首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
Summary To identify precisely the structural and functional cell type in the collecting duct of the rat kidney expressing binding sites for Dolichos biflorus agglutinin (DBA), we stained serial paraffin sections of kidney with horseradish peroxidase-labeled DBA and with immunocytochemical methods for localizing (Na++K+)-ATPase and carbonic anhydrase II (CA II), enzymes found preferentially in principal and intercalated cells, respectively. Most principal cells expressing a strong basolateral staining for (Na+ + K+)-ATPase showed binding sites for DBA at their luminal surfaces. However, a minority of cells rich in CA II and showing morphologic characteristics of intercalated cells also expressed DBA binding sites at their luminal surface and apical cytoplasm. These data suggest that DBA cytochemistrycan provide a useful tool for studying the functional polarity of the main cell types of the collecting duct of the rat kidney.  相似文献   

3.
The rabbit endometrial epithelium undergoes differentiation prior to the time of blastocyst implantation, including loss of surface negativity and a change in glycocalyx morphology. Nonpregnant (estrous) and pseudopregnant rabbits were used to study specific alterations in proteins and saccharide composition of the luminal epithelial membrane and its glycocalyx related to the acquisition of receptivity to implantation. Pregnant animals were used to study further modification of the luminal surface by implanting blastocysts. The apical surface of luminal epithelial cells was solubilized by a 15-min intraluminal incubation of 1% Triton X-100 containing protease inhibitors. Proteins in extract solutions were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Three new polypeptides (24 kDa, 42 kDa and 58 kDa) were identified in uteri from receptive rabbits. Binding of succinyl Wheat Germ Agglutinin (sWGA) and Ricinus communis Agglutinin (RCA-I) lectins to the 24 kDa and 42 kDa components on Western blots of extracts separated by SDS-PAGE identified them as glycoproteins. Additionally, other polypeptides (26 kDa, 80-86 kDa and 145 kDa) showed changes in affinity for WGA, RCA-I or concanavalin A (Con A), depending on the hormonal state. Correlating with these findings was an increased binding of these lectins to intact nonciliated cells in uteri of receptive rabbits compared to estrous animals; ciliated cells bound Dolichos biflorus Agglutinin (DBA) specifically, regardless of the hormonal condition. Treatment of uteri from estrous animals, or Western blots of proteins from these animals, with neuraminidase prior to lectin exposure suggested the presence of glycoproteins having a sialic acid-D-galactose terminus in nonreceptive rabbits. Reduced binding of lectin to intact cells at implantation sites and to blots of proteins isolated from these sites, compared to nonimplantation sites, was noted. These results provide evidence for stage-specific alterations in protein and saccharide composition of the apical surface of endometrial epithelium prior to implantation, and indicate that implanting blastocysts further modify the luminal surface.  相似文献   

4.
The present investigation demonstrates that in squamate reptiles, as already reported for Podarcis sicula (Andreuccetti et al., 2001), the differentiation of pyriform cells from small, stem follicle cells is characterized by the progressive appearance on the cell surface of glycoproteins bearing alpha-GalNAc terminated O-linked side chains. Using a lectin panel (WGA, GSI-A4, GSI-B4, PSA UEA-I, PNA, Con-A, DBA, LCA, BPA, SBA), we demonstrated that, during previtellogenesis, the pattern of distribution of DBA binding sites over the follicular epithelium dramatically changes. In fact, binding sites first appear in follicular epithelium at the time that small cells begin to differentiate; in such follicles, labeling is evident on the cell surfaces of small and intermediate cells. Later on, as the differentiation progresses, the binding sites also become evident on the cell surface of pyriform cells. Once differentiated, the pattern of the distribution of DBA binding sites over the follicular epithelium does not change. By contrast, during the phase of intermediate and pyriform cell regression, DBA binding sites gradually decrease, so that the monolayered follicular epithelium of vitellogenic follicles, constituted only by small cells, shows no binding sites for DBA. It is noteworthy that binding sites for DBA are present on small cells located in contact with the oocyte membrane, but not on those located under the basal lamina or among pyriform cells, and therefore not engaged in the differentiation into pyriform cells. This finding demonstrates that, in squamates, the pattern of distribution of alpha-N-GalNAc containing glycoproteins significantly changes during previtellogenesis, and that these modifications are probably related to the differentiation of small stem cells into highly specialized pyriforms.  相似文献   

5.
Abstract Upon attaining a confluent density, populations of the renal epithelial cell line, LLC-PK1, express progressively many properties characteristic of the renal proximal tubule cell, including gamma-glutamyl transpeptidase activity. Expression of transpeptidase activity was inhibited reversibly by chronic treatment with the phorbol ester tumor promoter, 12-o-tetradecanoylphorbol-13-acetate(TPA). TPA treatment inhibited expression of transpeptidase activity regardless of whether added prior to or following appearance of the activity. Increased transpeptidase activity in postconfluent cell populations was due to an increased enzyme Vmax with no change in substrate Km. TPA-treated cell populations. exhibited a low Vmax similar to subconfluent populations. Detection of transpeptidase activity at the individual cell level by enzyme histochemistry demonstrated that near-confluent cell populations possesed few transpeptidase activity–positive cells. Progressive expression of transpeptidase activity in the cell population was due to an increasing proportion of cells in the population possessing transpeptidase activity. There was a parallel increase in the proportion of cells expressing transpeptidase protien, detected by immunofluorescence. TPA treatment inhibited apperance of both transpeptidase activity and transpeptidase protein in virtually all cells of the population. These results demonstrate that expression of transpeptidase activity in populations of LLC-PK1 cells occurs on a cell-by-cell basis and reflects expression of transpeptidase protein. Chronic treatment with TPA inhibits reversibly expression of transpeptidase activity and protein, suggesting a role for protein kinase C in regulating expression of this proximal tubule–specific property. © Wiley-Liss, Inc.  相似文献   

6.
Expression of apical cell surface proteins and glycoproteins was examined in polarized primary cultures of mouse uterine epithelial cells (UEC). Lectin-gold cytochemistry revealed that wheat germ agglutinin (WGA) bound specifically to the components of the apical glycocalyx as well as intracellular vesicles. Double labeling with the pH sensitive dye 3-(2,4-dinitroanilino)-3'amino-N-methyldipropylamine (DAMP) demonstrated the acidic nature of the WGA-staining intracellular vesicles. The enzymatic and chemical sensitivities of the WGA binding sites on the apical cell surface were monitored both by WGA-gold staining as well as by 125I-WGA binding assays. In thin sections, a large fraction of these sites were removed by pronase; however, application of a wide variety of proteases, glycosidases, or chemical treatments to the apical surface of intact UEC failed to reduce WGA binding. In no case did treatments designed to remove sialic acids reduce 125I-WGA binding more than 12%. In contrast, endo-beta-galactosidase as well as a combination of beta-galactosidase with beta-hexosaminidase succeeded in removing 28% and 77% of these sites, respectively. These studies suggested that the majority of the apically disposed WGA binding sites involved N-acetylglucosamine residues rather than sialic acids and included lactosaminoglycans. Many of the proteins detected at the apical cell surface by lactoperoxidase-catalyzed radioiodination were WGA-binding glycoproteins. A major class of these glycoproteins displayed Mr > 200 kDa by SDS-PAGE and was heavily labeled metabolically by 3H-glucosamine or by vectorial labeling at the apical cell surface with galactosyl transferase and UDP-3H-galactose. Analyses of the 3H-labeled oligosaccharides labeled by either procedure indicated that a large fraction of the apically disposed WGA-binding oligosaccharides consisted of neutral, O-linked mucin-type structures with median MW of approximately 1,500. Oligosaccharides in this fraction were partially (15%) sensitive to endo-beta-galactosidase digestion and bound to Datura stramonium agglutinin (68%), demonstrating the presence of lactosaminoglycan sequences. UEC were an extremely effective barrier to attachment or invasion by either a highly invasive melanoma cell line, B16-BL6, or implantation-competent mouse blastocysts. In contrast, neither uterine stromal cells nor a non-polarizing UEC cell line, RL95, prevented B16-BL6 attachment.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
In polarized epithelial cells, maturation sites of enveloped viruses that form by budding at cell surfaces are restricted to particular membrane domains. Recombinant vaccinia viruses were used to investigate the sites of surface expression in the Madin-Darby canine kidney (MDCK) cell line of the hemagglutinin (HA) of influenza virus, the G glycoprotein of vesicular stomatitis virus (VSV), and gp70/p15E of Friend murine leukemia virus (MuLV). These glycoproteins could be demonstrated by immunofluorescence on the surfaces of MDCK cells as early as 4 h post-infection. In intact MDCK monolayers, vaccinia recombinants expressing HA produced a pattern of surface fluorescence typical of an apically expressed glycoprotein. In contrast, cells infected with vaccinia recombinants expressing VSV-G or MuLV gp70/p15E exhibited surface fluorescence only when monolayers were treated with EGTA to disrupt tight junctions, as expected of glycoproteins expressed on basolateral surfaces. Immunoferritin labeling in conjunction with electron microscopy confirmed that MDCK cells infected with the HA recombinant exhibited specific labeling of the apical surfaces whereas the VSV-G and MuLV recombinants exhibited the respective antigens predominantly on the basolateral membranes. Quantitation of surface expression by [125I]protein A binding assays on intact and EGTA-treated monolayers confirmed the apical localization of the vaccinia-expressed HA and demonstrated that 95% of the VSV-G and 97% of the MuLV gp70/p15E glycoproteins were localized on the basolateral surfaces. These results demonstrate that glycoproteins of viruses that normally mature at basolateral surfaces of polarized epithelial cells contain all of the structural information required for their directional transport to basolateral plasma membranes.  相似文献   

8.
Madin-Darby canine kidney (MDCK) cells have been extensively used as a model for the study of epithelial polarization. The contacts between the cell and extra-cellular matrix (ECM) provide a signal for the polarization of apical membrane markers. In order to study the molecular basis of these contacts, MDCK cells extracts in Triton X-100 were affinity-purified on laminin, yielding polypeptides of 100-110 and 36 kDa, but only the second one could be enzymatically iodinated from the cell surface. This protein was also recognized by an antibody against the 37/67-kDa laminin/elastin family of proteins. Different polypeptides were purified by the same method on type I collagen. An antibody developed against the polypeptides purified on laminin recognized also a 67-kDa protein, blocked 125I-laminin binding to a population of high affinity (1.5 nM KD) binding sites and caused a significant decrease in cell attachment and spreading to laminin or endogenous ECM. This antibody did not interfere with MDCK cell attachment to fibronectin or collagen matrices, but still impaired cell spreading. An apical MDCK plasma membrane protein (184 kDa), fully polarized in untreated cells, was partially mispolarized after treatment with anti-36 kDa antibody. These results are consistent with a model of various ECM receptors operating together in these cells, and show an important role of a non-integrin 36-kDa laminin binding protein related to the 67-kDa laminin receptor family in cell attachment, spreading and polarization.  相似文献   

9.
As an alternative to swimming through liquid medium by the coordinated bending activity of its two flagella, Chlamydomonas can exhibit whole cell gliding motility through the interaction of its flagellar surfaces with a solid substrate. The force transduction occurring at the flagellar surface can be visualized as the saltatory movements of polystyrene microspheres. Collectively, gliding motility and polystyrene microsphere movements are referred to as flagellar surface motility. The principal concanavalin A binding, surface-exposed glycoproteins of the Chlamydomonas reinhardtii flagellar surface are a pair of glycoproteins migrating with apparent molecular weight of 350 kDa. It has been hypothesized that these glycoproteins move within the plane of the flagellar membrane during the expression of flagellar surface motility. A novel mutant cell line of Chlamydomonas (designated L-23) that exhibits increased binding of concanavalin A to the flagellar surface has been utilized in order to restrict the mobility of the concanavalin A-binding flagellar glycoproteins. Under all conditions where the lateral mobility of the flagellar concanavalin A binding glycoproteins is restricted, the cells are unable to express whole cell gliding motility or polystyrene microsphere movements. Conversely, whenever cells can redistribute their concanavalin A binding glycoproteins in the plane of the flagellar membrane, they express flagellar surface motility. Since the 350 kDa glycoproteins are the major surface-exposed flagellar proteins, it is likely that most of the signal being followed using fluorescein isothiocyanate (FITC)-concanavalin A is attributable to these high molecular weight glycoproteins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Exposure to hypoxia alters many aspects of endothelial cell metabolism and function; however, changes in surface glycoconjugates under these conditions have not been extensively evaluated. In the current studies, we examined surface glycoproteins of cultured bovine aortic (BAEC) and pulmonary arterial (BPAEC) endothelial cells under standard culture conditions (21% oxygen) and following exposure to hypoxia (0% oxygen) for varying time periods (30 min to 18 h) using a system of biotinylation, lectin binding (concanavalin A, Con A; Griffonia simplicifolia , GSA; Arachis hypogaea, PNA; Ricinus communis, RCA; or Triticum vulgaris, WGA), subsequent strep-avidin binding, and staining. Using these methods, we identified differences in lectin binding between the two cell types cultured in 21% oxygen with all lectins except PNA. With exposure to 0% oxygen, there was no change in lectin binding to most surface glycoproteins. Several surface glycoproteins, including glycoprotein IIIa on both cell types, demonstrated a time-dependent decrease in lectin binding; in addition, there was an increase in lectin binding to a few specific surface glycoproteins on each cell type within 30-60 min of exposure to 0% oxygen. These changes in specific surface glycoproteins were confirmed in both cell types by 125I labeling. Increased lectin binding was observed for Con A binding BAEC glycoproteins at molecular weight (MW) 116, 130, and 205 kDa, GSA binding BAEC glycoproteins at MW 120 and 205 kDa, and RCA binding BPAEC glycoproteins at MW 140 and 205 kDa. Increased binding of WGA or PNA was not observed during exposure to hypoxia. The specificity of lectin binding was further confirmed by competitive inhibition with the appropriate sugar. These studies demonstrate that there are baseline differences between BAEC and BPAEC cell surface glycoproteins and that exposure to hypoxia is associated with little change in lectin binding to most surface glycoproteins. There is, however, increased surface expression of a few glycoproteins that differ depending of the origin of the endothelial cell. Although the mechanism of this increase in lectin binding is not yet clear, subsequent studies suggested that it is due to increased availability of select carbohydrate moieties. The time course of these alterations suggests a possible role in the endothelial cell response to decreases in ambient oxygen tension.  相似文献   

11.
The beta 2-adrenergic receptors of the human epidermoid carcinoma A431 cells reside on two polypeptide chains revealed by photoaffinity labelling with [125I]iodocyanopindolol-diazirine. These proteins correspond to two distinct populations of N-asparagine-linked glycoproteins: the 55-52 kDa molecules are associated with complex carbohydrate chain(s), the 65-63 kDa component with polymannosidic carbohydrate chain(s). Both types of receptors are present in preconfluent cells, but only the polymannosidic type is found in the postconfluent cells. Moreover, complex chains appear to be associated with the receptors with the highest affinity for (-)-isoproterenol and polymannosidic chains with the receptors with the lowest affinity for this agonist. the carbohydrate moiety of the beta-adrenergic receptor is involved in the expression and function of the beta 2-adrenergic receptors at the surface of the A431 cells, since tunicamycin and monensin, complete and partial inhibitors of glycosylation respectively, diminish the number of binding sites at the cell surface and increase the total number of sites in the cell. In these conditions a diminution of cyclic AMP accumulation is also observed.  相似文献   

12.
The vasopressin-regulated urea transporter (UT)-A1 is a transmembrane protein with two glycosylated forms of 97 and 117 kDa; both are derived from a single 88-kDa core protein. However, the precise molecular sites and the function for UT-A1 N-glycosylation are not known. In this study, we compared Madin-Darby canine kidney cells stably expressing wild-type (WT) UT-A1 to Madin-Darby canine kidney cell lines stably expressing mutant UT-A1 lacking one (A1m1, A1m2) or both glycosylation sites (m1m2). Site-directed mutagenesis revealed that UT-A1 has two glycosylation sites at Asn-279 and -742. Urea flux is stimulated by 10 nM vasopressin (AVP) or 10 microM forskolin (FSK) in WT cells. In contrast, m1m2 cells have a delayed and significantly reduced maximal urea flux. A 15-min treatment with AVP and FSK significantly increased UT-A1 cell surface expression in WT but not in m1m2 cells, as measured by biotinylation. We confirmed this finding using immunostaining. Membrane fractionation of the plasma membrane, Golgi, and endoplasmic reticulum revealed that AVP or FSK treatment increases UT-A1 abundance in both Golgi and plasma membrane compartments in WT but not in m1m2 cells. Pulse-chase experiments showed that UT-A1 half-life is reduced in m1m2 cells compared with WT cells. Our results suggest that mutation of the N-linked glycosylation sites reduces urea flux by reducing UT-A1 half-life and decreasing its accumulation in the apical plasma membrane. In vivo, inner medullary collecting duct cells may regulate urea uptake by altering UT-A1 glycosylation in response to AVP stimulation.  相似文献   

13.
Summary Endothelial cells of the NMRI mouse strain express a cell surface glycoprotein recognized by the lectinDolichos biflorus agglutinin (DBA). This study documents a marked organ-specific increase in DBA-specific lectin binding of myocardium-derived endothelial cells (MEC) of the NMRI/GSF mouse during in vitro cultivation. An up to 20-fold increase in DBA binding sites is observed in long-term culture, an increase not found in other NMRI-derived endothelial cell lines (e.g., brain, aorta). The increase appears restricted to DBA in that binding with other lectins (PNA, WGA) was unaltered. NMRI MEC cultures maintain typical endothelial cell attributes such as cobblestone morphology on confluence, expression of endothelial cell-specific surface markers, and production of angiotensin-converting enzyme. Cultures routinely become aneuploid within 4 passages, several passages before upregulation of the DBA binding site(s). Myocardial endothelial cells sorted to obtain DBAhi and DBAlo cell populations generally maintained their sorted phenotype for 3 to 4 passages. Limiting dilution cloning resulted in clones varying in DBA expression. Clones for DBAhi expression maintained their DBA affinity for at least 10 passages (>30 doublings), whereas DBAlo clones gave rise to varying numbers of DBAhi cells within 2 to 4 passages. We hypothesize that the change in DBA affinity accompanies in vitro aging, that the change is independent of alterations in karyotype, and that the increase in DBA affinity may reflect a change in one or more other endothelial cell properties. Additional studies will be necessary to determine whether the in vitro changes are correlated with specific functional alterations and whether they accurately reflect progressive changes of MEC in vivo.  相似文献   

14.
Lectin binding patterns in normal human endometrium were examined by light and electron microscopy using seven different lectins (ConA, WGA, RCA, PNA, UEA-1, DBA, and SBA). For light microscopic observations, criteria based on the incidence and intensity of cells positive for the lectin staining were adopted to evaluate the different staining patterns of the proliferative and secretory endometria obtained by the avidin-biotin-peroxidase complex (ABC) technique. At the light microscopic level, ConA, WGA, and RCA stained endometrial glandular cells in both phases. The number of PNA-positive cells with the binding sites entirely limited to the apical surface tended to be reduced slightly in the secretory phase. UEA-1 weakly stained the apical surface of glandular cells in the proliferative phase but not in the secretory phase. Among the lectins used in this study, DBA and SBA displayed remarkable changes between the phases. That is, in the proliferative phase they produced only a faint or slight positive stain at the apical surface, but the incidence and intensity of DBA- and the SBA-positive glandular cells increased in the secretory phase. By electron microscopy, the reaction product of ConA was observed in the plasma membrane, endoplasmic reticulum, nuclear envelope, and the Golgi apparatus, and the binding sites of RCA and DBA were observed in the plasma and Golgi membranes. Between both phases, the reactivity of ConA and RCA showed almost no change. However, the secretory endometrial cells containing the DBA-positive Golgi apparatus were markedly increased in number compared with the proliferative ones bearing the lectin-positive organelles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Enhancing factor (EF), a mouse intestinal phospholipase A2 (PLA2), has been isolated and characterized. EF increases the binding of epidermal growth factor (EGF) to A431 cells almost two-fold by interacting with EGF. EF binds to a 100 kDa cell surface receptor and brings about an increase in the binding of EGF. In the present study we demonstrate that EF is a heparin binding protein and at the time of iodination of EF, the heparin binding site of EF has to be protected. Heparin inhibits the enhancing activity of EF as well as the binding of labelled EF to A431 cells. Inhibition of binding of EF to cells by heparin indicates that heparin binding region forms at least part of the receptor binding domain. These data suggest that the receptor for EF on the cell surface could be a heparin sulphate proteoglycan.  相似文献   

16.
The invasion of polarized epithelial cells by Salmonella enterica requires the cooperative activity of the Salmonella pathogenicity island (SPI) 1‐encoded type III secretion system (T3SS) and the SPI4‐encoded giant non‐fimbrial adhesin SiiE. SiiE is a highly repetitive protein composed of 53 bacterial Ig (BIg) domains and mediates binding to the apical side of polarized epithelial cells. We analysed the binding properties of SiiE and observed lectin‐like activity. SiiE‐dependent cell invasion can be ablated by chemical or enzymatic deglycosylation. Lectin blockade experiments revealed that SiiE binding is specific for glycostructures with terminal N‐acetyl‐glucosamine (GlcNAc) and/or α 2,3‐linked sialic acid. In line with these data, we found that SiiE‐expressing Salmonella bind to the GlcNAc polymer chitin. Various recombinant SiiE fragments were analysed for host cell binding. We observed that C‐terminal portions of SiiE bind to the apical side of polarized cells and the intensity of binding increases with the number of BIg domains present in the recombinant proteins. Based on these results, we propose that SiiE mediates multiple interactions per molecule with glycoproteins and/or glycosylated phospholipids present in the apical membrane of polarized epithelial cells. Thisintimate binding enables the subsequent function of the SPI1‐T3SS, resulting in host cell invasion.  相似文献   

17.
The toxic lectin modeccin, which inhibits protein synthesis in eukaryotic cells, is cleaved upon treatment with 2-mercaptoethanol into two peptide chains which move in polyacrylamide gels at rates corresponding to molecular weights 28,000 and 38,000. After reduction, the toxin loses its effect on cells, while its ability to inhibit cell-free protein synthesis increases. Like abrin and ricin it inhibits protein synthesis by inactivating the 60S ribosomal subunits. Modeccin binds to surface receptors containing terminal galactose residues. Competition experiments with various glycoproteins indicate that the modeccin receptors are different from the abrin receptors. In addition, they were present on HeLa cells in much smaller numbers. Moreover, mutant lines resistant to abrin and ricin were not resistant to modeccin and vice-versa. The toxin resistance of various mutant cell lines could not be accounted for by a reduced number of binding sites on cells. The data are consistent with the view that the cells possesss different populations of binding sites with differences in ability to facilitate the uptake of the toxins and that in the resistant lines the most active receptors have been reduced or eliminated.  相似文献   

18.
Chlamydomonas flagella exhibit force transduction in association with their surface. This flagellar surface motility is probably used both for whole cell gliding movements (flagella-substrate interaction) and for reorientation of flagella during mating (flagella-flagella interaction). The present study seeks to identify flagellar proteins that may function as exposed adhesive sites coupled to a motor responsible for their translocation in the plane of the plasma membrane. The principal components of the flagellar membrane are a pair of glycoproteins (approximately 350,000 mol wt), with similar mobility on SDS polyacrylamide gels. A rabbit IgG preparation has been obtained which is specific for these two glycoproteins; this antibody preparation binds to and agglutinates cells by their flagellar surfaces only. Treatment of cells with 0.1 mg/ml pronase results in a loss of motility-coupled flagellar membrane adhesiveness. This effect is totally reversible, but only in the presence of new protein synthesis. The major flagellar protein modified by this pronase treatment is the faster migrating of the two high molecular weight glycoproteins; the other glycoprotein does not appear to be accessible to external proteolytic digestion. Loss and recovery of flagella surface binding sites for the specific antibody parallels the loss and recovery of the motility-coupled flagellar surface adhesiveness, as measured by the binding and translocation of polystyrene microspheres. These observations suggest, but do not prove, that the faster migrating of the major high molecular weight flagellar membrane glycoproteins may be the component which provides sites for substrate interaction and couples these sites to the cytoskeletal components responsible for force transduction.  相似文献   

19.
Endothelial cells exhibit binding sites for the amino terminus of fibronectin that participate in subendothelial fibronectin matrix assembly. These binding sites, termed matrix assembly sites, are localized on the basolateral surface of confluent endothelial monolayers (Kowalczyk et al. Blood, 75:2335, 1990). The present study investigates the role of cell-cell and cell-substratum interactions in the localization of matrix assembly sites to the basal surface of endothelial cells. Cells were cultured in Transwell culture inserts and matrix assembly sites were detected by binding assays using an iodinated 70 Kd amino-terminal fibronectin fragment. Integrity of intercellular junctions was monitored by measuring protein flux across Transwell filters. Time course experiments demonstrated that matrix assembly site expression on the basolateral cell surface preceded intercellular junction formation. Transfer of confluent monolayers to calcium-free medium resulted in the loss of junctions and in an increase in 125I-70 kD binding from the apical medium. The increased 125I-70 kD binding resulted from increased access of 125I-70 kD to basolateral matrix assembly sites and not from the relocation of binding sites to the apical membrane. To determine the effect of matrix composition on matrix assembly site expression and localization, cells were seeded onto vitronectin- or fibronectin-coated substrates. Fibronectin increased the expression of matrix assembly sites on the apical surface within 24 hours. By 48 hours, matrix assembly sites were located only on the basolateral surface. Vitronectin had no effect on the expression or localization of matrix assembly sites. These results indicate that the expression and localization of matrix assembly sites on the surface of vascular endothelial cells can be regulated by substratum fibronectin.  相似文献   

20.
Summary The populations of cell surface proteins and total glycoproteins were investigated in early Xenopus embryos through lectin staining, affinity binding of glycoproteins to lectins, and use of a succinimide ester to biotinylate cell surface molecules. Lectin staining shows that the egg is endowed with a thick layer of surface glycoprotein, and that glycoprotein is immediately detected on the newly formed membranes of nascent blastomeres. The amount of glycoprotein found in eggs and early embryos remains constant, and electrophoretic analysis reveals no changes in abundant lectin-binding glycoproteins through the neurula stage. In contrast, the amount of cell surface protein increases dramatically from the 2-cell to the gastrula stages. Despite this quantiative increase, only a small number of differences in cell surface proteins were detected during this period. A series of bands was detected which appears to be specific to the outer surface of the embryo. Because the populations of surface proteins and of total glycoproteins overlap to a great extent, the increase in cell surface protein, in the absence of a change in total glycoprotein, indicates the presence of a maternal glycoprotein pool in the Xenopus egg, from which the cell surface proteins of embryonic blastomeres are recruited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号