首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Growth plate chondrocytes from both male and female rats have nuclear receptors for 17β-estradiol (E2); however, recent studies indicate that an alternative pathway involving a membrane receptor may also be involved in the female cell response. E2 directly affects the fluidity of chondrocyte membranes derived from female, but not male, rats. In addition, E2 activates PKC in a nongenomic manner in female cells, and chelerythrine, a specific inhibitor of PKC, inhibits E2-dependent alkaline phosphatase activity in these cells, indicating PKC is involved in the signal transduction mechanism. The aims of this study were: (1) to examine if PKC mediates the effect of E2 on chondrocyte proliferation, differentiation, and matrix synthesis; and (2) to determine the pathway that mediates the membrane effect of E2 on PKC. Confluent, fourth passage resting zone (RC) and growth zone (GC) chondrocytes from female rat costochondral cartilage were treated with 10−10 to 10−7 M E2 in the presence or absence of the PKC inhibitor chelerythrine, and changes in alkaline phosphatase specific activity, proteoglycan sulfation, and [3H]thymidine incorporation were measured. To examine the pathway of PKC activation, chondrocyte cultures were treated with E2 in the presence or absence of genistein (an inhibitor of tyrosine kinases), U73122 or D609 (inhibitors of phospholipase C [PLC]), quinacrine (an inhibitor of phospholipase A2 [PLA2]), and melittin (an activator of PLA2). Alkaline phosphatase specific activity and proteoglycan sulfation were increased and [3H]thymidine incorporation was decreased by E2. The effects of E2 on all parameters were blocked by chelerythrine. Treatment of the cultures with E2 produced a significant dose-dependent increase in PKC. U73122 dose-dependently inhibited the activation of PKC in E2-stimulated female chondrocyte cultures. However, the classical receptor antagonist ICI 182780 was unable to block the stimulatory effect of E2 on PKC. Moreover, the classical receptor agonist diethylstilbestrol (DES) had no effect on PKC, nor did it alter the stimulatory effect of E2. Inhibition of tyrosine kinase and PLA2 had no effect on the activation of PKC by E2. The PLA2 activator also had no effect on PKC activation by E2. E2 stimulated PKC activity in membranes isolated from the chondrocytes, demonstrating a direct membrane effect for this steroid hormone. These data indicate that the rapid nongenomic effect of E2 on PKC activity in chondrocytes from female rats is sex-specific and dependent upon a G-protein-coupled phospholipase C.  相似文献   

2.
17β-Estradiol (E2) regulates growth plate chondrocyte differentiation in both a sex- and cell maturation–dependent manner, and the sex-specific effects of E2 appear to be mediated in part by membrane events. In this study, we examined whether E2 regulates protein kinase C (PKC) in a cell-maturation and sex-specific manner and whether E2 uses a nongenomic mechanism in regulating this enzyme. In addition, we determined if PKC mediates the E2-dependent stimulation of alkaline phosphatase activity seen in chondrocytes. Confluent, fourth passage resting zone (RC) and growth zone (GC) chondrocytes from male and female rat costochondral cartilage were treated with 10−10 to 10−7 M E2. E2 caused a dose-dependent increase in PKC in RC and GC cells from female rats. Peak stimulation was at 90 min. Increased PKC was evident by 3 min in both RC and GC and was still evident in RC cells at 720 min, but in GC cells activity returned to baseline by 270 min. Actinomycin D had no effect at 9, 90, 270, or 720 min, but there was a small decrease in E2-stimulated PKC in RC treated with cycloheximide at 90 and 270 min and in GC treated for 90 min. E2 increased cytosolic and membrane PKC at 9 min and by 90 min promoted translocation of PKC activity from the cytosol to the membranous compartment of female RC cells. Antibodies specific for the α, β, δ, ε, and ζ isoforms of PKC revealed that PKCα in female GC and RC cells is activated by E2. There was a small, but statistically significant, increase in PKC in male RC cells in response to E2, but it was not dose-dependent, and no effect of E2 was noted in male GC cells. 17α-estradiol, an inactive isomer of E2, did not affect PKC specific activity in RC or GC cells from either female or male rats. Chelerythrine, a specific inhibitor of PKC, inhibited E2-dependent alkaline phosphatase activity, indicating that E2 mediates its rapid effects on alkaline phosphatase via PKC. J. Cell. Physiol. 176:435–444, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

3.
Summary The ultrastructural localization of alkaline phosphatase (AlP) activity has been demonstrated in epiphyseal growth cartilage and metaphyseal bone of rats. Epiphyso-metaphyseal specimens were decalcified with EDTA and treated with MgCl2 to regenerate the enzymatic activity before incubation in a medium containing beta-glycerophosphate, MgCl2 and CeCl3. AlP activity was present on the outer surface of the plasmamembrane of maturing and hypertrophic chondrocytes and of osteoblasts. Moreover, the reaction product was present in chondrocyte lacunae, in matrix vesicles, and in cartilage matrix, as well as among uncalcified collagen fibrils of osteoid tissue in bone. The intensity of reaction was the lowest, or completely lacking, where the degree of matrix calcification was the highest. These results suggest that alkaline phosphatase is transported from the cells into the cartilage and bone matrix by its association with matrix vesicles and plasmamembrane components, and that its activity in cartilage and bone matrix is inhibited as it is incorporated in the mineral substance.  相似文献   

4.
The activities of acid and alkaline phosphatases were localized by enzyme histochemistry in the chondroepiphyses of 5 week old rabbits. Using paraformaldehyde-lysine-periodate as fixative, the activity of acid phosphatase was particularly well preserved and could be demonstrated not only in osteoclasts, but also in chondrocytes as well as in the cartilage and early endochondral matrices. The acid phosphatase in the chondrocytes and the matrix was tartrate-resistant, but inhibited by 2mM sodium fluoride, whereas for osteoclasts 50–100mM sodium fluoride were required for inhibition. Simultaneous localisation of both acid and alkaline phosphatase activities was possible in tissue that had been fixed in 85% ethanol and processed immediately. In the growth plates of the secondary ossification centre and the physis, there was a sequential localisation of the two phosphatases associated with chondrocyte maturation. The matrix surrounding immature epiphyseal chondrocytes or resting/proliferating growth plate chondrocytes contained weak acid phosphatase activity. Maturing chondrocytes were positive for alkaline phosphatase which spread to the matrix in the pre-mineralising zone, in a pattern that was consistent with the known location of matrix vesicles. The region of strong alkaline phosphatase activity was the precise region where acid phosphatase activity was reduced. With the onset of cartilage calcification, alkaline phosphatase activity disappeared, but strong acid phosphatase activity was found in close association with the early mineral deposition. Acid phosphatase activity was also present in the matrix of the endochondral bone, but was only found in early spicules which had recently mineralised. The results suggest that alkaline phosphatase activity is required in preparation of mineralization, whereas acid phosphatase activity might have a contributory role during the early progression of mineral formation.  相似文献   

5.
17 beta-Estradiol (E(2)) regulates growth plate cartilage cells via classical nuclear receptor mechanisms, as well as by direct effects on the chondrocyte membrane. These direct effects are stereospecific, causing a rapid increase in protein kinase C (PKC) specific activity, are only found in cells from female rats and are mimicked by E(2)-bovine serum albumin (BSA), which cannot penetrate the cell membrane. E(2) and E(2)-BSA stimulate alkaline phosphatase specific activity and proteoglycan sulfation in female rat costochondral cartilage cell cultures, but traditional nuclear receptors do not appear to be involved. This study examined the effect of the anti-estrogen tamoxifen on these markers of chondrocyte differentiation; the gender-specificity of tamoxifen's effect on PKC, if tamoxifen has an effect on vitamin D metabolite-stimulated PKC, which is mediated via specific membrane receptors (1,25-mVDR; 24,25-mVDR) and whether the effect of tamoxifen is mediated by nuclear estrogen receptors. Tamoxifen dose-dependently inhibited the effect of E(2)-BSA on PKC, alkaline phosphatase and proteoglycan sulfation in confluent cultures of female resting zone (RC) cells and growth zone (GC) (prehypertrophic/upper hypertrophic zones) cells, suggesting that its action is at the membrane and not cell maturation-dependent. Neither the estrogen receptor (ER) antagonist ICI 182780 nor the ER agonist diethylstilbesterol affected E(2) or E(2)-BSA-stimulated PKC in female chondrocytes. Tamoxifen also inhibited the increase in PKC activity due to 1 alpha,25-(OH)(2)D(3) or 24R,25-(OH)(2)D(3) in growth plate cells derived from either female or male rats. Inhibition of PKC by tamoxifen may be a general property of membrane receptors involved in rapid responses to hormones.  相似文献   

6.
Summary The ultrastructural localization of alkaline phosphatase was studied in the hypertrophic chondrocyte of the frog (Rana temporaria) by incubating sections of glutaraldehyde fixed tissue in a medium containing sodium glycerophosphate and calcium chloride. Control specimens were incubated in substrate free medium.Alkaline phosphatase (orthophosphoric monoester phosphohydrolase) is a hight molecular weight glycoprotein that hydrolyses phosphorylated metabolites much as acid phosphatase does except that its action is optimal at an alkaline pH.The results of this investigation showed that alkaline phosphatase activity was present within the cytoplasm and around the plasma membrane of frog hypertrophic chondrocytes. Although only a small proportion of frog hypertrophic chondrocytes demonstrated enzyme activity, there was evidence that this was concentrated within Golgi lamellae and vesicles leaving other organelles unreactive. The finding of alkaline phosphatase activity within Golgi lamellae of hypertrophic chondrocytes is regarded as unusual although positive reactions within chondrocyte lysosomes have previously been reported (Doty and Schofield, 1976).  相似文献   

7.
Rat costochondral cartilage growth plate chondrocytes exhibit cell sex-specific responses to 17β-estradiol (E2), testosterone, and dihydrotestosterone (DHT). Mechanistically, E2 and DHT stimulate proliferation and extracellular matrix synthesis in chondrocytes from female and male rats, respectively, by signaling through protein kinase C (PKC) and phospholipase C (PLC). Estrogen receptors (ERα; ERβ) and androgen receptors (ARs) are present in both male and female cells, but it is not known whether they interact to elicit sex-specific signaling. We used specific agonists and antagonists of these receptors to examine the relative contributions of ERs and ARs in membrane-mediated E2 signaling in female chondrocytes and DHT signaling in male chondrocytes. PKC activity in female chondrocytes was stimulated by agonists of ERα and ERβ and required intact caveolae; PKC activity was inhibited by the E2 enantiomer and by an inhibitor of ERβ. Western blots of cell lysates co-immunoprecipitated for ERα suggested the formation of a complex containing both ERα and ERß with E2 treatment. DHT and DHT agonists activated PKC in male cells, while AR inhibition blocked the stimulatory effect of DHT on PKC. Inhibition of ERα and ERβ also blocked PKC activation by DHT. Western blots of whole-cell lysates, plasma membranes, and caveolae indicated the translocation of AR to the plasma membrane and specifically to caveolae with DHT treatment. These results suggest that E2 and DHT promote chondrocyte differentiation via the ability of ARs and ERs to form a complex. The results also indicate that intact caveolae and palmitoylation of the membrane receptor(s) or membrane receptor complex containing ERα and ERβ is required for E2 and DHT membrane-associated PKC activity in costochondral cartilage cells.  相似文献   

8.
A glycoprotein that exhibits alkaline phosphatase activity and binds Ca2+ with high affinity has been extracted and purified from cartilage matrix vesicles by fast protein liquid chromatography. Antibodies against this glycoprotein were used to analyze its distribution in chondrocytes and in the matrix of calcifying cartilage. Under the light microscope, using immunoperoxidase or immunofluorescence techniques, the glycoprotein is localized in chondrocytes of the resting zone. At this level, the extracellular matrix does not show any reaction. In the cartilage plate, between the proliferating and the hypertrophic region, a weak immune reactivity is seen in the cytoplasm, whereas in the intercolumnar matrix the collagen fibers appear clearly stained. Stained granular structures, distributed with a pattern similar to that of matrix vesicles, are also visible. Calcified matrix is the most stained area. These results were confirmed under the electron microscope using both immunoperoxidase and protein A-gold techniques. In parallel studies, enzyme activity was also analyzed by histochemical methods. Whereas resting cartilage, the intercellular matrix of the resting zone, and calcified matrix do not exhibit any enzyme activity, the zones of maturing and hypertrophic chondrocytes are highly reactive. Some weak reactivity is also shown by chondrocytes of the resting zone. The observation that this glycoprotein (which binds Ca2+ and has alkaline phosphatase activity) is synthesized in chondrocytes and is exported to the extracellular matrix at the time when calcification begins, suggests that it plays a specific role in the process of calcification.  相似文献   

9.
Growth plate chondrocytes from both male and female rats have nuclear receptors for 17β-estradiol (E2); however, recent studies indicate that an alternative pathway involving a membrane receptor may also be involved in the female cell response. E2 directly affects the fluidity of chondrocyte membranes derived from female, but not male, rats. In addition, E2 activates PKC in a nongenomic manner in female cells, and chelerythrine, a specific inhibitor of PKC, inhibits E2-dependent alkaline phosphatase activity in these cells, indicating PKC is involved in the signal transduction mechanism. The aims of this study were: (1) to examine if PKC mediates the effect of E2 on chondrocyte proliferation, differentiation, and matrix synthesis; and (2) to determine the pathway that mediates the membrane effect of E2 on PKC. Confluent, fourth passage resting zone (RC) and growth zone (GC) chondrocytes from female rat costochondral cartilage were treated with 10−10 to 10−7 M E2 in the presence or absence of the PKC inhibitor chelerythrine, and changes in alkaline phosphatase specific activity, proteoglycan sulfation, and [3H]thymidine incorporation were measured. To examine the pathway of PKC activation, chondrocyte cultures were treated with E2 in the presence or absence of genistein (an inhibitor of tyrosine kinases), U73122 or D609 (inhibitors of phospholipase C [PLC]), quinacrine (an inhibitor of phospholipase A2 [PLA2]), and melittin (an activator of PLA2). Alkaline phosphatase specific activity and proteoglycan sulfation were increased and [3H]thymidine incorporation was decreased by E2. The effects of E2 on all parameters were blocked by chelerythrine. Treatment of the cultures with E2 produced a significant dose-dependent increase in PKC. U73122 dose-dependently inhibited the activation of PKC in E2-stimulated female chondrocyte cultures. However, the classical receptor antagonist ICI 182780 was unable to block the stimulatory effect of E2 on PKC. Moreover, the classical receptor agonist diethylstilbestrol (DES) had no effect on PKC, nor did it alter the stimulatory effect of E2. Inhibition of tyrosine kinase and PLA2 had no effect on the activation of PKC by E2. The PLA2 activator also had no effect on PKC activation by E2. E2 stimulated PKC activity in membranes isolated from the chondrocytes, demonstrating a direct membrane effect for this steroid hormone. These data indicate that the rapid nongenomic effect of E2 on PKC activity in chondrocytes from female rats is sex-specific and dependent upon a G-protein-coupled phospholipase C.  相似文献   

10.
Alkaline phosphatase activity appears to be altered when chondrocyte cultures are incubated with 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3). This study examined whether the hormone-responsive enzyme activity is associated with alkaline phosphatase-enriched extracellular membrane organelles called matrix vesicles. Confluent, third passage cultures of rat costochondral growth cartilage (GC) or resting zone chondrocytes (RC) were incubated with 1,25-(OH)2D3 or 24,25-dihydroxyvitamin D3 (24,25-(OH)2D3) and enzyme specific activity was assayed in the cell layer or in isolated matrix vesicle and plasma membrane fractions. Alkaline phosphatase-specific activity in the matrix vesicles was enriched at least 2-fold over that of the plasma membrane and 10-fold over that of the cell layer. Matrix vesicle alkaline phosphatase was stimulated by 1,25-(OH)2D3 in GC cultures and by 24,25-(OH)2D3 in RC cultures. The cell layer failed to reveal these subtle differences. 1,25-(OH)2D3 increased GC enzyme activity but the effect was one-half that observed in the matrix vesicles alone. No effect of 1,25-(OH)2D3 on enzyme activity of the RC cell layer or of 24,25-(OH)2D3 on either GC or RC cell layers was detected. Thus, response to the metabolites is dependent on chondrocytic differentiation and is site specific: the matrix vesicle fraction is targeted and not the cells per se.  相似文献   

11.
1,25-(OH)2D3 (1,25) and 24,25-(OH)2D3 (24,25) mediate their effects on chondrocytes through the classic vitamin D receptor (VDR) as well as through rapid membrane-mediated mechanisms, which result in both nongenomic and genomic effects. In intact cells, it is difficult to distinguish between genomic responses via the VDR and genomic and nongenomic responses via membrane-mediated pathways. In this study, we used two analogues of 1,25 that have been modified on the A-ring (2a, 2b) and are only 0.1% as effective in binding to the VDR as 1,25, to examine the role of the VDR in the response of rat costochondral resting zone (RC) and growth zone (GC) chondrocytes to 1,25 and 24,25. Chondrocyte proliferation ([3H]-thymidine incorporation), proteoglycan production ([35S]-sulfate incorporation), and second messenger activation (activity of protein kinase C) were measured after treatment with 10-8 M 1,25, 10-7 M 24,25, or the analogues at 10-9–10-6 M. Both analogues inhibited proliferation of both cell types, as did 1,25 and 24,25. Neither 2a nor 2b had an effect on proteoglycan production by GCs or RCs. 2a caused a dose-dependent stimulation of protein kinase C (PKC) that was not inhibited by cycloheximide or actinomycin D in either GC or RC cells. 2b, on the other hand, had no effect on PKC activity in RCs and only a slight stimulatory effect in GCs. Both cells produce matrix vesicles, extracellular organelles associated with the initial stages of calcification, in culture that are regulated by vitamin D metabolites. Since these organelles contain no DNA or RNA, they provide an excellent model for studying the mechanisms used by vitamin D metabolites to mediate their nongenomic effects. When matrix vesicles were isolated from naive cultures of growth zone cells and treated with 2a, a dose-dependent inhibition of PKC activity was observed that was similar to that found with 1,25-(OH)2D3. Plasma membranes contained increased PKC activity after treatment with 2a, but the magnitude of the effect was less than that seen with 1,25-(OH)2D3. Analogue 2b had no affect on PKC activity in either membrane fraction. When matrix vesicles from resting zone chondrocyte cultures were treated with 24,25-(OH)2D3, a significant decrease in PKC activity was observed. No change in enzyme activity was found for either 1,25-(OH)2D3 or the analogues. PKC activity in the plasma membrane fraction, however, was increased by 24,25-(OH)2D3 as well as by analogue 2a. This study shows that these analogues, with little or no binding to the vitamin D receptor, can affect cell proliferation and PKC activity, but not proteoglycan production. The direct membrane effect is analogue specific and cell maturation dependent. Further, by eliminating the VDR-mediated component of the cellular response, we have provided further evidence for the existence of a membrane receptor(s) involved in mediating nongenomic effects of vitamin D metabolites. J. Cell. Physiol. 171:357–367, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

12.
Rabbit chondrocytes from pooled articular joints have been delineated by their time of attachment of culture flasks after initiation of primary monolayer culture, either attached (48-AT) or floating (48-F) after 48 hours. A general population of chrondrocytes (attached after 72 hours, 72-AT) was also studied. The growth-promoting activity of pituitary fibroblast growth factor (FGF) and its effect on sulfated-proteoglycan synthesis was studied on each chondrocyte population in secondary monolayer culture. 3H-thymidine incorporation during a 1-hour pulse was stimulated by FGF (100 ng/ml) in each chondrocyte population. The response of AT-72 chondrocytes to FGF required an additional fetal bovine serum supplement, while 48-F cells resonded independent of serum. The response of 48-AT chondrocytes to FGF (100 ng/ml) during a 1-hour pulse with 3H-thymidine was increased in low serum (0.5–2.0%) rather than when high serum (8–10%) was present in the culture medium. FGF reduced 35SO4 incorporation into sulfated-proteoglycans in the 48-AT and 48-F chondrocyte populations, but not in the 72-AT population. The reduction in 35SO4 incorporation in the 48-AT and 48-F chondrocytes was not characterized by alterations in the hydrodynamic size of the sulfated-proteoglycans as measured by Sepharose CL-2B chromatography nor by changes in the types of sulfated-glycosaminoglycans produced. These results indicated that FGF produced quantitative rather than qualitative alterations in chondrocyte sulfated-proteoglycan synthesis. The latter appears uncoupled from the growth-promoting activity of FGF on chondrocytes.  相似文献   

13.
Vascular invasion of calcified cartilage, during endochondral ossification, is initiated and sustained by invasive cells (endothelial cells and macrophages) which degrade the tissue by releasing lytic enzymes. Concurrently, reactive oxygen species (ROS) are also released by these cells and we hypothesize that ROS also contribute to the degradation of the tissue. As a preliminary approach to this problem, the antioxidant activities and the effect of ROS on hypertrophic cartilage and chondrocytes (HCs) were investigated. Compared to resting or articular chondrocytes, HCs exhibited higher catalase but lower SOD specific activities and lower PHGPx concentration, thus revealing a defence activity specific against H2O2. Moreover, dose-dependent depletion of ATP occurred after few minutes of exposure to ROS, and a long-term treatment (16 h incubation with ROS) promoted the release of LDH activity and a significant variation of the poly- to mono-unsaturated fatty acid ratio. Finally, the incubation of HCs with low ROS doses induced the release of sedimentable alkaline phosphatase activity (matrix vesicles). How the obtained results fit the in vivo occurring events is discussed.  相似文献   

14.
Matrix vesicles are membrane-invested vesicles that initiate mineralization in the extracellular matrix of calcifying tissues. The epiphyseal cartilages of young-rat rib bones were divided into the growth zone and the resting zone, followed by the isolation of matrix vesicles after collagenase treatment. Matrix vesicles with both alkaline phosphatase and lactate dehydrogenase were detected in the growth cartilage found in the epiphyseal growth plates of young rabbits [Hosokawa, Uchida, Fujiwara & Noguchi (1988) J. Biol. Chem. 263, 10045-10047], but were not detected in the resting zone. By contrast, and surprisingly, lactate dehydrogenase-containing vesicles without alkaline phosphatase were found in the resting zone, but not in the growth zone. In both the growth and resting zones, isoenzyme patterns of lactate dehydrogenase in the two different vesicles were identical with those of cytosolic lactate dehydrogenase of chondrocytes, suggesting the presence of a mechanism for specific uptake of cytosolic lactate dehydrogenase. The same results as for young-rat rib bones were obtained with the resting and growth cartilages of young-dog and monkey rib bones.  相似文献   

15.
16.
G R Dickson 《Histochemistry》1978,57(4):343-347
The ultrastructural localization of alkaline phosphatase was studied in the hypertrophic chondrocyte of the frog (Rana temporaria) by incubating sections of glutaraldehyde fixed tissue in a medium containing sodium beta glycerophosphate and calcium chloride. Control specimens were incubated in substrate free medium. Alkaline phosphatase (orthophosphoric monoester phosphohydrolase) is a high molecular weight glycoprotein that hydrolyses phosphorylated metabolites much as acid phosphatase does except that its action is optimal at an alkaline pH. The results of this investigation showed that alkaline phosphatase activity was present within the cytoplasm and around the plasma membrane of frog hypertrophic chondrocytes. Although only a small proportion of frog hypertrophic chondrocytes demonstrated enzyme activity, there was evidence that this was concentrated within Golgi lamellae and vesicles leaving other organelles unreactive. The finding of alkaline phosphatase activity within Golgi lamellae of hypertrophic chondrocytes is regarded as unusual although postitive reactions within chondrocyte lysosomes have previously been reported (Doty and Schofield, 1976).  相似文献   

17.
《The Journal of cell biology》1994,126(5):1311-1318
Epiphyseal chondrocytes cultured in a medium containing 10% serum may be maintained as three dimensional aggregates and differentiate terminally into hypertrophic cells. There is an attendant expression of genes encoding type X collagen and high levels of alkaline phosphatase activity. Manipulation of the serum concentration to optimal levels of 0.1 or 0.01% in this chondrocyte pellet culture system results in formation of features of developing cartilage architecture which have been observed exclusively in growth cartilage in vivo. Cells are arranged in columns radiating out from the center of the tissue, and can be divided into distinct zones corresponding to the recognized stages of chondrocyte differentiation. Elimination of the optimal serum concentration in a chemically defined medium containing insulin eliminates the events of terminal differentiation of defined cartilage architecture. Chondrocytes continue to enlarge into hypertrophic cells and synthesize type X collagen mRNA and protein, but in the absence of the optimal serum concentration, alkaline phosphatase activity does not increase and the cells retain a random orientation. Addition of thyroxine to the chemically defined medium containing insulin and growth hormone results in dose-dependent increases in both type X collagen synthesis and alkaline phosphatase activity, and reproduces the optimal serum-induced morphogenesis of chondrocytes into a columnar pattern. These experiments demonstrate the critical role of thyroxine in cartilage morphogenesis.  相似文献   

18.
19.
Summary Study of the deep articular cartilage and adjacent calcified cartilage has been limited by the lack of an in vitro culture system which mimics this region of the cartilage. In this paper we describe a method to generate mineralized cartilagenous tissue in culture using chondrocytes obtained from the deep zone of bovine articular cartilage. The cells were plated on Millipore CMR filters. The chondrocytes in culture accumulated extracellular matrix and formed cartilagenous tissue which calcified when β-glycerophosphate was added to the culture medium. The cartilagenous tissue generated in vitro contains both type II and type X collagens, large sulfated proteoglycans, and alkaline phosphatase activity. Ultrastructurally, matrix vesicles were seen in the extracellular matrix. Selected area electron diffraction confirmed that the calcification was composed of hydroxyapatite crystals. The chondrocytes, as characterized thus far, appear to maintain their phenotype under these culture conditions which suggests that these cultures could be used as a model to examine the metabolism of cells from the deep zone of cartilage and mineralization of cartilagenous tissue in culture.  相似文献   

20.
Nuclear receptors for 17 beta-estradiol (E(2)) are present in growth plate chondrocytes from both male and female rats and regulation of chondrocytes through these receptors has been studied for many years; however, recent studies indicate that an alternative pathway involving a membrane receptor may also be involved in the cell response. E(2) was found to directly affect the fluidity of chondrocyte membranes derived from female, but not male, rats. In addition, E(2) activates protein kinase C (PKC) in a nongenomic manner in female cells, and chelerythrine, a specific inhibitor of PKC, inhibits E(2)-dependent alkaline phosphatase activity and proteoglycan sulfation in these cells, indicating PKC is involved in the signal transduction mechanism. The aims of the present study were: (1) to examine the effect of a cell membrane-impermeable 17 beta-estradiol-bovine serum albumin conjugate (E(2)-BSA) on chondrocyte proliferation, differentiation, and matrix synthesis; (2) to determine the pathway that mediates the membrane effect of E(2)-BSA on PKC; and (3) to compare the action of E(2)-BSA to that of E(2). Confluent, fourth passage resting zone (RC) and growth zone (GC) chondrocytes from female rat costochondral cartilage were treated with 10(-9) to 10(-7) M E(2) or E(2)-BSA and changes in alkaline phosphatase specific activity, proteoglycan sulfation, and [(3)H]-thymidine incorporation measured. To examine the pathway of PKC activation, chondrocyte cultures were treated with E(2)-BSA in the presence or absence of GDP beta S (inhibitor of G-proteins), GTP gamma S (activator of G-proteins), U73122 or D609 (inhibitors of phospholipase C [PLC]), wortmannin (inhibitor of phospholipase D [PLD]) or LY294002 (inhibitor of phosphatidylinositol 3-kinase). E(2)-BSA mimicked the effects of E(2) on alkaline phosphatase specific activity and proteoglycan sulfation, causing dose-dependent increases in both RC and GC cell cultures. Both forms of estradiol inhibited [(3)H]-thymidine incorporation, and the effect was dose-dependent. E(2)-BSA caused time-dependent increases in PKC in RC and GC cells; effects were observed within three minutes in RC cells and within one minute in GC cells. Response to E(2) was more robust in RC cells, whereas in GC cells, E(2) and E(2)-BSA caused a comparable increase in PKC. GDP beta S inhibited the activation of PKC in E(2)-BSA-stimulated RC and GC cells. GTP gamma S increased PKC in E(2)-BSA-stimulated GC cells, but had no effect in E(2)-BSA-stimulated RC cells. The phosphatidylinositol-specific PLC inhibitor U73122 blocked E(2)-BSA-stimulated PKC activity in both RC and GC cells, whereas the phosphatidylcholine-specific PLC inhibitor D609 had no effect. Neither the PLD inhibitor wortmannin nor the phosphatidylinositol 3-kinase inhibitor LY294022 had any effect on E(2)-BSA-stimulated PKC activity in either RC or GC cells. The classical estrogen receptor antagonist ICI 182780 was unable to block the stimulatory effect of E(2)-BSA on PKC. Moreover, the classical receptor agonist diethylstilbestrol (DES) had no effect on PKC, nor did it alter the stimulatory effect of E(2)-BSA. The specificity of the membrane response to E(2) was also demonstrated by showing that the membrane receptor for 1 alpha,25-(OH)(2)D(3) was not involved. These data indicate that the rapid nongenomic effect of E(2)-BSA on PKC activity in RC and GC cells is dependent on G-protein-coupled PLC and support the hypothesis that many of the effects of E(2) involve membrane-associated mechanisms independent of classical estrogen receptors. (c) 2001 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号