首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Flavonoids have been proposed to act as chemopreventive agents in numerous epidemiological studies and have been shown to inhibit angiogenesis and proliferation of tumor cells and endothelial cells in vitro. Angiogenesis requires tightly controlled extracellular matrix degradation mediated by extracellular proteolytic enzymes including matrix metalloproteinases (MMPs) and serine proteases, in particular, the urokinase-type plasminogen activator (uPA)-plasmin system. In this study, we have investigated the antiangiogenic mechanism of the flavonoids, genistein, apigenin, and 3-hydroxyflavone in a human umbilical vein endothelial cell (HUVEC) model. The stimulation of serum-starved HUVECs with vascular endothelial growth factor/basic fibroblast growth factor (VEGF/bFGF) caused marked increase in MMP-1 production and induced the pro-MMP-2 activation accompanied by the increase in MT1-MMP expression. However, pretreatment with flavonoids before VEGF/bFGF stimulation completely abolished the VEGF/bFGF-stimulated increase in MMP-1 and MT1-MMP expression and pro-MMP-2 activation. Genistein blocked VEGF/bFGF-stimulated increase in TIMP-1 expression and decrease in TIMP-2 expression. Apigenin and 3-hydroxyflavone further decreased TIMP-1 expression below basal level and completely abolished TIMP-2 expression. VEGF and bFGF stimulation also significantly induced uPA expression, most strikingly the level of 33 kDa uPA, and increased the expression of PA inhibitor (PAI)-1. Genistein, apigenin, and 3-hydroxyflavone effectively blocked the generation of 33 kDa uPA, and further decreased the activity of the 55 kDa uPA and the expression of PAI-1 below the basal level. In conclusion, these data suggest that genistein, apigenin, and 3-hydroxyflavone inhibit in vitro angiogenesis, in part via preventing VEGF/bFGF-induced MMP-1 and uPA expression and the activation of pro-MMP-2, and via modulating their inhibitors, TIMP-1 and -2, and PAI-1.  相似文献   

2.
In order for T cells to exit the circulatory system, traverse the endothelial basement membrane, and arrive in target tissues, these cells must attach to and degrade basement membrane proteins. 12-O-tetradecanoylphorbol-13-acetate (TPA) has been shown to stimulate lymphoid cell adhesion to basement membrane components. We have used TPA to study the ability of human lymphoid cells to secrete type IV collagenases, enzymes capable of degrading basement membrane proteins. Here, we found that human primary T cells and H-9 lymphoid cells synthesize the 92 kDa type IV collagenase (gelatinase B) and TPA stimulates the synthesis and secretion of this protease. Peak TPA-stimulated gelatinase B secretion and mRNA accumulation were observed 9 hours after TPA treatment, while the peak adhesion to type IV collagen was observed only 3 hours after TPA treatment. The protein kinase C inhibitor, H-7, inhibited TPA-stimulated gelatinase B secretion. Both the primary T cells and H-9 lymphoid cells also expressed the mRNA for the tissue inhibitor of metalloproteinase-1 (TIMP-1). These data demonstrate that TPA - stimulated lymphoid cells adhere to type IV collagen and subsequently synthesize and secrete gelatinase B and TIMP-1. We conclude that lymphoid cell extravasation may involve cellular employment of adhesion mechanisms prior to degradation of the matrix, which is similar to the process of extravasation used by metastatic cells. © 1993 Wiley-Liss, Inc.  相似文献   

3.
Basic fibroblast growth factor (bFGF) is a known mitogen for vascular smooth muscle cells and has been implicated as having a role in a number of proliferative vascular disorders. Binding of bFGF to heparin or heparan sulfate has been demonstrated to both stimulate and inhibit growth factor activity. The activity, towards bFGF, of heparan sulfate proteoglycans present within the vascular system is likely related to the chemical characteristics of the glycosaminoglycan as well as the structure and pericellular location of the intact proteoglycans. We have previously shown that endothelial conditioned medium inhibits both bFGF binding to vascular smooth muscle cells and bFGF stimulated cell proliferation in vitro. In the present study, we have isolated proteoglycans from endothelial cell conditioned medium and demonstrated that they are responsible for the bFGF inhibitory activity. We further separated endothelial secreted proteoglycans into two fractions, PG-A and PG-B. The larger sized fraction (PG-A) had greater inhibitory activity than did PG-B for both bFGF binding and bFGF stimulation of vascular smooth muscle cell proliferation. The increased relative activity of PG-A was attributed, in part, to larger heparan sulfate chains which were more potent inhibitors of bFGF binding than the smaller heparan sulfate chains on PG-B. Both proteoglycan fractions contained perlecan-like core proteins; however, PG-A contained an additional core protein (approximately 190 kDa) that was not observed in PG-B. Both proteoglycan fractions bound bFGF directly, and PG-A bound a significantly greater relative amount of bFGF than did PG-B. Thus the ability of endothelial heparan sulfate proteoglycans to bind bFGF and prevent its association with vascular smooth muscle cells appears essential for inhibition of bFGF-induced mitogenesis. The production of potent bFGF inhibitory heparan sulfate proteoglycans by endothelial cells might contribute to the maintenance of vascular homeostasis. J. Cell. Physiol. 172:209–220, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

4.
5.
The effect of human TNF on cultured human microvascular endothelial (HME) cells was examined. Incubation with TNF alone transformed the morphology of HME cells from a cobblestone-like appearance into a disordered array of criss-crossed, elongated, spindle-shaped cells. Coadministration of epidermal growth factor (EGF) and TNF caused even more dramatic morphologic changes than TNF alone. Addition of basic fibroblast growth factor or insulin-like growth factor-I showed rather weak effects on cell morphology than EGF. Cell growth of HME cells was stimulated up to two-fold by TNF whereas addition of EGF additively enhanced the growth rate. Treatment of HME cells with 10 ng/ml EGF increased the binding of 125I-TNF, and Scatchard analysis showed increased TNF-R number by EGF treatment. Cellular response to TNF in the absence or presence of EGF was assessed by analyzing SDS-PAGE patterns of secreted proteins from HME cells. TNF enhanced the secretion of a protein of molecular weight 25,000 Da (25 kDa) which was found to be IL-6. In contrast, secretion of a polypeptide of 29 kDa was significantly increased when HME cells were treated with EGF, but not with TNF. Coadministration of TNF and EGF synergistically increased the secretion of the 29-kDa protein. This 29-kDa protein was found to be tissue inhibitor of metalloproteinases when assayed with antitissue inhibitor of metalloproteinases antibody. TNF and EGF also enhanced secretion of collagenase with Mr of approximately 55 kDa. Increased steady state levels of the inhibitor mRNA were observed when HME cells were treated with EGF, and coadministration of TNF further increased the levels. The morphologic transformation of HME cells by TNF and/or EGF is discussed in relation to their expression of the secreted proteins.  相似文献   

6.
7.
Summary The hormonal control of tissue inhibitor of metalloproteinase-1 (TIMP-1) gene expression and production by growth factors, gonadotrophins, and serum factors in cultured bovine granulosa cells (BGC) were investigated. Confluent cultures of BGC were exposed to various factors in a defined medium and levels of TIMP-1 in the conditioned medium were determined by enzyme immunoassay. Basic fibroblast growth factor (bFGF) and acidic fibroblast growth factor (aFGF) showed potent stimulation of cell proliferation and TIMP-1 production by BGC, while insulin stimulated growth but not TIMP-1 production. Basic FGF stimulated TIMP-1 production and BGC cell proliferation in a dose-dependent manner. A time course of TIMP-1 production showed substantially increased levels between 18 and 24 h in both control and bFGF-stimulated BGC cultures with bFGF-stimulated cultures having markedly higher TIMP-1 production at all time points. Consistent with the TIMP-1 production data, bFGF and aFGF increased the expression of TIMP-1 mRNA as determined by northern blot analysis, while insulin, inhibited TIMP-1 mRNA levels. These results indicate that FGF-induced TIMP-1 production by BGC may support bovine embryo development in vitro.  相似文献   

8.
We investigated the stimulation of early cellular events resulting from the interaction of the growth factor basic FGF (bFGF) and of the growth inhibitor transforming growth factor beta-type 1 (TGFβ1), with their specific receptors on bovine endothelial cells. At mitogenic concentrations, bFGF stimulated the rapid release of arachidonic acid and its metabolites from (3H)-arachidonic acid labeled cells. When arachidonic acid metabolism was stimulated by addition of the calcium ionophore A23187, the effect of bFGF was amplified. Nordihydroguaïaretic acid, an inhibitor of the lipoxygenase pathway of arachidonic acid metabolism, decreased the mitogenic effect of bFGF, whereas indomethacin, an inhibitor of the cyclooxygenase pathway, was ineffective. These findings suggest that metabolism of arachidonic acid to lipoxygenase products may be necessary for the mitogenic effect of bFGF. Basic FGF did not stimulate the production of inositol phosphates from cells labelled with myo-(2-3H)-inositol nor did it induce calcium mobilization, as measured by fura-2 fluorescence, indicating that bFGF does not activate phosphoinositide specific phospholipase C in endothelial cells, but rather, that bFGF-induced arachidonic acid metabolism is mediated by another phospholipase. TGFβ1, which inhibits basal and bFGF-induced endothelial cell growth, had no effect on arachidonic acid matabolism and inositol phosphate formation and did not prevent bFGF-induced arachidonic acid metabolism. These results suggest that the inhibitory action of TGFβ1 on endothelial cell growth occurs through different mechanisms.  相似文献   

9.
The family of tissue inhibitors of metalloproteinases (TIMPs) exhibits diverse physiological/biological functions including the inhibition of active matrix metalloproteinases, regulation of proMMP activation, cell growth, and the modulation of angiogenesis. TIMP-1 is a secreted protein that can be detected on the cell surface through its interaction with surface proteins. The diverse biological functions of TIMP-1 are thought to lie, in part, in the kinetics of TIMP-1/MMP/surface protein interactions. Proteins anchored by glycoinositol phospholipids (GPIs), when purified and added to cells in vitro, are incorporated into their surface membranes. A GPI anchor was fused to TIMP-1 to generate a reagent that could be added directly to cell membranes and thus focus defined concentrations of TIMP-1 protein on any cell surface independent of protein-protein interaction. Unlike native TIMP-1, exogenously added GPI-anchored TIMP-1 protein effectively blocked release of MMP-2 and MMP-9 from osteosarcoma cells. TIMP-1-GPI was a more effective modulator of migration and proliferation than TIMP-1. While control hTIMP-1 protein did not significantly affect migration of primary microvascular endothelial cells at the concentrations tested, the GPI-anchored TIMP-1 protein showed a pronounced suppression of endothelial cell migration in response to bFGF. In addition, TIMP-1-GPI was more effective at inducing microvascular endothelial proliferation. In contrast, fibroblast proliferation was suppressed by the agent. Reagents based on this method should assist in the dissection of the protease cascades and activities involved in TIMP biology. Membrane-fixed TIMP-1 may represent a more effective version of the protein for use in therapeutic expression.  相似文献   

10.
Thrombospondin is an inhibitor of angiogenesis that modulates endothelial cell adhesion, proliferation, and motility. Synthetic peptides from the second type I repeat of human thrombospondin containing the consensus sequence -Trp-Ser-Pro-Trp- and a recombinant heparin binding fragment from the amino-terminus of thrombospondin mimic several of the activities of the intact protein. The peptides and heparin-binding domain promote endothelial cell adhesion, inhibit endothelial cell chemotaxis to basic fibroblast growth factor (bFGF), and inhibit mitogenesis and proliferation of aortic and corneal endothelial cells. The peptides also inhibit heparin-dependent binding of bFGF to corneal endothelial cells. The antiproliferative activities of the peptides correlate with their ability to bind to heparin and to inhibit bFGF binding to heparin. Peptides containing amino acid substitutions that eliminate heparin-binding do not alter chemotaxis or proliferation of endothelial cells. Inhibition of proliferation by the peptide is time-dependet and reversible. Thus, the antiproliferative activities of the thrombospondin peptides and recombinant heparin-binding domain result at least in part from competition with heparin-dependent growth factors for binding to endothelial cell proteoglycans. These results suggest that both the Trp-Ser-Xaa-Trp sequences in the type I repeats and the amino-terminal domain play roles in the antiproliferative activity of thrombospondin.  相似文献   

11.
A three-dimensional culture model for isolated murine pelage hair follicles in a type I collagen gel has been utilized to study the effects of selected growth factors on follicle cell proliferation and release of collagenolytic factors. Cultured follicle organoids differentially express cytokeratins 6 and 14 in a pattern suggesting they contain cells of the outer root sheath, inner root sheath and follicle matrix. Using incorporation of [3H]thymidine as a measure of proliferation, follicle organoids show a peak of DNA synthesis between day 1 and 5 of culture, depending on plating density, and then have a low rate of DNA synthesis. Thymidine incorporation is stimulated by transforming growth factor-alpha (TGF-alpha) in a dose-dependent response. Only peripheral cells presumably of the outer root sheath, incorporate thymidine in basal or stimulated conditions. TGF-beta 1 and TGF-beta 2 inhibit constitutive cell proliferation and oppose growth stimulation by TGF-alpha. Hair follicles lyse the collagen gel matrix when exposed to certain cytokines. Epidermal growth factor (EGF) and TGF-alpha stimulate gel lysis, but TGF-beta 1, TGF-beta 2 and cholera toxin do not. Other skin-derived cells, such as interfollicular epidermal cells, dermal fibroblasts, or combinations thereof, do not lyse gels in this culture model even when exposed to growth factors. Combinations of EGF or TGF-alpha with TGF-beta 1 or TGF-beta 2 are synergistic for collagenase release. These cytokines stimulate release of multiple species of matrix metalloproteinases, but the 92-kDa and 72 kDa type IV procollagenases and their activated derivatives predominate on zymograms. In cytokine-stimulated follicles, both peripheral and centrally located cells in the organoids express the 72-kDa type IV collagenase and a similar immunostaining pattern is present in developing follicles in vivo. Thus growth factors appear to work in concert for certain hair follicle responses and in opposition for others. These combined actions may play a role in different phases of hair follicle development that require cell replication and invasion into the deeper dermis.  相似文献   

12.
Arsenic trioxide (As2O3, diarsenic oxide) has recently been reported to induce apoptosis and inhibit the proliferation of various human cancer cells derived from solid tumors as well as hematopoietic malignancies. In this study, the in vitro effects of As2O3 and tetraasrsenic oxide (As4O6) on cell cycle regulation and basic fibroblast growth factor (bFGF)- or vascular endothelial growth factor (VEGF)-stimulated cell proliferation of human umbilical vein endothelial cells (HUVEC) were investigated. Significant dose-dependent inhibition of cell proliferation was observed when HUVEC were treated with either arsenical compound for 48 h, and flow cytometric analysis revealed that these two arsenical compounds induced cell cycle arrest at the G1 and G2/M phases--the increases in cell population at the G1 and G2/M phase were dominantly observed in As2O3- and As4O6-treated cells, respectively. In both arsenical compounds-treated cells, the protein levels of cyclin A and CDC25C were significantly reduced in a dose-dependent manner, concomitant to the reduced activities of CDK2- and CDC2-associated kinase. In G1-synchronized HUVEC, the arsenical compounds prevented the cell cycle progression from G1 to S phase, which was stimulated by bFGF or VEGF, through the inhibition of growth factor-dependent signaling. These results suggest that arsenical compounds inhibit the proliferation of HUVEC via G1 and G2/M phase arrest of the cell cycle. In addition, these inhibitory effects on bFGF- or VEGF-stimulated cell proliferation suggest antiangiogenic potential of these arsenical compounds.  相似文献   

13.
Complex role of matrix metalloproteinases in angiogenesis   总被引:49,自引:0,他引:49  
Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) play a significant role in regulating angiogenesis,the process of new blood vessel formation.Interstitial collagenase (MMP-1),72kDa gelatinase A/type IV collagenase (MMP-2),and 92 kDA gelatinase B/type IV collagenase (MMP-9) dissolve extracellular matrix (ECM) and may initiate and promote angiogenesis.TIMP-1,TIMP-2,TIMP-3,and possibly,TIMP-4 inhibit neovascularization.A new paradign is emerging that matrilysin (MMP-7),MMP-9,and metalloelastase (MMP-12) may block angiogenesis by converting plasminogen to angiostatin,which is one of the most potent angiogenesis antagonists.MMPs and TIMPs play a complex role in regulating angiogenesis.An understanding of the biochemical and cellular pathways and mechanisms of angiogenesis will provide important information to allow the control of angiogenesis,e.g.the stimulation of angiogenesis for coronary collateral circulation formation;while the inhibition for treating arthritis and cancer.  相似文献   

14.
Tissue-type plasminogen activator (tPA) is a multidomain serine protease that converts the zymogen plasminogen to plasmin. tPA contains two kringle domains which display considerable sequence identity with those of angiostatin, an angiogenesis inhibitor. TK1-2, a recombinant kringle domain composed of t-PA kringles 1 and 2 (Ala(90)-Thr(263)), was produced by both bacterial and yeast expression systems. In vitro, TK1-2 inhibited endothelial cell proliferation stimulated by basic fibroblast growth factor, vascular endothelial growth factor, and epidermal growth factor. It did not inhibit proliferation of non-endothelial cells. TK1-2 also inhibited in vivo angiogenesis in the chick embryo chorioallantoic membrane model. These results suggest that the recombinant kringle domain of t-PA is a selective inhibitor of endothelial cell growth and identifies this molecule as a novel anti-angiogenic agent.  相似文献   

15.
The role of basic fibroblast growth factor-(bFGF) induced proteinases in basement membrane (BM) invasion by bovine capillary endothelial (BCE) cells was studied using a quantitative in vitro assay previously described (Mignatti et al., 1986). 125I-iododeoxyuridine-labeled BCE cells were grown for 72 h on the human amnion BM, and cell invasion was determined by measuring the radioactivity associated with the tissue after removal of the noninvasive cell layer. BCE cells were noninvasive under normal conditions. Addition of human bFGF to either the BM or to the stromal aspect of the amnion induced BCE cell invasion with a dose-dependent response. This effect was maximal in the presence of 70 ng/ml bFGF, and was inhibited by anti-FGF antibody. Transforming growth factor beta, as well as plasmin inhibitors and anti-tissue type plasminogen activator antibody inhibited BCE cell invasion. The tissue inhibitor of metalloproteinases, 1-10 phenanthroline, anti-type IV and anti-interstitial collagenase antibodies had the same effect. On the contrary, anti-stromelysin antibody and Eglin, an inhibitor of elastase, were ineffective. The results obtained show that both the plasminogen activator-plasmin system and specific collagenases are involved in the invasive process occurring during angiogenesis.  相似文献   

16.
17.
The effects of sulfated polysaccharides on the growth and chemotaxis of endothelial cells promoted by basic fibroblast growth factor (bFGF), a heparin-binding growth factor, and epidermal growth factor (EGF), a non-heparin-growth factor, were examined. The binding abilities of these two growth factors to D-gluco-galactan sulfate (DS-4152) were the same as to heparin. DS-4152 inhibited the growth and chemotaxis of the cells stimulated by bFGF, and prevented the binding of bFGF to the cells at both its low and high affinity binding sites: the former and the latter are heparin-like molecules and receptor proteins for bFGF, respectively. However, DS-4152 affected neither the binding of EGF to endothelial cells nor the proliferation and chemotaxis of the cells stimulated by the factor. Heparin also inhibited the binding of bFGF to low affinity binding sites to the same degree as DS-4152, but had little effect on the binding of bFGF to high affinity sites and no effects on bFGF-induced endothelial cell growth. Chondroitin sulfate A prevented neither the binding of bFGF to both sites of the cells nor bFGF-induced cell proliferation. We thus concluded that the inhibitory effects of DS-4152 against the growth and chemotaxis of endothelial cells induced by bFGF might be due to the prevention of bFGF binding to its receptor proteins resulting from the binding of DS-4152 to bFGF. © 1993 Wiley-Liss, Inc.  相似文献   

18.
Rat testicular cells in culture produce several metalloproteinases including type IV collagenases (Sang et al. Biol Reprod 1990; 43:946-955, 956-964). We have now investigated the regulation of testicular cell type IV collagenase and other metalloproteinases in vitro. Soluble laminin stimulated Sertoli cell type IV collagenase mRNA levels. However, three peptides corresponding to different domains of the laminin molecule (CSRAKQAASIKVASADR, FALRGDNP, CLQDGDVRV) did not influence type IV collagenase mRNA levels. Zymographic analysis of medium collected from these cultures revealed that neither soluble laminin nor any of the peptides influenced 72-kDa type IV collagenase protein levels. However, peptide FALRGDNP resulted in both, a selective increase in two higher molecular-weight metalloproteinases (83 kDa and 110 kDa and in an activation of the 72-kDa rat type IV collagenase. Interleukin-1, phorbol ester, testosterone, and FSH did not affect collagenase activation. Immunocytochemical studies demonstrated that the addition of soluble laminin resulted in a redistribution of type IV collagenase from intracellular vesicles to the cell-substrate region beneath the cells. Peptide FALRGDNP induced a change from a vesicular to peripheral plasma membrane type of staining pattern. Zymography of plasma membrane preparations demonstrated triton-soluble gelatinases of 76 kDa, 83 kDa, and 110 kDa and a triton-insoluble gelatinase of 225 kDa. These results indicate that testicular cell type IV collagenase mRNA levels, enzyme activation, and distribution are influenced by laminin and RGD-containing peptides.  相似文献   

19.
Tumor necrosis factor-alpha (TNF-alpha) has been shown to enhance the synthesis of interleukin-6 (IL-6) and collagenase in human omental microvascular endothelial (HOME) cell (Mawatari, M., Kohno, K., Mizoguchi, H., Matsuda, T., Asoh, K., Van Damme, J. V., Welgus, H. G., and Kuwano, M. (1989) J. Immunol. 143, 1619-1627). In the present study, we have examined whether the TNF-alpha-induced synthesis of IL-6 or collagenase in HOME cells is mediated by an inducible growth factor. Among several growth factors examined, we found that the expression of basic fibroblast growth factor (bFGF) mRNA was the one most prominently enhanced when HOME cells were treated with TNF-alpha. The increase of bFGF mRNA by TNF-alpha in HOME cells was observed in both a dose- and time-dependent manner when assayed by Northern blot analysis. The induction of bFGF mRNA was observed by 3 h after incubation with TNF-alpha, and the maximal increase of 5-fold was obtained after 12 h of incubation with 100 units/ml TNF-alpha. Western blot analysis confirmed the enhanced synthesis of bFGF by TNF-alpha. Metabolic labeling and immunoprecipitation assays of bFGF showed that exposure to TNF-alpha enhanced secretion of bFGF into culture medium and also that TNF-alpha stimulated the production of bFGF molecules with molecular masses of 18, 21, and 22.5 kDa in HOME cells. TNF-alpha induced the expression of collagenase mRNA and IL-6 mRNA in HOME cells as well, and the coadministration of neutralizing anti-bFGF antibody almost completely blocked the effects of TNF-alpha. The treatment of HOME cells with exogenous bFGF significantly stimulated the expression of collagenase mRNA and IL-6 mRNA in HOME cells. Therefore, the biological effects of TNF-alpha on HOME cells may be mediated, at least in part, by TNF-alpha-induced bFGF.  相似文献   

20.
Production of a 92-kDa gelatinase/type IV collagenase and tissue inhibitor of metalloproteinases (TIMP) was investigated with human sarcoma cell lines. Among the cytokines and growth factors examined, only human recombinant tumor necrosis factor alpha (TNF alpha) induced and stimulated the proteinase with concomitant increase in TIMP expression, but matrix metalloproteinase 2 (72-kDa gelatinase/type IV collagenase) expression was unchanged. These data suggest that gene expression of the two metalloproteinases is regulated in a different fashion and TNF alpha may be important to allow cancer cells to be more invasive and metastatic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号