首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a potent halogenated aromatic hydrocarbon, on the development of bone tissue-like organization in primary cultures of normal diploid calvarial-derived rat osteoblasts was examined. Initially, when placed in culture, these cells actively proliferate while expressing genes associated with biosynthesis of the bone extracellular matrix. Then, post-proliferatively, genes are expressed that render the osteoblast competent for extracellular matrix mineralization and maintenance of structural as well as functional properties of the mature bone-cell phenotype. Our results indicate that, in the presence of TCDD, proliferation of osteoblasts was not inhibited but post-confluent formation of multicellular nodules that develop bone tissue-like organization was dramatically suppressed. Consistent with TCDD-mediated abrogation of bone nodule formation, expression of alkaline phosphatase and osteocalcin was not upregulated post-proliferatively. These findings are discussed within the context of TCDD effects on estrogens and vitamin D-responsive developmental gene expression during osteoblast differentiation and, from a broader biological perspective, on steroid hormone control of differentiation.  相似文献   

2.
The relationship of cell proliferation to the temporal expression of genes characterizing a developmental sequence associated with bone cell differentiation was examined in primary diploid cultures of fetal calvarial derived osteoblasts by the combined use of autoradiography, histochemistry, biochemistry, and mRNA assays of osteoblast cell growth and phenotypic genes. Modifications in gene expression define a developmental sequence that has 1) three principle periods--proliferation, extracellular matrix maturation, and mineralization--and 2) two restriction points to which the cells can progress but cannot pass without further signals--the first when proliferation is down-regulated and gene expression associated with extracellular matrix maturation is induced, and the second when mineralization occurs. Initially, actively proliferating cells, expressing cell cycle- and cell growth-regulated genes, produce a fibronectin/type I collagen extracellular matrix. A reciprocal and functionally coupled relationship between the decline in proliferative activity and the subsequent induction of genes associated with matrix maturation and mineralization is supported by 1) a temporal sequence of events in which there is an enhanced expression of alkaline phosphatase immediately following the proliferative period, and later, an increased expression of osteocalcin and osteopontin at the onset of mineralization; 2) increased expression of a specific subset of osteoblast phenotype markers, alkaline phosphatase and osteopontin, when proliferation is inhibited by hydroxyurea; and 3) enhanced levels of expression of the osteoblast markers as a function of ascorbic acid-induced collagen deposition, suggesting that the extracellular matrix contributes to both the shutdown of proliferation and the development of the osteoblast phenotype.  相似文献   

3.
Primary cultures of calvarial derived normal diploid osteoblasts undergo a developmental expression of genes reflecting growth, extracellular matrix maturation, and mineralization during development of multilayered nodules having a bone tissue-like organization. Scanning electron microscopy of the developing cultures indicates the transition from the uniform distribution of cuboidal osteoblasts to multilayered nodules of smaller cells with a pronounced orientation of perinodular cells towards the apex of the nodule. Ultrastructural analysis of the nodule by transmission electron microscopy indicates that the deposition of mineral is confined to the extracellular matrix where cells appear more osteocytic. The cell body contains rough endoplasmic reticulum and golgi, while these intracellular organelles are not present in the developing cellular processes. To understand the regulation of temporally expressed genes requires an understanding of which genes are selectively expressed on a single cell basis as the bone tissue-like organization develops. In situ hybridization analysis using 35S labelled histone gene probes, together with 3H-thymidine labelling and autoradiography, indicate that greater than 98% of the pre-confluent osteoblasts are proliferating. By two weeks, both the foci of multilayered cells and internodular cell regions have down-regulated cell growth associated genes. Post-proliferatively, but not earlier, initial expression of both osteocalcin and osteopontin are restricted to the multilayered nodules where all cells exhibit expression. While total mRNA levels for osteopontin and osteocalcin are coordinately upregulated with an increase in mineral deposition, in situ hybridization has revealed that expression of osteocalcin and osteopontin occurs predominantly in cells associated with the developing nodules. In contrast, proliferating rat osteosarcoma cells (ROS 17/2.8) concomitantly express histone H4, along with osteopontin and osteocalcin. These in situ analyses of gene expression during osteoblast growth and differentiation at the single cell level establish that a population of proliferating calvarial-derived cells subsequently expresses osteopontin and osteocalcin in cells developing into multilayered nodules with a tissue-like organization.  相似文献   

4.
G S Stein  J B Lian  T A Owen 《FASEB journal》1990,4(13):3111-3123
The relationship of cell proliferation to the temporal expression of genes characterizing a developmental sequence associated with bone cell differentiation can be examined in primary diploid cultures of fetal calvarial-derived osteoblasts by the combination of molecular, biochemical, histochemical, and ultrastructural approaches. Modifications in gene expression define a developmental sequence that has 1) three principal periods: proliferation, extracellular matrix maturation, and mineralization; and 2) two restriction points to which the cells can progress but cannot pass without further signals. The first restriction point is when proliferation is down-regulated and gene expression associated with extracellular matrix maturation is induced, and the second when mineralization occurs. Initially, actively proliferating cells, expressing cell cycle and cell growth regulated genes, produce a fibronectin/type I collagen extracellular matrix. A reciprocal and functionally coupled relationship between the decline in proliferative activity and the subsequent induction of genes associated with matrix maturation and mineralization is supported by 1) a temporal sequence of events in which an enhanced expression of alkaline phosphatase occurs immediately after the proliferative period, and later an increased expression of osteocalcin and osteopontin at the onset of mineralization; 2) increased expression of a specific subset of osteoblast phenotype markers, alkaline phosphatase and osteopontin, when proliferation is inhibited; and 3) enhanced levels of expression of the osteoblast markers when collagen deposition is promoted, suggesting that the extracellular matrix contributes to both the shutdown of proliferation and development of the osteoblast phenotype. The loss of stringent growth control in transformed osteoblasts and in osteosarcoma cells is accompanied by a deregulation of the tightly coupled relationship between proliferation and progressive expression of genes associated with bone cell differentiation.  相似文献   

5.
The progressive differentiation of both normal rat osteoblasts and HL-60 promyelocytic leukemia cells involves the sequential expression of specific genes encoding proteins that are characteristic of their respective developing cellular phenotypes. In addition to the selective expression of various phenotype marker genes, several members of the heat shock gene family exhibit differential expression throughout the developmental sequence of these two cell types. As determined by steady state mRNA levels, in both osteoblasts and HL-60 cells expression of hsp27, hsp60, hsp70, hsp89 alpha, and hsp89 beta may be associated with the modifications in gene expression and cellular architecture that occur during differentiation. In both differentiation systems, the expression of hsp27 mRNA shows a 2.5-fold increase with the down-regulation of proliferation while hsp60 mRNA levels are maximal during active proliferation and subsequently decline post-proliferatively. mRNA expression of two members of the hsp90 family decreases with the shutdown of proliferation, with a parallel relationship between hsp89 alpha mRNA levels and proliferation in osteoblasts and a delay in down-regulation of hsp89 alpha mRNA levels in HL-60 cells and of hsp89 beta mRNA in both systems. Hsp70 mRNA rapidly increases, almost twofold, as proliferation decreases in HL-60 cells but during osteoblast growth and differentiation was only minimally detectable and showed no significant changes. Although the presence of the various hsp mRNA species is maintained at some level throughout the developmental sequence of both osteoblasts and HL-60 cells, changes in the extent to which the heat shock genes are expressed occur primarily in association with the decline of proliferative activity. The observed differences in patterns of expression for the various heat shock genes are consistent with involvement in mediating a series of regulatory events functionally related to the control of both cell growth and differentiation.  相似文献   

6.
7.
8.
9.
10.
Lumican is a major proteoglycan component of the bone matrix.   总被引:2,自引:0,他引:2  
MC3T3-E1 mouse calvaria cells are a clonal population of committed osteoprogenitors that in the presence of appropriate supplements form a mineralized bone matrix. The development of the MC3T3-E1 cells can be divided into three major stages, namely, proliferation, differentiation, and mineralization. Recently, using the cDNA microarray technology we found lumican to be abundantly expressed during the mineralization and differentiation stages of the MC3T3-E1 development and not during the proliferation stage. Lumican has been shown to play essential roles in regulating collagen fibril formation in different extracellular matrices but its expression in the developing bone matrix remains elusive. By examining the expression profile of this gene during the different stages of MC3T3-E1 development, utilizing the 'real-time' PCR technology, we observed that the expression of lumican increases as the osteoblast culture differentiates and matures, suggesting that lumican may be involved in regulating collagen fibrillogenesis in bone matrices. Using immunostaining, we observed that during the early embryonic development of mouse (E11 to E13), lumican is mainly expressed in the cartilaginous matrices. However, in the older embryos (E14 to E16), the expression of lumican is more prominent in the developing bone matrices. Our data suggest that lumican is a significant proteoglycan component of bone matrix, which is secreted by differentiating and mature osteoblasts only and therefore it can be used as a marker to distinguish proliferating pre-osteoblasts from the differentiating osteoblasts.  相似文献   

11.
12.
Nuclear matrix protein (NMP) composition of osteoblasts shows distinct two-dimensional gel electrophoretic profiles of labeled proteins as a function of stages of cellular differentiation. Because NMPs are involved in the control of gene expression, we examined modifications in the representation of NMPs induced by TGF-β1 treatment of osteoblasts to gain insight into the effects of TGF-β on development of the osteoblast phenotype. Exposure of proliferating fetal rat calvarial derived primary cells in culture to TGF-β1 for 48 h (day 4–6) modifies osteoblast cell morphology and proliferation and blocks subsequent formation of mineralized nodules. Nuclear matrix protein profiles were very similar between control and TGF-β–treated cultures until day 14, but subsequently differences in nuclear matrix proteins were apparent in TGF-β–treated cultures. These findings support the concept that TGF-β1 modifies the final stage of osteoblast mineralization and alters the composition of the osteoblast nuclear matrix as reflected by selective and TGF-β–dependent modifications in the levels of specific nuclear matrix proteins. The specific changes induced by TGF-β in nuclear matrix associated proteins may reflect specialized mechanisms by which TGF-β signalling mediates the alterations in cell organization and nodule formation and/or the consequential block in extracellular mineralization. J. Cell. Biochem. 69:291–303, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

13.
14.
15.
Msx2 is believed to play a role in regulating bone development, particularly in sutures of cranial bone. In this study we investigated the effects of retroviral-mediated overexpression of Msx2 mRNA, in both sense and antisense orientations, on primary cultured chick calvarial osteoblasts. Unregulated overexpression of sense mRNA produced high levels of Msx2 protein throughout the culture period, preventing the expected fall as the cells differentiate. The continued high expression of Msx2 prevented osteoblastic differentiation and mineralization of the extracellular matrix. In contrast, expression of antisense Msx2 RNA decreased proliferation and accelerated differentiation. In other studies, we showed that the Msx2 promoter was widely expressed during the proliferative phase of mouse calvarial osteoblast cultures but was preferentially downregulated in osteoblastic nodules. These results support a model in which Msx2 prevents differentiation and stimulates proliferation of cells at the extreme ends of the osteogenic fronts of the calvariae, facilitating expansion of the skull and closure of the suture.  相似文献   

16.
Rat calvaria osteoblasts derived from 21-day-old fetal rat pups undergo a temporal expression of markers of the osteoblast phenotype during a 5 week culture period. Alkaline phosphatase and osteocalcin are sequentially expressed in relation to collagen accumulation and mineralization. This pattern of expression of these osteoblast parameters in cultured rat osteoblasts (ROB) is analogous to that seen in vivo in developing fetal rat calvaria tissue (Yoon et. al: Biochem. Biophis. Res. Commun. 148:1129, 1987) and is similar to that observed in cultures of subcultivated 16-day-old embryonic chick calvaria-derived osteoblasts (COB) (Gerstenfeld, et.al: Dev. Biol. 122:46, 1987). While the cellular organization of subcultivated COB and primary ROB cultures are somewhat different, the temporal expression of the parameters remains. Both the rat and chick culture systems support formation of matrix mineralization even in the absence of beta-glycerol-phosphate. A systematic examination of factors which constitute conditions supporting complete expression of the osteoblast phenotype in ROB cultures indicate requirements for specific serum lots, ascorbic acid and the ordered deposition of mineral in the extracellular matrix. The present studies suggest that formation of a collagenous matrix, dependent on ascorbic acid, is requisite for expression of the osteoblast phenotype. In ROB cultures, expression of osteocalcin synthesis occurs subsequent to initiation of alkaline phosphatase activity and accompanies the formation of mineralized nodules. Thus, extracellular matrix mineralization (deposition of hydroxyapatite) is required for complete development of the osteoblast phenotype, as reflected by a 200-fold increase in osteocalcin synthesis. These data show the temporal expression of the various osteoblast parameters during the formation and mineralization of an extracellular matrix can provide markers reflective of various stages of osteoblast differentiation/maturation in vitro.  相似文献   

17.
We investigated the regulation of collagenase-3 expression in normal, differentiating rat osteoblasts. Fetal rat calvarial cell cultures showed an increase in alkaline phosphatase activity reaching maximal levels between 7-14 days post-confluence, then declining with the onset of mineralization. Collagenase-3 mRNA was just detectable after proliferation ceased at day 7, increased up to day 21, and declined at later ages. Postconfluent cells maintained in non-mineralizing medium expressed collagenase-3 but did not show the developmental increase exhibited by cells switched to mineralization medium. Cells maintained in non-mineralizing medium continued to proliferate; cells in mineralization medium ceased proliferation. In addition, collagenase-3 mRNA was not detected in subcultured cells allowed to remineralize. These results suggest that enhanced accumulation of collagenase-3 mRNA is triggered by cessation of proliferation or acquisition of a mineralized extracellular matrix and that other factors may also be required. After initiation of basal expression, parathyroid hormone (PTH) caused a dose-dependent increase in collagenase-3 mRNA. Both the cyclic adenosine monophosphate (cAMP) analogue, 8-bromo-cAMP (8-Br-cAMP), and the protein kinase C (PKC) activator, phorbol myristate acetate, increased collagenase-3 expression, while the calcium ionophore, ionomycin, did not, suggesting that PTH was acting through the protein kinase A (PKA) and PKC pathways. Inhibition of protein synthesis with cycloheximide caused an increase in basal collagenase-3 expression but blocked the effect of PTH, suggesting that an inhibitory factor prevents basal expression while an inductive factor is involved with PTH action. In summary, collagenase-3 is expressed in mineralized osteoblasts and cessation of proliferation and initiation of mineralization are triggers for collagenase-3 expression. PTH also stimulates expression of the enzyme through both PKA and PKC pathways in the mineralizing osteoblast.  相似文献   

18.
Advances in the osteoblast lineage.   总被引:16,自引:0,他引:16  
Osteoblasts are the skeletal cells responsible for synthesis, deposition and mineralization of the extracellular matrix of bone. By mechanisms that are only beginning to be understood, stem and primitive osteoprogenitors and related mesenchymal precursors arise in the embryo and at least some appear to persist in the adult organism, where they contribute to replacement of osteoblasts in bone turnover and in fracture healing. In this review, we describe the morphological, molecular, and biochemical criteria by which osteoblasts are defined and cell culture approaches that have helped to clarify transitional stages in osteoblast differentiation. Current understanding of differential expression of osteoblast-associated genes during osteoprogenitor proliferation and differentiation to mature matrix synthesizing osteoblasts is summarized. Evidence is provided to support the hypothesis that the mature osteoblast phenotype is heterogeneous with subpopulations of osteoblasts expressing only subsets of the known osteoblast markers. Throughout this paper, outstanding uncertainties and areas for future investigation are also identified.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号