied in the marine triclad Cercyra hastata. Oocytes at several stages of maturation, each surrounded by follicle cell projections, are present within each of the two ovaries. A pre-vitellogenic and a vitellogenic stage have been detected in the oogenesis of C. hastata. The pre-vitellogenic stage is mainly characterized by an increase in the nuclear and nucleolar volume and activity, and the appearance and development of cortical granule precursors which are elaborated by the Golgi complex. In early phases of the vitellogenic stage, intense delamination and blebbing of the nuclear envelope occurs which probably contributes to an increase in number of cytoplasmic membranes and to transfer of nuclear material to the cytoplasm. The rough endoplasmic reticulum is extensively developed and often assumes a ‘whorl’ array. Several areas of yolk precursor formation appear in the whorls. Numerous 2–5 μm protein yolk globules are subsequently formed which appear surrounded by a double membrane (cisternae of the smooth endoplasmic reticulum) and become randomly distributed throughout the cytoplasm of mature oocytes. The peripheral ooplasm is occupied by a monolayer of electron-dense cortical granules. Finally, the evolutionary significance of the autosynthetic mechanism of yolk production is discussed.  相似文献   

7.
Yolk formation in Isohypsibius (Eutardigrada)   总被引:1,自引:0,他引:1  
Summary In Isohypsibius granulifer, yolk is autosynthesized. The Golgi apparatus is mainly responsible for the formation of yolk, which consists of irregular platelets with heterogeneous contents and a diameter of about 1 m. Dense globules, 300 nm in diameter, are visible among yolk platelets. These develop in the vesicles of the rough endoplasmic reticulum. The genesis of these vesicles is associated with the outer membrane of the nuclear envelope, which forms blebs intensively during previtellogenesis and early vitellogenesis. The developing oocytes are assisted by nurse cells, to which they are jointed by cytoplasmic bridges. For every oocyte, there are a number nurse cells, which are sister cells of the oocyte. In addition to rRNA, nurse cells transfer to the oocyte lipids, platelets of yolk formed in their cytoplasm, mitochondria and cortical granules.  相似文献   

8.
Electron microscope studies on Necturus maculosus oocytes ranging in size from 1.1–1.5 mm in diameter indicate the primary proteinaceous yolk to arise within structures referred to in other amphibian oocytes as yolk precursor sacs or bodies. The origin of these yolk precursor sacs appears to result from the activity of the Golgi complexes which form multivesicular and granular-vesicular bodies, the limiting membrane of which is at times incomplete. During differentiation, the yolk precursor sacs contain small vesicles similar in size to Golgi vesicles, larger vesicles similar to vesicular elements of the agranular endoplasmic reticulum and, on occasion, a portion of a mitochondrion. The interior of these sacs becomes granular, perhaps by a dissolution of the components just described, and soon becomes organized into a crystalline configuration. In oocytes 2.0–2.5 mm in diameter, an extensive micropinocytotic activity begins, continues throughout vitellogenesis, and constitutes the primary mechanism for the formation of secondary yolk protein. Numerous coated and smooth-surfaced vesicles, as well as electron-dense and electronlucent ones, fuse in the cortical ooplasm to form progressively larger yolk platelets.  相似文献   

9.
Differentiating oocytes and associated follicle cells of two species of amphineurans (Mollusca) Mopalia muscosa and Chaetopleura apiculata have been studied by techniques of light and electron microscopy. In addition to the regularly occurring organelles, the ooplasm of young oocytes contains large, randomly situated, basophilic regions. These regions are not demonstrable in mature eggs. As oocytes differentiate, lipid, pigment and protein-carbohydrate yolk bodies accumulate within the ooplasm. Concomitant with the appearance of pigment and the protein carbohydrate containing yolk bodies, the saccules of the Golgi complex become filled with a dense material. Associated with the Golgi complex are cisternae of the rough endoplasmic reticulum which are filled with an electron opaque substance which is thought to be composed of protein synthesized by this organelle. That portion of the cisternae of the endoplasmic reticulum facing the Golgi complex shows evaginations. These evaginations are thought to finalize into protein containing vesicles that subsequently fuse with the Golgi complex. Thus, the Golgi complex in these oocytes might serve as a center for packaging and concentrating the protein used in the construction of the protein containing pigment or protein-carbohydrate yolk bodies. The suggestion is made that the Golgi complex may also synthesize the carbohydrate portion of the formentioned yolk bodies. In an adnuclear position in young oocytes are some acid mucopolysaccharide containing vacuolar bodies. In mature eggs, these structures are found within the peripheral ooplasm and we have referred to them as cortical granules. There is no alteration of these cortical granules during sperm activation.  相似文献   

10.
Summary The origin of proteinaceous yolk in oocytes of Ciona, intestinalis appears to involve the activity of two kinds of vesicles derived from the Golgi complex. One kind of vesicle contains a granular product of considerable density while the contents of the other type of vesicle are of low density. Both types of vesicles become widely dispersed in the ooplasm during vitellogenesis. The high-density vesicle exhibits greater size variation than the lowdensity vesicle. The growing yolk globules possess an external often folded membrane enclosing both granular and vesicular elements. The granular-vesicular bodies are observed in wide size ranges and they appear to arise and increase in size by fusion or incorporation of numerous high-density vesicles, low-density vesicles, and smaller granular-vesicular bodies. The relationship of the developing yolk globules to ribosomes, pinocytotic vesicles, and vesicular endoplasmic reticulum is illustrated.This investigation was supported by research grants (GM-09229, HD-00699) from the National Instituts of Health, U. S. Public Health Service and a Career Development Award (GM-11,524) from the National Institute of General Medical Science.  相似文献   

11.
The investigation was carried out on two Cephalopods: Sepia officinalis and Loligo vulgaris. During previtellogenesis, the follicle cells (F.C.), originally arranged at the periphery of the oocyte, form strands, through the axis of which runs a blood vessel. The follicle strands then make their way down into the ooplasm. They end up by occuping the greater part of the volume of the oocyte. At this stage, despite their increase in size, the F.C. do not undergo conspicuous cytological transformations. In the ooplasm, excepting a few specialized structures (annulate lamellae), the organites display no notable differentiation. The onset of vitellogenesis is characterized by the appearance in the ooplasm of elements paracrystalline in structure. A zona pellucida appears between the oocyte and the F.C., and it is at the point that yolk of a permanent type begins to accumulate. Concurrently the F.C. undergo characteristic reorganization: hypertrophy of the nucleolar mass, multiplication of granular reticulum cisternae, increase both in the number and the size of the Golgi complexes. The saccules of the Golgi complex process a material rich in carbohydrate protein bearing the same cytochemical characteristics as the yolk. In the basal zone of the F.C., deep invaginations of the wall of blood vessels scallop the cytoplasm. F.C. look like "podocyte cells". Immunofluorescence study suggest there is no immunological identity between blood and yolk proteins. The formation of chorion is accompanied by a fresh transformation of the F.C.: the granular endoplasmic reticulum breaks up into rounded cisternae containing a dense material. Concurrently the morphology of the Golgi complex is modified. The earliest chorion elements accumulate, firstly in the forme of isolated lobules within the zona pellucida. They then fuse to make a continous layer bounding the microvilli of the F.C. These cells eventually enter into a phase of degeneration and disappear, whilst the oocyte is set free by dehiscence into coelomic cavity.  相似文献   

12.
In the annelid Enchytraeus albidus the ovary is composed of packets containing eight synchronously developing oocytes. Each oocyte in the packet is connected, via a bridge, to a common cytoplasmic mass. Developmental synchrony of oocytes within individual packets is probably related to the ooplasmic continuity. The young previtellogenic oocyte contains many polysomes, a few cisternae of smooth and rough endoplasmic reticulum, small Golgi complexes, and mitochondria. Many of the mitochondria are dumbbell-shaped and may thus represent division stages. Vitellogenesis is marked by the appearance of peripherally located lipid yolk and small, densely staining granules scattered throughout the ooplasm. There is an increase of smooth endoplasmic reticulum, mitochondria, and enlarged Golgi elements. Small multivesicular-like bodies, the early stages of developing yolk, are derived from the Golgi complex. The mature yolk sphere is bipartite and consists of (a) a variable number of dense spheres, the core bodies, which are produced in the ooplasm by the Golgi complex and which become embedded in (b) a dense matrix. The electron opaque tracer, horseradish peroxidase is incorporated into the oocyte and deposited in the matrix suggesting that this component of the yolk sphere is obtained by micropinocytosis. Enzyme digestions and various cytochemical techniques suggest that the core bodies are rich in carbohydrate, probably as glyco- or mucoproteins, and that the matrix is rich in lipid.  相似文献   

13.
Summary Comparative histochemical studies on the fish (Channa maruleus) and amphibian (Bufo stomaticus) oogenesis demonstrate a great similarity in the growth and differentiation of their egg follicle. The ooplasm, germinal vesicle and egg-membranes show distinct morphological and cytochemical changes during previtellogenesis and vitellogenesis.During previtellogenesis the various components of the follicle are engaged in the synthesis of protoplasm as shown by the proliferation of yolk nucleus substance, mitochondria and some lipid bodies in the ooplasm and of nucleoli in the germinal vesicle. The substance of the yolk nucleus consisting of proteins, lipoproteins and RNA first appears adjacent to the nuclear membrane. Numerous mitochondria of lipoprotein composition, and some lipid bodies consisting of unsaturated phospholipids lie in association with the yolk nucleus which forms substratum for the former. The lipid bodies, present inside the germinal vesicle, follicular epithelium, and adjacent to the plasma membrane in association with some pinocytotic vacuoles, have been considered to play a significant role in the active transport of some substances from the environment into the ooplasm and from the latter into the germinal vesicle. The follicular epithelium itself is very poorly developed, negating its appreciable role in the contribution of specific substances into the oocyte, which seem to be contributed by the germinal vesicle showing a considerable development of nuclear sap, basophilic granules and nucleoli consisting of RNA and proteins; many large nucleoli bodily pass into the cytoplasm during the previtellogenesis of Channa, where their substance is gradually dissolved. The intense, diffuse, basophilic substance of the cytoplasm is believed due to free ribosomes described in many previous ultrastructural studies.During vitellogenesis, the various deutoplasmic inclusions, namely carbohydrate yolk, proteid yolk and fatty yolk, are deposited in the ooplasm. The carbohydrate yolk bodies rich in carbohydrates originate in association with the plasma membrane and correspond to vesicles and cortical granules of previous studies. The proteid yolk consisting of proteins and some lipoproteins, and fatty yolk containing first phospholipids and some triglycerides and then triglycerides only are deposited under the influence of yolk nucleus substance, mitochondria and cytoplasm. The mitochondria and yolk nucleus substance foreshadow in some way the pattern of these two deutoplasmic inclusions and persist at the animal pole of mature egg while the other inclusions of previtellogenesis disappear from view. The pigment granules, which also show a gradient from the animal to vegetal pole in Bufo, are also formed in association with yolk nucleus substance and mitochondria. Some glycogen also appears in both the species. The nuclear membrane becomes irregular due to the formation of lobes. The lipid bodies of the germinal vesicle come to lie outside the nuclear membrane, suggesting active transport of some substances into the ooplasm; many nucleoli bodily pass into the ooplasm of Bufo, where they are gradually absorbed. The amount of basophilic granules is considerably increased in the germinal vesicle during vitellogenesis. Various egg-membranes such as outer epithelium, thin theca, single-layered follicular epithelium, zona pellucida or vitelline membrane surround the vitellogenic oocytes. The zona pellucida formed between the oocyte and follicle cells consists of a carbohydrate-protein complex. The follicle cells show lipid droplets, mitochondria and basophilic substance in their cytoplasm. The various changes that occur in the components of the follicle during vitellogenesis seem to be initiated by gonadrotrophins formed under the influence of specific environmental conditions.The author wishes to express sincere appreciation and gratitude to Dr. Gilbert S. Greenwald, who has made the completion of this investigation possible.Ph. D. Population Council Post-doctoral Fellow.  相似文献   

14.
Ultrastructural features of the ovary and oogenesis in the polychaete Capitella jonesi (Hartman, '59) have been described. The ovaries are paired, sac-like follicles suspended by mesenteries in the ventral coelom throughout the midbody region of the mature worm. Oogenesis is unsynchronized and occurs entirely within the ovary, where developing gametogenic stages are segregated spatially within a germinal and a growth zone. Multiplication of oogonia and differentiation of oocytes into the late stages of vitellogenesis occur in the germinal region of the ovary, whereas late-stage vitellogenic oocytes and mature eggs are located in a growth zone. Follicle cells envelop the oocytes in the germinal zone of the ovary and undergo hypertrophy and ultrastructural changes that correlate with the onset of vitellogenesis. These changes include the development of extensive arrays of rough ER and numerous Golgi complexes, formation of microvilli along the surface of the ovary, and the initiation of extensive endocytotic activity. Oocytes undergo similar, concomitant changes such as the differentiation of surface microvilli, the formation of abundant endocytotic pits and vesicles along the oolemma, and the appearance of numerous Golgi complexes, cisternae of rough ER, and yolk bodies. Yolk synthesis appears to occur by both autosynthetic and heterosynthetic processes involving the conjoined efforts of the Golgi complex and rough ER of the oocyte and the probable addition of extraovarian (heterosynthetic) yolk precursors. Evidence is presented that implicates the follicle cells in the synthesis of yolk precursors for transport to the oocytes. At ovulation, mature oocytes are released from the overy after the overlying follicle cells apparently withdraw. Bundles of microfilaments within the follicle cells may play a role in this withdrawal process.  相似文献   

15.
The ultrastructure of the female gonad of the land planarian Geoplana burmeisteri was investigated by means of electron microscopy and cytochemical techniques. It consists of two small germaria located ventral to the intestine and of two irregular, lateral rows of vitelline follicles, both enveloped by a tunica composed of an extracellular lamina and an inner sheath of accessory cells. Accessory cell projections completely surround developing oocytes and vitellocytes. The main feature of oocyte maturation is the appearance of chromatoid bodies and the development of the rough endoplasmic reticulum (RER) and Golgi complexes. These organelles appear to be correlated with the production of egg inclusions of medium electron density, about 1.5-1.8 microm in diameter, which remain scattered in the ooplasm of mature oocytes. On the basis of cytochemical tests demonstrating their glycoprotein composition, these inclusions were interpreted as residual yolk globules. Vitellocytes are typical secretory cells with well-developed RER and Golgi complexes that are mainly involved in the production of yolk globules and eggshell globules, respectively. Eggshell globules appear to arise from repeated coalescence of small Golgi-derived vesicles and, at an intermediate stage of maturation, show a multigranular pattern. Later, after vesicle fusion, they reach a diameter of 1.3-1.6 microm when completely mature and show a meandering/concentric pattern, as is typical of the situation seen in most Proseriata and Tricladida. The content of yolk globules is completely digested by pronase, while the content of eggshell globules is unaffected. Mature vitellocytes contain, in addition, a large quantity of glycogen and lipid droplets as further reserve material. On the basis of the ultrastructural characteristics of the female gonad described above and in relation to the current literature, we conclude that G. burmeisteri appears to be more closely related to the freshwater triclads, in particular to members of the Dugesiidae, than to the marine triclads.  相似文献   

16.
Oocytes from the land hermit crab, Coenobita clypeatus, in various stages of vitellogenesis were examined by light and electron microscopy. Early vitellogenic oocytes are characterized by accumulations of discrete vesicles of endoplasmic reticulum in the perinuclear cytoplasm. As oocytes develop, the endoplasmic reticulum becomes abundant, and numerous Golgi complexes are seen. There is a well developed Golgi-endoplasmic reticulum interaction. Within the confines of the reticulum are discrete intracisternal granules, which can be seen coalescing into electron-dense yolk bodies. Lipid accumulation is seen throughout the cytoplasm. Coincident with the burst of intra-oocytic metabolism are oolemma modifications and micropinocytosis, which provide ultrastructural evidence for extra-oocytic yolk production. The mature oocyte contains numerous yolk and lipid vesicles of varying electron density that comprise both intra- and extra-oocytic substrates.  相似文献   

17.
凡纳滨对虾卵母细胞卵黄发生的超微结构   总被引:11,自引:0,他引:11  
利用电镜研究凡纳滨对虾卵母细胞卵黄发生的全过程。结果表明 :凡纳滨对虾卵黄的发生是双源性的。卵黄发生早、中期是内源性卵黄大量合成的阶段 ,卵黄发生中、后期则以外源性卵黄的合成为主。内源性卵黄主要由内质网、线粒体、核糖体、溶酶体、高尔基器等多种胞器活跃参与形成。其中数量众多的囊泡状粗面内质网是形成内源性卵黄粒的最主要的细胞器 ;部分线粒体参与卵黄粒的合成并自身最终演变为卵黄粒 ;丰富的游离核糖体合成了大量致密的蛋白质颗粒并在卵质中直接聚集融合成无膜的卵黄粒 ;溶酶体通过吞噬、消化内含物来形成卵黄粒和脂滴 ,且方式多样 ;高尔基器不直接参与形成卵黄粒。外源性卵黄主要通过卵质膜的微吞饮活动从卵周隙或卵泡细胞中摄取外源物质来形成  相似文献   

18.
M Durfort 《La Cellule》1976,71(2):207-216
In the cytoplasm of the ovocytes of Mytilus edulis, at the beginning of the yolk elaboration, but especially at the end of vitellogenesis, the polymorphous rough endoplasmic reticulum is very well developed. The concentrical disposition of the cisternae around of the mitochondria, the lipid inclusions and some granules of the yolk, are very frequent and must be considered as a system for increasing the area of proteic synthesis.  相似文献   

19.
The cytoarchitecture of the female gonad of the endosymbiont umagillid Syndesmis patagonica has been investigated using electron microscopy and cytochemical techniques. The female gonad consists of paired germaria and vitellaria located behind the pharynx in the mid‐posterior region of the body. Both the germaria and the vitellaria are enveloped by an outer extracellular lamina and an inner sheath of accessory cells which contribute to the extracellular lamina. Oocyte maturation occurs completely during the prophase of the first meiotic division. Oocyte differentiation is characterized by the appearance of chromatoid bodies and the development of endoplasmic reticulum and Golgi complexes. These organelles appear to be involved in the production of round granules, about 2–2.5 μm in diameter, with a homogeneous electron‐dense core surrounded by a granular component and a translucent halo delimited by a membrane. These egg granules migrate to the periphery of mature oocytes, are positive to the cytochemical test for polyphenol detection, are unaffected by protease and have been interpreted as eggshell granules. The mature oocytes also contain a small number of yolk granules, lipid droplets, and glycogen particles scattered throughout the ooplasm. The vitellaria are branched organs composed of vitelline follicles with vitellocytes at different stages of maturation. Developing vitellocytes contain well‐developed rough endoplasmic reticulum and small Golgi complexes involved in the production of eggshell and yolk globules. Eggshell globules are round, measure 4–5 μm in diameter, and have a mosaic‐like patterned content which contains polyphenols. The yolk globules, 2–3 μm in diameter, show a homogeneous protein content of medium electron density, devoid of polyphenols, and completely digested by protease. The mature vitellocytes also contain glycogen as further reserve material. The presence of polyphenolic eggshell granules in the oocytes and of polyphenolic eggshell globules with a mosaic‐like pattern in the vitellocytes have been considered apomorphic features of the Rhabdocoela + Prolecithophora. J. Morphol. 275:703–719, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

20.
The ultrastructure of the ovary and the developing oocytes of the polychaete Kefersteinia cirrata have been described. The paired ovaries occur in all segments from the 11th to the posterior. Each consists of several finger-like lobes around an axial genital blood vessel. Oogenesis is well synchronised, young oocytes start to develop in September and vitellogenesis begins in January and is completed by May.

The young oocytes are embedded among the peritoneal cells of the blood vessel wall which have accumulations of glycogen and other storage products. Each oocyte becomes associated with a follicle cell with abundant rough endoplasmic reticulum. Yolk synthesis involves the accumulation of electron dense granules along the cisternae of the abundant rough endoplasmic reticulum. Active Golgi complexes are present and are involved in the production of cortical alveoli. The oocyte has branched microvilli, which contact the follicle cells or blood sinuses between the follicle cells and peritoneal cells. In post-spawning individuals the lysosome system of the follicle cells is hypertrophied and the cells play a role in oocyte breakdown and resorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号