首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bioluminescent methods are widely used for the assay of the co-factors, NADH and ATP. Although the bioluminescent method is highly sensitive, the enzymes used are unstable and expensive. Therefore a chemiluminescent method would be valuable in clinical routine assay. We have developed a chemiluminescent method for the assay of NADH using the 1-methoxy-5-methylphenazinium methyl sulphate (1-MPMS)/isoluminol(IL)/microperox-idase(m-POD) system. In order to increase the sensitivity of this method, enzymatic cycling system was coupled to the chemiluminescent assay of NADH. Alcohol dehydrogenase and malate dehydrogenase were used as the cycling enzyme. The standard curve was obtained in the range from 3 × 10?14 to 5 × 10?12mol/assay. The detection limit of NADH was 30fmol/assay which was comparable to that of the bioluminescent method using bacterial luciferase. Two chemiluminescent methods for the assay of ATP have been developed. Method 1 is the system using hexokinase/G6PDH and 1-PMS/IL/m-POD, and method 2 is the system based on the enzymatic cycling reaction of ATP using hexokinase/pyruvate kinase. Method 2 is 1000/fold more sensitive than the method 1. The detection limit of ATP was 10 fmol/assay.  相似文献   

2.
A highly sensitive chemiluminescent assay for NAD(P)H have been developed. The principle of the method is as follows; NAD(P)H reduces molecular oxygen to superoxide anion (O) and hydrogen peroxide (H2O2) in the presence of 1-methoxy-5-methylphenazinium methyl sulphate (1-MPMS) as electron mediator. The produced O and H2O2 can be measured by chemiluminescent reaction using isoluminol (IL) and microperoxidase (m-POD). A linear relationship between chemiluminescence intensity and NAD(P)H concentration (log/log) was obtained ranged from 10?9 mol/I to 10?5 mol/I. This chemiluminescent reaction has been coupled to the assay of glucose-6-phosphate dehydrogenase (G6PDH), β-D -galactosidase (β-Gal) and alkaline phosphatase (ALP). The detection limits of G6PDH, β-Gal and ALP were 10?18 mol, 10?20 mol and 10?18 mol per assay, respectively. The chemiluminescent assay of these enzymes applied to chemiluminescent enzyme immunoassay for 17α-hydroxy-progesterone and DNA hybridization assay using these enzymes as label.  相似文献   

3.
A sensitive peroxyoxalate chemiluminescent (PO-CL) assay for activities of oxidases (uricase, choline oxidase, cholesterol oxidase and xanthine oxidase) which catalyse a formation of hydrogen peroxide was developed using 4,4′-oxalyl-bis[(trifluoromethylsulphonyl)imino]trimethylene-bis(4-methylmorpholinium)trifluoromethanesulphonate as a chemiluminogenic reagent and 2,4,6,8-tetramorpholinopyrimido[5,4-d]pyrimidine as a fluorophore. The standard curve for hydrogen peroxide was linear over the range 1 × 10?7-1 × 10?4 mol/L. Relative standard deviations for oxidase assays were 5.1–12.7% (n = 10). Detection limits were 1 × 10?3 U/mL for uricase, 5 × 10?4 U/mL for choline oxidase, 5 × 10?3 U/mL for cholesterol oxidase and 5 × 10?4 U/mL xanthine oxidase (sample to blank ratio, 3).  相似文献   

4.
This paper presents a new application for monolithic columns with low‐pressure chromatographic separation using an flow injection analysis configuration with chemiluminescent detection for the determination of a mixture of phenolic compounds: phloroglucinol, 2,4‐dihydroxybenzoic acid, salicylic acid, methyl paraben and n‐propyl gallate. The procedure consists of the separation of these compounds on a reverse‐phase ultra‐short monolithic column with pH 3.0 acetate buffer and 5% acetonitrile as carrier phase. The detection is based on a chemiluminescence measurement coming from Ce(IV)–Rhodamine 6G chemistry with the incorporation of two different chemiluminescent chemical conditions in the chromatographic setup in order to enhance the sensitivity for the different phenolic compounds. All separation and detection variables were optimized to propose a determination method. The analysis is performed in 280?s, with the sampling frequency being some 13 h?1. The calibration function is a double reciprocal function obtaining good results within two orders of magnitude. The limits of detection were 8.8 × 10 ?8 m (phloroglucinol), 2.7 × 10 ?8 m (2,4‐dihydroxybenzoic acid); 2.3 × 10 ?8 m (salicylic acid); 5.2 × 10 ?8 m (methyl paraben) and 4.1 × 10 ?6 m (n‐propyl gallate), and the relative standard deviations at a medium level of the linear range were 4.4% (phloroglucinol), 2.8% (2,4‐dihydroxybenzoic acid), 5.2% (salicylic acid), 3.6% (methyl paraben) and 6.8% (n‐propyl gallate). The method was applied and validated satisfactorily for the determination of these compounds in healthcare products, comparing the results against an HPLC reference method. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Glucose-6-phosphate dehydrogenase (E.C. 1.1.1.49) was partially purified by fractionation with ammonium sulfate and phosphocellulose chromatography. The Km value for glucose-6-phosphate is 1.6 × 10?4 and 6.3 × 10?4M at low (1.0–6.0 × 10?4M) and high (6.0–30.0 × 10?4M) concentrations of the substrate, respectively. The Km value for NADP+ is 1.4 × 10?5M. The enzyme is inhibited by NADPH, 5-phosphoribosyl-1-pyrophosphate, and ATP, and it is activated by Mg2+, and Mn2+. In the presence of NADPH, the plot of activity vs. NADP+ concentration gave a sigmoidal curve. Inhibition of 5-phosphoribosyl-1-pyrophosphate and ATP is reversed by Mg2+ or a high pH. It is suggested that black gram glucose-6-phosphate dehydrogenase is a regulatory enzyme of the pentose phosphate pathway.  相似文献   

6.
A simple, inexpensive, battery-powered, portable luminometer which is based on a silicon photodiode is described. The instrument is intended to measure the light produced by chemiluminescent and bioluminescent reactions. The devic shows a good detection limit and, in a bioluminescent reaction for adenosine 5′-triphosphate (ATP), detected 0.5 pmol in 1ml of aqueous solution. The instrument measures irradiance from 10?13 to 10?11 W cm?2 at the sensor, within the range 300 to 900nm.  相似文献   

7.
The relation between ATP production and adenine nucleotide metabolism was investigated in human platelets which were starved by incubation in glucose-free, CN?-containing medium and subsequently incubated with different amounts of glucose. In the absence of mitochondrial energy production (blocked by CN?) and glycogen catabolism (glycogen almost completely consumed during starvation), lactate production increased proportionally with increasing amounts of glucose. The generated ATP was almost completely consumed in the various ATP-consuming processes in the cell except for a fixed portion (about 7%) that was reserved for restoration of the adenylate energy charge. During the first 10 min after glucose addition, the adenine nucleotide pool remained constant. Thereafter, when the glycolytic flux, measured as lactate formation, was more than 3.5 μmol · min?1 · 10?11 cells, the pool increased slightly by resynthesis from hypoxanthine-inosine and then stabilized; at a lower flux the pool decreased and metabolic ATP and energy charge declined to values found during starvation. Between moments of rising and falling adenylate energy charges, periods of about 10 min remained in which the charge was constant and ATP supply and demand had reached equilibrium. This enabled comparison between the adenylate energy charge and ATP regeneration velocity. A linear relation was obtained for charge values between 0.4 and 0.85 and ATP regeneration rates between 0.6 and 3.5 ATP equiv. · min?1 · 10?11 cells. These data indicate that in starved platelets ATP regeneration velocity and energy charge are independent and that each appears to be subject to the availability of extracellular substrate.  相似文献   

8.
The chemiluminescent reaction of lucigenin with various reducing sugars and reducing compounds has been studied. It was found that dihydroxyacetone gave the most intense chemiluminescence (CL). We have developed highly sensitive chemiluminescent methods for alkaline phosphatase (ALP) based on the production of dihydroxyacetone using NADP+ or glycerol-3-phosphate as substrate. The detection limits for ALP using each substrate were 1.25 × 10?19 mol/assay and 2.5 × 10?19 mol/assay, and the coefficient of variation (n = 7) was 2.8% and 3.7%, respectively. We have also applied the method using NADP+ as substrate in enzyme immunoassays (EIA) for cholecystokinin (CCK) and human chorionic gonadotropin (hCG). CCK-8 (octapeptide sulphated form of a carboxy terminal fragment of CCK) concentrations released from alimentary canal of rat were assayed using the chemiluminescent EIA (CLEIA) and a fluorimtric EIA (ALP label). The correlation between CCK-8 values obtained by these methods was y = 1.04x + 18.21, r = 0.946, n = 28. hCG values in serum and in urine were measured. The correlation between hCG values in serum samples obtained using the CLEIA and a time-resolved fluoroimmunoassay (TR-FIA), and in urine samples obtained using the CLEIA and the fluorimetric EIA using ALP were satisfactory. The correlations were y = 1.00x ? 0.04, r = 0.997 (n = 51) and y = 1.00x ? 0.03, r = 0.999 (n = 10), respectively.  相似文献   

9.
The mechanism of peroxidase-catalysed oxidation of luminol by H2O2 was studied. The stopped-flow technique was used to measure the rate constants for the reactions between the oxidized forms of peroxidase with luminol and the following substrates: p-iodophenol, p-bromophenol, p-clorophenol, o-iodophenol, m-iodophenol, luciferin, and 2-iodo-6-hydroxybenzothiazole. The correlation between kinetic parameters and the degree of enhancement was established. The effect of charged synthetic polymers and specific antibodies on the peroxidase activity in the enhanced chemiluminescent reaction. Novel homogenous methods of luminescent immunoassay (LIA) for (1) antibodies to insulin, (2) insulin and (3) antibodies to trinitrophenyl group are proposed on the basis of regulatory facilities of the enhanced chemiluminescent reaction. Based on the enhanced chemiluminescent reaction a peroxidase flow-injection assay was developed and successfuly tested in the flow-injection enzyme immunoassays for human IgG and for thyroxin (T4). The immunoassay proposed has a detection limit of 10?9M for IgG and 10?11M for T4, the overall time of the assay being 5–15 min.  相似文献   

10.
The binding of the fluorescent analog of adenosine diphosphate (ADP)1, 1,N6-ethenoadenosine diphosphate (εADP) to myosin and its subfragments, heavy meromyosin (HMM) and subfragment one (S1), has been studied under analagous conditions to those previously used in comparable studies on the binding of ADP to these molecules. The results indicate that there are two binding sites for εADP on myosin and HMM, and one site on S1. The dissociation constants for all had an identical value, within experimental error, of 2.0 (± .5) × 10?5 M?1. This is identical to the values found by Young (J. Biol. Chem., 242, 2790 (1967)) for ADP. In addition, the kinetics of hydrolysis of εATP versus ATP by S1 were studied. Values of Vmax and Km were 25 μM phosphate sec?1 (gm protein)?1 and 5 × 10?5 M?1 for ATP, and 80 μN phosphate sec?1 (gm protein)?1 and 45 × 10?5 M?1 for εATP. The results indicate that the increased Vmax that occurs when εATP is used as a substitute for ATP is not due to either an increased binding affinity of ATP for myosin and its subfragments, nor due to a decreased binding affinity of εATP versus ADP. This in turn suggests that the increase in Vmax may be due to an increased hydrolytic rate of εATP vs ATP in the enzyme substrate complex.  相似文献   

11.
A monoclonal antibody (mAb) G2 possesses an unusual characteristic of reacting with at least three proteins (ATP6V1C1, SEPT3, and C6H10orf76) other than its original antigen, chicken prion protein (ChPrP). The epitopes on ChPrP and ATP6V1C1 have been identified previously. In this study, we identified the epitope in the third protein, SEPT3. Interestingly, there was no amino acid sequence similarity among the epitopes on the three proteins. These epitopes had high binding affinities to G2 (K D = ~10?7 M for monovalent binding and K D = ~10?9 M for divalent binding), as determined using a SPR biosensor. This is the first report on a three‐in‐one mAb recognizing completely different epitope sequences with high affinity. Additionally, competitive ELISA indicated that the binding sites on G2, specific for the three different epitopes, overlapped, suggesting that the antigen‐binding site may be flexible in the free form and capable of adapting to at least three different conformations to enable interactions with three different antigens.  相似文献   

12.
Hepatocellular carcinoma (HCC) is a metabolically heterogeneous cancer and the use of glucose by HCC cells could impact their tumorigenicity. Dt81Hepa1-6 cells display enhanced tumorigenicity compared to parental Hepa1-6 cells. This increased tumorigenicity could be explained by a metabolic adaptation to more restrictive microenvironments. When cultured at high glucose concentrations, Dt81Hepa1-6 displayed an increased ability to uptake glucose (P<0.001), increased expression of 9 glycolytic genes, greater GTP and ATP (P<0.001), increased expression of 7 fatty acid synthesis-related genes (P<0.01) and higher levels of Acetyl-CoA, Citrate and Malonyl-CoA (P<0.05). Under glucose-restricted conditions, Dt81Hepa1-6 used their stored fatty acids with increased expression of fatty acid oxidation-related genes (P<0.01), decreased triglyceride content (P<0.05) and higher levels of GTP and ATP (P<0.01) leading to improved proliferation (P<0.05). Inhibition of lactate dehydrogenase and aerobic glycolysis with sodium oxamate led to decreased expression of glycolytic genes, reduced lactate, GTP and ATP levels (P<0.01), increased cell doubling time (P<0.001) and reduced fatty acid synthesis. When combined with cisplatin, this inhibition led to lower cell viability and proliferation (P<0.05). This metabolic-induced tumorigenicity was also reflected in human Huh7 cells by a higher glucose uptake and proliferative capacity compared to HepG2 cells (P<0.05). In HCC patients, increased tumoral expression of Glut-1, Hexokinase II and Lactate dehydrogenase correlated with poor survival (P = 2.47E?5, P = 0.016 and P = 6.58E?5). In conclusion, HCC tumorigenicity can stem from a metabolic plasticity allowing them to thrive in a broader range of glucose concentrations. In HCC, combining glycolytic inhibitors with conventional chemotherapy could lead to improved treatment efficacy.  相似文献   

13.
During glucose‐limited growth, a substantial input of adenosine triphosphate (ATP) is required for the production of β‐lactams by the filamentous fungus Penicillium chrysogenum. Formate dehydrogenase has been confirmed in P. chrysogenum for formate oxidation allowing an extra supply of ATP, and coassimilation of glucose and formate has the potential to increase penicillin production and biomass yield. In this study, the steady‐state metabolite levels and fluxes in response to cofeeding of formate as an auxiliary substrate in glucose‐limited chemostat cultures at the dilution rates (D) of both 0.03 h?1 and 0.05 h?1 are determined to evaluate the quantitative impact on the physiology of a high‐yielding P. chrysogenum strain. It is observed that an equimolar addition of formate is conducive to an increase in both biomass yield and penicillin production at D = 0.03 h?1, while this is not the case at D = 0.05 h?1. In addition, a higher cytosolic redox status (NADH/NAD+), a higher intracellular glucose level, and lower penicillin productivity are only observed upon formate addition at D = 0.05 h?1, which are virtually absent at D = 0.03 h?1. In conclusion, the results demonstrate that the effect of formate as an auxiliary substrate on penicillin productivity in the glucose‐limited chemostat cultivations of P. chrysogenum is not only dependent on the formate/glucose ratio as published before but also on the specific growth rate. The results also imply that the overall process productivity and quality regarding the use of formate should be further explored in an actual industrial‐scale scenario.  相似文献   

14.
Fluorescent pseudomonads catabolize glucose simultaneously by two different pathways, namely, the oxidative pathway in periplasm and the phosphorylative pathway in cytoplasm. This study provides evidence for the role of glucose metabolism in the regulation of pyoverdine synthesis in Pseudomonas putida S11. We have characterized the influence of direct oxidation of glucose in periplasm on pyoverdine synthesis in P. putida S11. We identified a Tn5 transposon mutant of P. putida S11 showing increased pyoverdine production in minimal glucose medium (MGM). This mutant designated as IST1 had Tn5 insertion in glucose dehydrogenase (gcd) gene. To verify the role of periplasmic oxidation of glucose on pyoverdine synthesis, we constructed mutants S11 Gcd? and S11 PqqF? by antibiotic cassette mutagenesis. These mutants of P. putida S11 with loss of glucose dehydrogenase gene (gcd) or cofactor pyrroloquinoline quinone biosynthesis gene (pqqF) showed increased pyoverdine synthesis and impaired acid production in MGM. In minimal gluconate medium, the pyoverdine production of wild-type strain S11 and mutants S11 Gcd? and S11 PqqF? was higher than in MGM indicating that gluconate did not affect pyoverdine synthesis. In MGM containing PIPES–NaOH (pH?7.5) buffer which prevent pH changes due to gluconic acid production, strain S11 produced higher amount of pyoverdine similar to mutants S11 Gcd? and S11 PqqF?. Therefore, it is proposed that periplasmic oxidation of glucose to gluconic acid decreases the pH of MGM and thereby influences pyoverdine synthesis of strain S11. The increased pyoverdine synthesis enhanced biotic and abiotic surface colonization of the strain S11.  相似文献   

15.
The evaluation of hexose and pentose in pre-cultivation of Candida guilliermondii FTI 20037 yeast on xylose reductase (XR) and xylitol dehydrogenase (XDH) enzymes activities was performed during fermentation in sugarcane bagasse hemicellulosic hydrolysate. The xylitol production was evaluated by using cells previously growth in 30.0 gl?1 xylose, 30.0 gl?1 glucose and in both sugars mixture (30.0 gl?1 xylose and 2.0 gl?1 glucose). The vacuum evaporated hydrolysate (80 gl?1) was detoxificated by ion exchange resin (A-860S; A500PS and C-150-Purolite®). The total phenolic compounds and acetic acid were 93.0 and 64.9%, respectively, removed by the resin hydrolysate treatment. All experiments were carried out in Erlenmeyer flasks at 200 rpm, 30°C. The maximum XR (0.618 Umg Prot ?1 ) and XDH (0.783 Umg Prot ?1 ) enzymes activities was obtained using inoculum previously growth in both sugars mixture. The highest cell concentration (10.6 gl?1) was obtained with inoculum pre-cultivated in the glucose. However, the xylitol yield and xylitol volumetric productivity were favored using the xylose as carbon source. In this case, it was observed maximum xylose (81%) and acetic acid (100%) consumption. It is very important to point out that maximum enzymatic activities were obtained when the mixture of sugars was used as carbon source of inoculum, while the highest fermentative parameters were obtained when xylose was used.  相似文献   

16.
Aggregation-competent myxamoebae of the cellular slime mold Dictyostellium discoideum are known to exhibit two responses to extracellular pulses of 3′5′-cyclic AMP: an immediate chemotactic movement; and a delayed generation of intracellular cyclic AMP which is subsequently released into the medium. The mechanism of the latter, the so-called signalling response, may depend on alterations in intracellular metabolite levels and is the subject of this communication.Myxamoebae of the wild-type strain NC-4 of D. discoideum were suspended in an aerated, stirred 17 mM potassium phosphate buffer. pH 6.0, at a concentration of approx. 6 · 10?7 cells/ml (8%, v/v) at 25°C and were pulsed with 1. 10?8—1 · 10?7 M cyclic AMP at 10–20-min intervals for periods of 3–5 h over incubation of 4–9 h. Suspensions were monitored continuously for transient turbidity decreases following the cyclic AMP pulses as an indication of the magnitude and duration of the cellular response to cyclic AMP. When the pattern of turbidity decrease indicated that a signalling response had developed, samples were withdrawn at 10–15-s intervals from the suspension, inactivated with perchloric acid, and analyzed for cyclic AMP, ATP, ADP, AMP, pyruvate, and glucose 6-phosphate. In separate experiments, steady-state oxygen tension was monitored along with turbidity to detect possible changes in respiratory rate.The following consistent patterns were observed after the added cyclic AMP pulse: a transient increase in the ADP level which reaches maximum between 0.7 and 1.7 min; transient decreases in ATP and pyruvate which concide with and approximately equal the magnitude of the increase in ADP; a later increase in glucose 6-phosphate which reaches maximum approx. 2 min after the ADP  相似文献   

17.
In cowpea seedlings starch hydrolysing activity increases 35–50 fold on germination for 4 days. This increase in enzyme activity was inhibited by the in vivo addition of 1% glucose but this inhibition was completely overcome by the addition of gibberellic acid (GA3) (10?5 M) and adenosine-3′,5′-cyclic monophosphate (cAMP) (10?5 M). At 5% glucose, GA3 and cAMP were only partially effective. Structural analogues of cAMP failed to relieve the inhibitory effect of glucose. The inhibition by glucose is not direct but RNA and protein synthesis may be involved. Glucose appears to reduce the internal pool of cAMP which causes inhibition of RNA synthesis and decrease in starch hydrolysing activity. Exogenous application of cAMP may replenish the endogenous pool of cyclic nucleotide and thus overcome inhibition of RNA synthesis and enzyme activity.  相似文献   

18.
Adult rat heart muscle cells were isolated after simultaneous perfusion of multiple (two to eight) hearts with buffered salt solutions containing collagenase and hyaluronidase. Yields (35 to 50% of ventricular weight with approximately 70% viability) are quantitatively suitable for metabolic studies. Viability has been determined by the ability of intact cells to exclude trypan blue and the inability of intact cells to oxidize exogenous succinate. Micrographs show that the fine structure of the isolated cells is well ordered. Cell concentrations of glycogen, glucose 6-phosphate, citrate, and various enzymes were similar to those of intact heart. ATP and creatine phosphate concentrations were lower than in whole hearts. Adenosine 3′,5′-monophosphate concentrations were somewhat elevated. Deoxyribonucleic acid was lower than in whole tissue. The isolated cells retain certain metabolic control mechanisms. The uncoupler of oxidative phosphorylation, 2,4-dinitrophenol, increased oxygen consumption severalfold, whereas exogenous ADP had no effect on respiration. Under anaerobic conditions the rates of glucose utilization and lactate production were faster than in the presence of oxygen, indicating retention of the Pasteur effect. The addition of glucose and insulin caused a decrease in oxygen uptake or the Crabtree effect. Exogenously added pyruvate decreased glycolytic flux and produced a pronounced increase in intracellular citrate and glucose 6-phosphate. Isoproterenol stimulated adenylate cyclase activity of the isolated cells at the same concentrations effective with intact heart preparations. Isoproterenol and glucagon caused the activation of phosphorylase. The cells deteriorated as a function of incubation time, as indicated by a decrease in ATP content and a loss of lactate dehydrogenase into the medium. Cell deterioration was greatly accelerated by Ca2+ at concentrations greater than 10?5m.  相似文献   

19.
A biochemical assay for the measurement of ATP synthesis coupled to electron transport in the presence of adenylate kinase was developed as an alternative to using the conventional Clark-type oxygen electrode. The assay utilizes P1,P5-di-(adenosine-5′)-pentaphosphate which is shown to be a competitive inhibitor with MgADP for rat liver mitochondrial adenylate kinase (Ki = 7.04 × 10?8m) and was found to have no effect on oxidative phosphorylation of either intact mitochondria or submitochondrial particles.  相似文献   

20.
The fluorescent analog of adenosine triphosphate (ATP)1 1,N6-ethenoadenosine triphosphate, (εATP), has been utilized as a substitute for ATP in the myosin and heavy meromyosin ATPase systems. For myosin, the analog εATP replaced ATP with a somewhat larger Km (2.6 × 10?4 mole ??1 for εATP as opposed to 8.8 × 10?5 mole ??1 for ATP), indicating that the apparent affinity of the enzyme for εATP is less than for ATP. Perhaps of more interest, further comparison yielded a Vmax for εATP about two and one half times the value for ATP (20 μmole PO4 sec?1 g protein?1 as opposed to 8.1 μmole sec?1 g protein?1). Results for the HMM-εATPase system were similar, yielding a Km value of 1.47 × 10?4 mole ??1 and a Vmax of 54.2 μmole PO4 sec?1 g protein?1, as opposed to corresponding Km and Vmax values of 1.23 × 10?4 mole ??1 and 20.4 μmole PO4 sec?1 g protein?1, respectively for the HMM-ATP interaction. The pH dependence of εATPase for both systems was comparable to ATP, suggesting a similarity in the mechanism of hydrolysis of the two nucleotides. Activation of εATPase by Ca2+ in the presence of 0.5 M KCl was comparable to ATPase for both systems, but inhibition by Mg2+ seemed to be more effective for εATPase. These results indicate that εATP is an excellent substitute for ATP in the myosin and heavy meromyosin systems and because of its insertion into the active site of these muscle proteins, it promises to be a very useful probe for conformation studies at this level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号