首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Twenty-five thiadiazole derivatives 125 were synthesized from methyl 4-methoxybenzoate via hydrazide and thio-hydrazide intermediates, and evaluated for their potential against β-glucuronidase enzyme. Most of the compounds including 1 (IC50 = 26.05 ± 0.60 μM), 2 (IC50 = 42.53 ± 0.80 μM), 4 (IC50 = 38.74 ± 0.70 μM), 5 (IC50 = 9.30 ± 0.29 μM), 6 (IC50 = 6.74 ± 0.26 μM), 7 (IC50 = 18.40 ± 0.66 μM), and 15 (IC50 = 18.10 ± 0.53 μM) exhibited superior activity potential than the standard d-saccharic acid-1,4-lactone (IC50 = 48.4 ± 1.25 μM). Molecular docking studies were conducted to correlate the in vitro results and to identify possible mode of interaction with enzyme active site.  相似文献   

2.

Background

Feline herpesvirus 1 (FHV-1) is a common cause of respiratory and ocular disease in cats. Especially in young kittens that have not yet reached the age of vaccination, but already lost maternal immunity, severe disease may occur. Therefore, there is a need for an effective antiviral treatment. In the present study, the efficacy of six antiviral drugs, i.e. acyclovir, ganciclovir, cidofovir, foscarnet, adefovir and 9-(2-phosphonylmethoxyethyl)-2, 6-diaminopurine (PMEDAP), against FHV-1 was compared in Crandell-Rees feline kidney (CRFK) cells using reduction in plaque number and plaque size as parameters.

Results

The capacity to reduce the number of plaques was most pronounced for ganciclovir, PMEDAP and cidofovir. IC50 (NUMBER) values were 3.2 μg/ml (12.5 μM), 4.8 μg/ml (14.3 μM) and 6 μg/ml (21.5 μM), respectively. Adefovir and foscarnet were intermediately efficient with an IC50 (NUMBER) of 20 μg/ml (73.2 μM) and 27 μg/ml (140.6 μM), respectively. Acyclovir was least efficient (IC50 (NUMBER) of 56 μg/ml or 248.7 μM). All antiviral drugs were able to significantly reduce plaque size when compared with the untreated control. As observed for the reduction in plaque number, ganciclovir, PMEDAP and cidofovir were most potent in reducing plaque size. IC50 (SIZE) values were 0.4 μg/ml (1.7 μM), 0.9 μg/ml (2.7 μM) and 0.2 μg/ml (0.7 μM), respectively. Adefovir and foscarnet were intermediately potent, with an IC50 (SIZE) of 4 μg/ml (14.6 μM) and 7 μg/ml (36.4 μM), respectively. Acyclovir was least potent (IC50 (SIZE) of 15 μg/ml or 66.6 μM). The results demonstrate that the IC50 (SIZE) values were notably lower than the IC50 (NUMBER) values. The most remarkable effect was observed for cidofovir and ganciclovir. None of the products were toxic for CRFK cells at antiviral concentrations.

Conclusion

In conclusion, measuring reduction in plaque number and plaque size are two valuable and complementary means of assessing the efficacy of an antiviral drug. By using these parameters for six selected antiviral drugs, we found that ganciclovir, PMEDAP, and cidofovir are the most potent inhibitors of FHV-1 replication in CRFK cells. Therefore, they may be valuable candidates for the treatment of FHV-1 infection in cats.  相似文献   

3.
4.
Swainsonine, a secondary metabolite from Metarhizium anisopliae has been extensively studied in the complementary areas of therapeutics and toxicology. This work aims to develop a simple UV‐HPLC method of analyses for swainsonine in Metarhizium fermentation broth and to explore its in situ entomotoxic activities. The partially purified broth was quantitatively analyzed using middle UV (205 nm)‐reverse phase HPLC method with different mobile phases and gradient programmes. Swainsonine was eluted as single peak at (te) 6.0–6.9 min with average concentration of 4.04 ± 0.52 μg/mL using optimal mobile phase (0.1% trifluoroacetic acid in water and acetonitrile). The mass spectrometry analysis further indicated the characteristic MS1 species for swainsonine, [M+H]+ 174.30 in corresponding HPLC peaks. The antiproliferative effects of swainsonine on lepidopteran, Sf‐21 cells were determined through 3‐(4, 5‐dimethylthia‐zol‐2‐yl)?2, 5‐diphenyl tetrazolium bromide (IC50 standard = 3.90 μM and IC50 purified = 5.27 μM) and trypan blue dye exclusion (IC50 standard = 6.91 μM and IC50 purified = 8.67 μM) assays. The fluorescence activated cell sorting evaluation of Sf‐21 cells showed nearly 35% and 42% of population in various apoptotic stages at 36 h, when treated with standard and purified swainsonine, respectively. The morphodimensional field emission scanning electron and atomic force microscopic analyses further confirmed the characteristic apoptotic features like membrane blebbings, ruptures and volume shrinkage in the lepidopteran cells after 24–36 h of post‐treatment incubation. The study describes the potential entomotoxic activities of swainsonine and its role in the virulence of Metarhizium spp. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:1196–1205, 2014  相似文献   

5.
The actions of a number of sodium channel-specific neurotoxins on the uptake of Na-22 by osmotically sensitive membrane preparations from rat brain were studied using a glass-fiber filter assay. Under control conditions, there was Na-22 uptake that reached saturation within 5 min, and was insensitive to tetradotoxin (10 μM). Batrachotoxin (Kdapp = 0.2 μM), veratridine (Kdapp = 1 μM) and grayanotoxin I (Kdapp = 30 μM), which increase sodium conductance in electrogenic membranes, stimulated Na-22 uptake approximately 2-fold over control levels. This additional Na-22 uptake was markedly dependent on the ionic strength of the media, associated with subfractions of the preparation enriched in plasma membranes, and completely inhibited by tetrodotoxin (10 μM). It was highly labile, showing only a minor decrease in activity within the first 4–6 h after preparation of the membranes, but disappearing within 24 h at 4° C. It is suggested that the toxins-activated Na-22 uptake, which is tetrodotoxin-sensitive, results from the actions of these toxins on the macromolecular channel complex which controls resting and action potential sodium conductance.  相似文献   

6.
The antioxidant properties of silibin complexes, the water-soluble form silibin dihemisuccinate (SDH), and the lipid-soluble form, silibin phosphatidylcholine complex known as IdB 1016, were evaluated by studying their abilities to react with the superoxide radical anion (O2.−), and the hydroxyl radical (OH.). In addition, their effect on pulmonary and hepatic microsomal lipid peroxidation had been investigated. Superoxide radicals were generated by the PMS-NADH system and measured by their ability to reduce NBT. IC50 concentrations for the inhibition of the NBT reduction by SDH and IdB 1016 were found to be 25 μM and 316 μM respectively. Both silibin complexes had an inhibitory effect on xanthine oxidase activity. SDH reacted rapidly with OH. radicals at approximately diffusion controlled rate and the rate constant was found to be (K=8·2×109 M −1 s−1); it appeared to chelate Fe2+ in solution. In hepatic microsomes, when lipid peroxidation was induced by Fe2+, SDH inhibited by 39·5 per cent and IdB 1016 by 19·5 per cent, whereas when lipid peroxidation was induced by CuOOH, IdB 1016 exerted a better protective effect than SDH (29·4 per cent and 19·4 per cent inhibition, respectively). In both microsomal systems lipid peroxidation proceeded through a thiol depletion mechanism which could be restored in the presence of silibin complexes. Low levels of lipid peroxidation in pulmonary microsomes point out the differences between in-vitro lipid peroxidation occurring in microsomes of different tissues. The results support the free radical scavenger and antioxidative properties of silibin when it is complexed with a suitable molecule to increase its bioavailabilty. © 1997 John Wiley & Sons, Ltd.  相似文献   

7.
Herein we report an assessment of 24 1,2,3,4-tetrahydroisoquinoline derivatives for potential DNase I (deoxyribonuclease I) inhibitory properties in vitro. Four of them inhibited DNase I with IC50 values below 200 μM. The most potent was 1-(6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolin-1-yl)propan-2-one ( 2 ) (IC50=134.35±11.38 μM) exhibiting slightly better IC50 value compared to three other active compounds, 2-[2-(4-fluorophenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl]-1-phenylethan-1-one ( 15 ) (IC50=147.51±14.87 μM), 2-[2-(4-fluorophenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl]cyclohexan-1-one ( 18 ) (IC50=149.07±2.98 μM) and 2-[6,7-dimethoxy-2-(p-tolyl)-1,2,3,4-tetrahydroisoquinolin-1-yl]cyclohexan-1-one ( 22 ) (IC50=148.31±2.96 μM). Cytotoxicity assessment of the active DNase I inhibitors revealed a lack of toxic effects on the healthy cell lines MRC-5. Molecular docking and molecular dynamics simulations suggest that interactions with Glu 39, His 134, Asn 170, Tyr 211, Asp 251 and His 252 are an important factor for inhibitors affinity toward the DNase I. Observed interactions would be beneficial for the discovery of new active 1,2,3,4-tetrahydroisoquinoline-based inhibitors of DNase I, but might also encourage researchers to further explore and utilize potential therapeutic application of DNase I inhibitors, based on a versatile role of DNase I during apoptotic cell death.  相似文献   

8.
We present a new class of inhibitors of pancreatic cholesterol esterase (CEase) based on ‘priviledged’ 5-benzylidenerhodanine and 5-benzylidene-2,4-thiazolidinedione structural scaffolds. The lead structures (5-benzylidenerhodanine 4a and 5-benzylidene-2,4-thiazolidinedione 4b) were identified in an in-house screening and these inhibited CEase with some selectivity over another serine hydrolase, acetylcholinesterase (AChE) (4a, CEase IC50 = 1.76 μM vs AChE IC50 = 5.14 μM and 4b, CEase IC50 = 5.89 μM vs AChE IC50 >100 μM). A small library of analogs (5a10a) containing a core amino acid in place of the glycerol group of the lead structures, was prepared to explore other potential binding interaction with CEase. These analogs inhibited CEase with IC50 values ranging from 1.44 to 85 μM, with the majority exhibiting some selectivity for CEase versus AChE. The most potent compound of the library (10a) had 17-fold selectivity over AChE. We also report molecular docking (with CEase) and detailed kinetic analysis on the amino acid analogs to further understand the associated structure–activity relationships.  相似文献   

9.
In this study, we have synthesised (3,4-dihydroxyphenyl)(2,3,4-trihydroxyphenyl)methanone and a series of its derivatives (5, 13–16) and tested the ability of these compounds to inhibit two metalloenzyme human carbonic anhydrase (hCA, EC 4.2.1.1) isozymes, hCA I and hCA II. The synthesised compounds showed inhibitory effect on hCA I and hCA II isozymes. The results showed that synthesised compounds (5, 13–16) demonstrated the best inhibition activity against hCA I (IC50: 3.22–54.28 μM) and hCA II (IC50: 18.52–142.01 μM). The compound 14 showed the highest inhibiton effect against hCA I (IC50: 3.22 μM; Ki: 1.19?±?1.4 μM). On the other hand, the compound 13 showed the highest inhibiton effect against hCA II (IC50: 18.52 μM; Ki: 3.25?±?1.13 μM).  相似文献   

10.
A series of 1, 3-dialkylxanthines was examined as antagonists of adenosine-induced accumulation of cyclic AMP in guinea pig cerebral cortical slices and as inhibitors of brain phosphodiesterases. The order of potency as adenosine-antagonists was: 8-phenyltheophylline (IC50 6 μM) > 1, 3-dibutylxanthine (IC50 30 μM), 1, 3-dipropylxanthine > theophylline (IC50 60 μM), 3-isobutyl-1-methylxanthine (IBMX), 1, 3, 7-triethylxanthine > 7-benzyl IBMX (IC50 100 μM), 8-methyl IBMX > 7-benzyl-8-bromo IBMX, 9-methyl IBMX, 8-bromo IBMX, 1-isoamyl-3-isobutylxanthine. The order of potency as inhibitors of brain calcium-dependent phosphodiesterase was: 7-benzyl IBMX (IC50 1.5 μM), 7-benzyl-8-bromo IBMX > 8-methyl IBMX (IC50 4.5 μM) > IBMX (IC50 7.5 μM), 8-bromo IBMX > 9-methyl IBMX (IC50 40 μM), 1, 3, 7-triethylxanthine > 1, 3-dibutylxanthine (IC50 100 μM), 1-isoamyl-3-isobutylxanthine > theophylline. 8-Phenyltheophylline and 1, 3-dibutylxanthine represented potent adenosine-antagonists with relatively low activity as phosphodiesterase inhibitors whereas 7-benzyl IBMX and 7-benzyl-8-bromo-IBMX were potent inhibitors of the calcium-dependent phosphodiesterase with relatively low activity as adenosine-antagonists. None of the compounds were potent inhibitors of the brain calcium-independent phosphodiesterase, although 1-isoamyl-3-isobutylxanthine might prove useful as an inhibitor of this enzyme because of its very low activity as an adenosine-antagonist.  相似文献   

11.
A new series of 1,3,4-oxadiazole/chalcone hybrids was designed, synthesized, identified with different spectroscopic techniques and biologically evaluated as inhibitors of EGFR, Src, and IL-6. The synthesized compounds showed promising anticancer activity, particularly against leukemia, with 8v being the most potent. The synthesized compounds exhibited strong to moderate cytotoxic activities against K-562, KG-1a, and Jurkat leukemia cell lines in MTT assays. Compound 8v showed the strongest cytotoxic activity with IC50 of 1.95 µM, 2.36 µM and 3.45 µM against K-562, Jurkat and KG-1a leukemia cell lines, respectively. Moreover; the synthesized compounds inhibited EGFR, Src, and IL-6. Compound 8v was most effective at inhibiting EGFR (IC50 = 0.24 μM), Src (IC50 = 0.96 μM), and IL-6 (% of control = 20%). Additionally, most of the compounds decreased STAT3 activation.  相似文献   

12.
R C Arora  H Y Meltzer 《Life sciences》1980,27(17):1607-1613
Phencylidine, ketamine and fluoxetine inhibited serotonin (5-HT) uptake in a non-competitive manner in human blood platelets whereas d- and 1-amphetamine produced a competitive inhibition of 5-HT uptake. Phencyclidine (IC50, 2.5 μM) was one-hundredth as potent as fluoxetine (IC50, 22 νM) but ten times more potent than ketamine (IC50, 25 μM) and d-amphetamine (IC50, 24 μM) and three times more potent than 1-amphetamine (IC50, 80 μM) in inhibition of 5-HT uptake by human blood platelets. The possibility that inhibition of 5-HT may contribute to some of the proposed serotonergic effects of psychomotor stimulants is discussed.  相似文献   

13.
This study aimed to investigate the antitumor effect and the underlying molecular mechanism of eriodictyol on ovarian cancer cells. CaoV3 and A2780 were exposed to eriodictyol at different concentrations of 0−800 μM. Cell apoptosis and viability were determined by TdT-mediated dUTP Nick-End Labeling (TUNEL) assay and Cell Counting Kit-8 (CCK-8) assay, respectively. Mitochondrial membrane potential was evaluated by flow cytometers with a JC-1 detection kit. Fe2+ content was evaluated using an iron assay kit. The section of tumor tissues was observed using hematoxylin-eosin (H&E) staining and nuclear factor erythroid 2-related factor 2 (Nrf2) expression was detected by immunohistochemistry (IHC) staining. Eriodictyol suppressed cell viability and induced cell apoptosis of CaoV3 and A2780 cells. Half maximal inhibitory concentration (IC50) value of CaoV3 at 24 and 48 h was (229.74 ± 5.13) μM and (38.44 ± 4.68) μM, and IC50 value of A2780 at 24 and 48 h was (248.32 ± 2.54) μM and (64.28 ± 3.19) μM. Fe2+ content and reactive oxygen species production were increased and protein levels of SLC7A11 and GPX4 were decreased by eriodictyol. Besides, eriodictyol reduced the ratio of JC-1 fluorescence ratio, glutathione and malondialdehyde contents but elevated Cytochrome C level. Nrf2 phosphorylation were obviously downregulated by eriodictyol. Finally, eriodictyol suppressed tumor growth, aggravated mitochondrial dysfunction and downregulated Nrf2 expression in tumor tissue in mice. Eriodictyol regulated ferroptosis, mitochondrial dysfunction and cell viability via Nrf2/HO-1/NQO1 signaling pathway in ovarian cancer.  相似文献   

14.
A series of 1-[(4′-chlorophenyl)carbonyl-4-(aryl)thiosemicarbazide derivatives 125 was synthesized and characterized by spectroscopic techniques such as EI-MS and 1H NMR. All compounds were screened for urease inhibitory activity in vitro and demonstrated excellent inhibitory activity in the range of IC50 = 0.32 ± 0.01–25.13 ± 0.13 μM as compared to the standard thiourea (IC50 = 21.25 ± 0.13 μM). Amongst the potent analogs, compounds 3 (IC50 = 2.31 ± 0.01 μM), 6 (IC50 = 2.14 ± 0.04 μM), 10 (IC50 = 1.14 ± 0.06 μM), 20 (IC50 = 2.15 ± 0.05 μM), and 25 (IC50 = 0.32 ± 0.01 μM) are many folds more active than the standard. Structure-activity relationship (SAR) was rationalized by looking at the effect of diversely substituted aryl ring on inhibitory potential which predicted that regardless of the nature of substituents, their positions on aryl ring is worth important for the potent activity. Furthermore, to verify these interpretations, in silico study was performed on all compounds and a good correlation was perceived between the biological evaluation and docking study of compounds.  相似文献   

15.
A novel series of 3-hydroxyquinazoline-2,4(1H,3H)-diones derivatives has been designed and synthesized. Their biochemical characterization revealed that most of the compounds were effective inhibitors of HIV-1 RNase H activity at sub to low micromolar concentrations. Among them, II-4 was the most potent in enzymatic assays, showing an IC50 value of 0.41 ± 0.13 μM, almost five times lower than the IC50 obtained with β-thujaplicinol. In addition, II-4 was also effective in inhibiting HIV-1 IN strand transfer activity (IC50 = 0.85 ± 0.18 μM) but less potent than raltegravir (IC50 = 71 ± 14 nM). Despite its relatively low cytotoxicity, the efficiency of II-4 in cell culture was limited by its poor membrane permeability. Nevertheless, structure-activity relationships and molecular modeling studies confirmed the importance of tested 3-hydroxyquinazoline-2,4(1H,3H)-diones as useful leads for further optimization.  相似文献   

16.
Reported is the preparation of wheat germ (WG) hydrolyzate with potent angiotensin I‐converting enzyme (ACE) inhibitory activity, and the characterization of peptides responsible for ACE inhibition. Successful hydrolyzate with the most potent ACE inhibitory activity was obtained by 0.5 wt.%–8 h Bacillus licheniformis alkaline protease hydrolysis after 3.0 wt.%–3 h α‐amylase treatment of defatted WG (IC50; 0.37 mg protein ml−1). The activity of WG hydrolyzate was markedly increased by ODS and subsequent AG50W purifications (IC50; 0.018 mg protein ml−1). As a result of isolations by high performance liquid chromatographies, 16 peptides with the IC50 value of less than 20 μm , composed of 2–7 amino acid residues were identified from the WG hydrolyzate. Judging from the high content (260 mg in 100 g of AG50W fraction) and powerful ACE inhibitory activity (IC50; 0.48 μm ), Ile‐Val‐Tyr was identified as a main contributor to the ACE inhibition of the hydrolyzate. Copyright © 1999 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

17.
Cd2+, Mn2+, and Al3+ inhibited synaptosomal amine uptake in a concentration-dependent and time-dependent manner. In the absence of Ca2+, the rank order of inhibition of noradrenaline uptake was: Cd2+ (IC50 = 250 μM) > Al3+ (IC50 = 430 μM) > Mn2+ (IC50 = 1.50 mM), the IC50 being the concentration of metal ions that gave rise to 50% inhibition of uptake. In the presence of 1 mM Ca2+, the rank order of inhibition of uptake was: Al3+ (IC50 = 330 μM) > Cd2+ (IC50 = 540 μM) > (IC50 = 1.5 mM). The rank order of inhibition of serotonin uptake without Ca2+ was: Al3+ (IC50 = 370 μM) > Cd2+ (IC50 = 610 μM) > Mn2+ (IC50 = 3.4 mM) and the rank order in the presence of 1 mM Ca2+ was: Al3+ (IC50 = 290 μM) > Cd2+ (IC50 = 1.5 mM) > Mn2+ (IC50 = 4.0 mM). Ca2+, at 1 mM, definitely antagonized the inhibitory actions of Cd2+ on noradrenaline and serotonin uptake. Al3+ stimulated noradrenaline uptake at concentrations around 20–250 μM but inhibited this uptake at concentrations exceeding 300 μM in a dose-related fashion. Ca2+, at 1 mM, enhanced both the stimulatory and inhibitory effects of Al3+. Ca2+ also enhanced the inhibitory actions of Al3+ on seotonin uptake. These results, in conjunction with those we have previously published, suggest that Cd2+, Mn2+, and Al3+ exert differential and selective effects on the structure and function of synaptosomal membranes.  相似文献   

18.
A mild and efficient route to tetraketones (2–22) has been developed by way of tetraethyl ammonium bromide (Et4N+Br? ) mediated condensation of dimedone (5,5-dimethylcyclohexane-1,3-dione, 1) with a variety of aldehydes. All these compounds showed significant lipoxygenase inhibitory activity and moderate to strong antioxidant potential. Compounds 19 (IC50 = 7.8 μM), 22 (IC50 = 12.5 μM), 3 (IC50 = 16.3 μM), 11 (IC50 = 17.5 μM) and 8 (IC50 = 21.3 μM) showed significant inhibitory potential against lipoxygenase (baicalein, IC50 = 22.4 μM). On the other hand compound 19 (IC50 = 33.6 μM) also showed strong antioxidant activity compared to the standard (IC50 = 44.7 μM). This study is likely to lead to the discovery of therapeutically efficient agents against very important disorders including inflammation, asthma, cancer and autoimmune diseases.  相似文献   

19.
We have synthesized seventeen Coumarin based derivatives (117), characterized by 1HNMR, 13CNMR and EI-MS and evaluated for α-glucosidase inhibitory potential. Among the series, all derivatives exhibited outstanding α-glucosidase inhibition with IC50 values ranging between 1.10 ± 0.01 and 36.46 ± 0.70 μM when compared with the standard inhibitor acarbose having IC50 value 39.45 ± 0.10 μM. The most potent derivative among the series is derivative 3 having IC50 value 1.10 ± 0.01 μM, which are many folds better than the standard acarbose. The structure activity relationship (SAR) was mainly based upon by bring about difference of substituent’s on phenyl part. Molecular docking studies were carried out to understand the binding interaction of the most active compounds.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号