首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Human topoisomerase I-B (Top1) efficiently relaxes DNA supercoils during basic cellular processes, and can be transformed into a DNA-damaging agent by antitumour drugs, enzyme mutations and DNA lesions. Here, we describe Gal4-Top1 chimeric proteins (GalTop) with an N-terminal truncation of Top1, and mutations of the Gal4 Zn-cluster and/or Top1 domains that impair their respective DNA-binding activities. Expression levels of chimeras were similar in yeast cells, however, GalTop conferred an increased CPT sensitivity to RAD52- yeast cells as compared to a GalTop with mutations of the Gal4 domain, showing that a functional Gal4 domain can alter in vivo functions of Top1. In vitro enzyme activity was tested with a DNA relaxation assay using negatively supercoiled plasmids with 0 to 5 Gal4 consensus motifs. Only GalTop with a functional Gal4 domain could direct DNA relaxation activity of Top1 specifically to DNA molecules containing Gal4 motifs. By using a substrate competition assay, we could demonstrate that the Gal4-anchored Top1 remains functional and efficiently relax DNA substrates in cis. The enhanced CPT sensitivity of GalTop in yeast cells may then be due to alterations of the chromatin-binding activity of Top1. The GalTop chimeras may indeed mimic a normal mechanism by which Top1 is recruited to chromatin sites in living cells. Such hybrid Top1s may be helpful in further dissecting enzyme functions, and constitute a prototype of a site-specific DNA cutter endowed with high cell lethality.  相似文献   

2.
The role of DNA topoisomerases in plant cell metabolism is currently under investigation in our laboratory. Using a purified type I topoisomerase from cultured tobacco, we have carried out a biochemical characterization of enzymatic behavior. The enzyme relaxes negatively supercoiled DNA in the presence of MgCl2, and to a lesser extent in the presence of KCl. Phosphorylation of the topoisomerase does not influence its activity and it is not stimulated by the presence of histones H1 or H5. The enzyme may act in either a processive or distributive manner depending on reaction conditions. The anti-tumor drug, camptothecin, induces significant breakage by the enzyme on purified DNA molecules unless destabilized by the addition of KCl. The tobacco topoisomerase I can catalyze the formation of stable nucleosomes on circular DNA templates, suggesting a role for the enzyme in chromatin assembly.  相似文献   

3.
1,2-Diaminocyclohexanedichloroplatinum(II) (DCDP) is an analogue of the clinically efficacious cancer chemotherapeutic drug cis-diamminedichloroplatinum(II) (cis-DDP). DCDP is presently undergoing clinical trials at least in part because a cis-DDP-resistant murine leukemia L1210 cell line is sensitive to its action. The alkaline elution technique was used to measure DNA-protein and DNA-interstrand crosslinks induced by DCDP in sensitive and resistant L1210 cells. This was compared to the action of cis-DDP and its clinically ineffective isomer trans-DDP. The action of DCDP was similar to that for cis-DDP with maximum crosslinking occurring between 6 and 12 h after a 1 h treatment. Both cis-DDP and DCDP exhibited proportionately higher levels of interstrand crosslinking than trans-DDP. Near complete removal of both classes of DCDP-induced crosslinks was seen by 72 h. While the extent of crosslinking was different for each compound, little difference between the two cell lines was noted with respect to crosslinking by either DCDP or trans-DDP. These cell lines exhibit a 2-fold resistance to both DCDP and trans-DDP and at equitoxic doses of both drugs the resistant cells demonstrated twice the interstrand crosslinks that were seen in the sensitive cells. The extent of crosslinking related directly to the concentration of drug. When treated with equitoxic doses of DCDP, cis-DDP or trans-DDP, the resistant cells consistently exhibited more interstrand crosslinks than sensitive cells, suggesting the existence of a more critical cytotoxic lesion which was not detectable by the alkaline elution technique. These lesions could be either intrastrand crosslinks or monofunctional platination. Resistance must be due to a differential sensitivity to the lesions that form, which may be due to an altered capacity to repair the lesions.  相似文献   

4.
Summary Mouse lymphoma L1210 cells maintained in vitro at a high cell density for a certain time period adapted themselves to the in vitro environment and were able to grow indefinitely. From these adapted cells, more than 30 clones were isolated. They all had much higher activity to take up cystine than the original L1210 cells, supporting a previous view that the deficiency of the cystine uptake limits the survival and growth of L1210 cells in vitro. The cystine uptake of one cloned cell line was characterized. The enhanced uptake of cystine in these cells was mainly mediated by a Na+-independent, saturable system and was potently inhibited by glutamate and some other anionic amino acids, but less by aspartate. Such activity of cystine uptake was not observed in the original L1210 cells. The results suggest that, upon adaptation in vitro, L1210 cells acquire a new cystine transport activity necessary for survival and growth in vitro.  相似文献   

5.
Mitochondria from human acute lymphoblastic leukemia cells contain an ATP-independent DNA topoisomerase which can relax negative and positive supercoils. This enzyme has been purified 200-fold by carboxymethyl-cellulose or double stranded DNA-cellulose chromatography. In contrast to the molecular weights reported for mitochondrial topoisomerases in other systems, the native leukemia enzyme has a molecular weight of 132,000 daltons as determined by gel permeation chromatography in buffer containing 0.4 M KCl. It also exhibits a sedimentation coefficient of 7.1 S when centrifuged through a 10–30% glycerol gradient in this high salt buffer. The enzyme is presumably a type I topoisomerase analogous to those found in rat liver and Xenopuslaevis mitochondria.  相似文献   

6.
Adriamycin and 4'-epi-adriamycin were compared as to their effect on nRNA synthesis. 4'-Epi-adriamycin was a more effective inhibitor than the parent compound of RNA synthesis as measured by incorporation of [3H]-uridine. Adriamycin inhibited all three species of nRNA (ribosomal, non-poly(A)hnRNA, poly(A)hnRNA) to approximately the same extent. 4'-Epi-adriamycin on the other hand inhibited the nRNA species in the following order: non-poly(A)hnRNA greater than ribosomal RNA greater than poly(A)hnRNA. The inhibitory effects of both drugs on incorporation of uridine into RNA were reversible at low concentrations (5 microgram/ml).  相似文献   

7.
Permeabilization of L1210 cells by lithotripter shock waves in vitro was monitored by evaluating the accumulation of fluorescein-labeled dextrans with a relative molecular mass ranging from 3,900–2,000,000. Incubation with labeled dextran alone caused a dose- and time-dependent increase in cellular fluorescence as determined by flow cytometry, with a vesicular distribution pattern in the cells consistent with endocytotic uptake. Shock wave exposure prior to incubation with labeled dextran revealed similar fluorescence intensities compared to incubation with labeled dextran alone. When cells were exposed to shock waves in the presence of labeled dextran, mean cellular fluorescence was further increased, indicating additional internalization of the probe. Confocal laser scanning microscopy confirmed intracellular fluorescence of labeled dextran with a diffuse distribution pattern. Fluorescence-activated cell sorting with subsequent determination of proliferation revealed that permeabilized cells were viable and able to proliferate. Permeabilization of the membrane of L1210 cells by shock waves in vitro allowed loading of dextrans with a relative molecular mass up to 2,000,000.Permeabilization of tumor cells by shock waves provides a useful tool for introducing molecules into cells which might be of interest for drug targeting in tumor therapy in vivo.This work was supported by the Deutsche Forschungsgemeinschaft grant De 531/1-1. We are particularly grateful to Dr. Ulrich Dirnagl (Department of Neurology, University of Munich, Marchioninistr. 15, 81377 Munich, Germany) for performing the confocal laser scanning microscopy and to Gerhard Adams for excellent technical assistance.  相似文献   

8.
DNA topoisomerase is involved in DNA repair and replication. In this study, a novel ATP-independent 30-kDa type I DNA topoisomerase was purified and characterized from a marine methylotroph, Methylophaga sp. strain 3. The purified enzyme composed of a single polypeptide was active over a broad range of temperature and pH. The enzyme was able to relax only negatively supercoiled DNA. Mg(2+) was required for its relaxation activity, while ATP gave no effect. The enzyme was clearly inhibited by camptothecin, ethidium bromide, and single-stranded DNA, but not by nalidixic acid and etoposide. Interestingly, the purified enzyme showed Mn(2+)-activated endonuclease activity on supercoiled DNA. The N-terminal sequence of the purified enzyme showed no homology with those of other type I enzymes. These results suggest that the purified enzyme is an ATP-independent type I DNA topoisomerase that has, for the first time, been characterized from a marine methylotroph.  相似文献   

9.
DNA topoisomerase (topo) II catalyses topological genomic changes essential for many DNA metabolic processes. It is also regarded as a structural component of the nuclear matrix in interphase and the mitotic chromosome scaffold. Mammals have two isoforms (alpha and beta) with similar properties in vitro. Here, we investigated their properties in living and proliferating cells, stably expressing biofluorescent chimera of the human isozymes. Topo IIalpha and IIbeta behaved similarly in interphase but differently in mitosis, where only topo IIalpha was chromosome associated to a major part. During interphase, both isozymes joined in nucleolar reassembly and accumulated in nucleoli, which seemed not to involve catalytic DNA turnover because treatment with teniposide (stabilizing covalent catalytic DNA intermediates of topo II) relocated the bulk of the enzymes from the nucleoli to nucleoplasmic granules. Photobleaching revealed that the entire complement of both isozymes was completely mobile and free to exchange between nuclear subcompartments in interphase. In chromosomes, topo IIalpha was also completely mobile and had a uniform distribution. However, hypotonic cell lysis triggered an axial pattern. These observations suggest that topo II is not an immobile, structural component of the chromosomal scaffold or the interphase karyoskeleton, but rather a dynamic interaction partner of such structures.  相似文献   

10.
High concentrations of adenosine (Ado), when added to L1210 lymphocytic leukemia cells, resulted in apoptosis or programmed cell death. The apoptotic process was accompanied by distinct morphological changes including chromatin condensation and blebbing of plasma membranes. Extensive DNA fragmentation was correlated with Ado concentrations. Furthermore, apoptosis in these cells was preceded by an early but transient expression of c-myc proto-oncogene, and was not influenced by homocysteine thiolactone added to the cells. Since severe combined immunodeficiency (SCID) is associated with a deficiency of adenosine deaminase, leading to defects in both cellular and humoral immunity, Ado-induced apoptosis may thus be a contributing factor in the pathology of SCID.  相似文献   

11.
12.
A DNA synthesis inhibitor protein was purified from the conditioned medium of cycloheximide treated mouse embryo fibroblasts. This protein has a molecular weight of 45,000 as determined by gel filtration and Polyacrylamide gel electrophoresis. The levels of the [35S] methionine la belled 45 kDa protein in the medium and matrix were monitored across two cell cycles in synchronized cultures. The 45 kDa protein was present in higher levels in the medium of non-S-phase cells depicting a peak between the two S-phases. The DNA synthesis inhibitor protein was immunologically related to a chicken DNA-binding protein which showed similar cell cycle specific variations at the intracellular level. The purified 45 kDa protein inhibited DNA synthesis in murine and human cells. In mouse embryo fibroblasts, the DNA synthesis was inhibited to an extent of 86% by 0.25 μg/ml of the inhibitor, while higher amounts of the inhibitor were required to arrest DNA synthesis in human skin fibroblasts: in these cells, 4 μg/ml of the inhibitor inhibited DNA synthesis to an extent of 50%. The high levels of the 45 kDa protein in the medium of non-S phase cells and its DNA synthesis inhibitory potential suggest that this protein may be involved in the regulation of DNA synthesis during the cell cycle.  相似文献   

13.
Purification of a DNA nicking-closing enzyme from mouse L cells.   总被引:2,自引:2,他引:2       下载免费PDF全文
A DNA nicking-closing enzyme has been purified from the nuclei of mouse L cells to 90% homogeneity. The denatured and reduced form of the enzyme has a molecular weight of 68,000 which is in agreement with the molecular weight of the native enzyme as determined by gel filtration and by sucrose sedimentation velocity assuming the protein is globular. Therefore, the active form of the enzyme is a monopolypeptide. Its isoelectric point is pH 4.2 +/- 0.2. The nicking-closing activity does not require a cofactor and does not involve any sulfhydryl group. The enzyme requires 0.2 M NaCl and pH in the range of 6.5-7.5 for optimal activity.  相似文献   

14.
The polymerase chain reaction (PCR) represents an alternative to the current methods for investigating DNA damage and repair in specific genomic segments. In theory, any DNA lesion which blocks Taq polymerase can be measured by this assay. We used quantitative PCR (QPCR) to determine the lesion frequencies produced by cisplatin and ultraviolet light (UV) in a 2.3 kilobase (kb) segment of mitochondrial DNA and a 2.6 kb segment of the DHFR gene in mouse leukemia L1210 cells. The frequency of UV-induced lesions increased linearly with dose, and was 0.58 lesions/10 kb/10 J/m2 in the mitochondrial DNA, and 0.37 lesions/10 kb/10 J/m2 in the DHFR gene. With cisplatin, the lesion frequency also increased linearly with dose, and was 0.17 lesions/10 kb/10 microM in the DHFR gene, and 0.07 lesions/10 kb/10 microM in mitochondrial DNA. This result is contrary to that of Murata et al., 1990 (1), in which mitochondrial DNA received greater cisplatin damage than did nuclear DNA. Using PCR to measure the repair of UV-induced lesions in the DHFR gene segment, we observed that less than 10% of the lesions were removed by 4 h, but over 70% of the lesions were removed by 8 h. Repair of 43% of UV-induced lesions in mitochondrial DNA was also observed during a 24 h period.  相似文献   

15.
A unique interaction between the folate analog, methotrexate (4-amino-4-deoxy-10-methylpteroylglutamic acid), and the naturally occurring folates in L1210 leukemia and Ehrlich ascites tumor cells provides a useful model for the study of heteroexchange diffusion. The presence of intracellular binding sites with a high affinity for methotrexate but a low affinity for folic acid and its tetrahydrofolate derivatives permit the measurement of true unidirectional influx rates for methotrexate and assure that the trans-stimulation of methotrexate uptake by the intracellular presence of the other folates is due solely to a primary augmentation of this carrier influx mechanism. Further, since free methotrexate does not appear prior to saturation of the binding sites, the reaction between the folates and carrier at the inner cell membrane is undisturbed by methotrexate released from carrier as the complex enters the cell during heteroexchange, facilitating quantitation of the kinetic alterations which occur for methotrexate influx during trans-stimulation.  相似文献   

16.
17.
The synthesis of DNA, RNA and protein was measured in L1210 cells following treatment with 8-methoxypsoralen in combination with long wavelength ultraviolet irradiation. The results show that the DNA synthesis is strongly inhibited (approximately 95%) at 200 ng/ml reaching a minimum within 2 hours while RNA synthesis is only weakly affected at this concentration (approximately 40% inhibition). At 2 micrograms/ml the RNA synthesis is inhibited approximately 90%. Even at this concentration only a moderate effect is seen on the protein synthesis. These results strongly indicate that the phototoxic action of 8-methoxypsoralen is primarily due to inhibition of DNA synthesis.  相似文献   

18.
Summary Molecular characterization of mitochondrial (mt) DNA of rye (Secale cereale L.), free of significant amounts of contaminating chloroplast (cp) DNA, was initiated using the open-pollinated cultivar Halo as a source of mtDNA. Based on the compilation of data from restriction patterns, the molecular size of the mtDNA was estimated to be 410 Kb and its buoyant density was determined as 1.705 g/ml. Southern hybridization, using labelled cp genes (P700 and ribulosebiphosphate-carboxylase large subunit), indicated the presence of cpDNA-homologous regions on putative mtDNA fragments. Mt DNAs of inbred lines with fertile and cytoplasmic male sterile (CMS) Pampa cytoplasm were also analysed. Whereas the restriction patterns of mtDNAs of Halors and the fertile line turned out to be identical, Pampa mtDNA showed a unique restriction pattern, indicating (as in most other CMS systems) the involvement of mtDNA rearrangements in the expression of male sterility in rye. All 3 mtDNAs investigated contain regions homologous to the plasmid S1 of the CMS-S cytoplasm of Maize (Zea mays), as indicated by hybridization experiments. In Pampa cytoplasm the S-homologous sequence is located within a rearranged region of mtDNA.  相似文献   

19.
The properties were compared for maize nuclear and mitochondrial DNA topoisomerases I (topo I). Some differences in their ability to bind to single-stranded DNA were revealed. Mitochondrial topo I was active only in the presence of Mg2+, whereas the activity of the nuclear enzyme did not completely depend on Mg2+, although being essentially stimulated in the presence of Mg2+. The mitochondrial enzyme covalently bound to the 5′ DNA end, as unique to prokaryotic topo I. The nuclear enzyme, like all eukaryotic topo I, covalently bound to the 3′ DNA end. A search for homologous sequences in several databases revealed genes probably encoding mitochondrial topo I in other higher plants. Using cDNA sequencing and in silico analysis, an orthologous gene was revealed in the maize genome. The gene was strongly homologous to the genes encoding prokaryotic topo I, which could explain the differences in properties between mitochondrial and nuclear topo I from maize. The presence of prokaryotic topo I in mitochondria of higher plants is interesting and important for studying the evolution of these plant organelles and the mechanisms of mitochondrial genome expression.  相似文献   

20.
DNA topoisomerase II ofDictyostelium discoideum (TopA), the gene (topA) encoding which we cloned, was shown to have an additional N-terminal region which contains a putative mitochondrial targeting signal presequence. We constructed overexpression mutants which expressed the wild-type or the N-terminally deleted enzyme, and examined its localization by immunofluorescence microscopy and proteinase K digestion experiment. These experiments revealed that the enzyme is located in the mitochondria by virtue of the additional N-terminal region. Furthermore, in the cell extract depleted the enzyme by immunoprecipitation, nuclear DNA topoisomerase II activity was not decreased. These results confirmed that TopA is located in the mitochondria, even through its amino acid sequence is highly similar to those of nuclear type topoisomerase II of other organisms. Thus, this report is the first to establish the location of the mitochondrial targeting signal presequence in DNA topoisomerase II and in proteins ofD. discoideum directly by analyzing deletion mutants. Tsukuba Advanced Research Alliance (TARA researcher for the Sakabe project)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号