首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Morphological and cytophotometric studies have been made on polyploidization of placenta connective zone cells. Measurement of the DNA content in mitotic figures show that within a period of development ranging from day 13 to day 14 the bulk of mitoses (up to 25%) become tetraploid and octaploid. This may suggest that polyploidization of placenta connective zone cells proceeds via incomplete polyploidizing mitoses. Among tetraploid and octaploid mitotic figures, there are those corresponding to all the mitotic stages, from prophase to telophase. Consequently, mitosis in tetraploid and octaploid cells can reach telophase. In such cases polyploidization is likely to follow the acytokinetic mitotic pattern. A question of a certain maximum level of polyploidy that may be reached by cells due to the incomplete mitosis is discussed.  相似文献   

2.
In kidney epithelial cultures from female Microtus agrestis, 3,55% of all mitoses are multipolar, 94% of them tripolar. Feulgen photometric measurements of 21 tripolar mitoses reveal a total DNA amount corresponding to the mitotic diploid value (4c) in 5 cases, and to the tetraploid value (8c) in 16 cases, Diploid tripolar mitoses divide into one daughter nucleus with a diploid DNA value (2c) and two nuclei each with a haploid DNA value (1c). Most tetraploid tripolar mitoses divide into one daughter nucleus with a diploid DNA value (2c) and two nuclei with a triploid DNA value (3c). Also the sex chromosomes are distributed to the daughter nuclei in the relation of 2∶3∶3. This can be seen in anaphase figures as well as in interphase nuclei presumably derived from tripolar mitoses, showing chromocenters according to the number of X-chromosomes. In two cases of tripolar tetraploid mitoses the resulting nuclei have a haploid, a triploid and a tetraploid DNA value. The DNA replication pattern is always identical in the daughter nuclei of diploid and tetraploid tripolar mitoses. — Our observations suggest segregation and distribution of haploid chromosome sets or multiples of haploid sets to the daughter nuclei of multipolar mitoses. They also show a possible way of formation of haploid and triploid cells in a basically diploid tissue. Presumably triploid nuclei (with 3 chromocenters) are capable of DNA synthesis.  相似文献   

3.
A prolonged action of cytochalasin B results in the formation of numerous multipolar mitoses (26%) in Chinese hamster cell cultures. The transition to multipolar mitoses in the presence of cytochalasin B is not accompanied by K-mitotic delay. It is shown that a multipolar mitosis without cytoplasmic division is one of the main causes of multinucleation development in cytochalasin B-treated cultures. After stopping the drug action the cytochalasin B-induced multinucleate cells continue to divide by multipolar mitosis. In this case it completes with cytokinesis and, probably, leads to a decrease in the number of nuclei per cell. The origin of multipolar mitotic apparatus after the action of cytochalasin B is discussed in addition to the role of multipolar mitosis in formation and proliferation of multinucleate cells.  相似文献   

4.
I V Uryvaeva 《Tsitologiia》1979,21(12):1427-1437
The ontogenetic polyploidization of hepatocytes is regarded, within which normal mitoses are changed to polyploidizing mitoses, and diploid hepatocytes transform into polyploid mono- and binuclear cells. A new hypothesis is put forward of the biological significance of the liver cell polyploidy. The hypothesis takes into account a high level of spontaneous chromosomal aberrations in mitotic hepatocytes. The chromosome structural changes interfere with mitosis resulting in the chromosomal imbalance. Polyploidy bestows for hepatocytes a tolerance towards a chromosomal imbalance. Some implications of the hypothesis are discussed: unbalanced genome of hepatocytes after the treatment with mutagens and mitotic stimulators; the reasons of liver cell polyploidy differences in mammalian species; mechanisms of radioresistance of hepatocytes. Chromosomal imbalance of polyploid hepatocytes is assumed to be the basis for wome chronic liver diseases in man.  相似文献   

5.
After recovery from the nocodazole blockade, mitoses in PE cells proceed differently depending on the time of treatment and on the drug concentration. Cells, treated with 0.02 mcg/ml for 3 hours or less, have a recovery period of 1-1.5 hours, however cells, treated with 0.02 mcg/ml for more than 3 hours or with 0.2 mcg/ml at a time, have a recovery period of 3-4 hours. In both the cases anaphase and cytokinesis proceed normally. The 0.6 mcg/ml nocodazole concentration results in the appearance of only multipolar mitoses during recovery. The minimal-time multipolarity induction is 1 hour. Cytokinesis is disturbed in 60% of multipolar mitoses: two of the three daughter cells are fused to form a binucleated cell. A complete disruption of the mitotic apparatus causes one of the diplosomes to dissociate. In the first minutes of recovery, the other diplosome dissociates too. In tripolar telophase centrioles distributed among the spindle poles according to the 2 : 2 : 0 pattern, as a rule. Thus, the deranging of the mitotic spindle is a necessary and sufficient condition for the induction of multipolar mitoses in tissue culture cells. This derangement accompanies the dissociation of diplosomes, but single daughter centrioles do not form a spindle pole.  相似文献   

6.
Nocodazole at a concentration 0.02 mcg/ml or higher arrests PE cells (pig kidney embryo cells) in K-metaphase. Accumulation of mitotic cells by incubation with 0.02 or 0.6 mcg/ml nocodazole occurs linearly and at the same rate during 12-16 hours. After nocodazole is removed, the mitotic index is resumed to the normal rate. The maximum time of the reversible mitotic arrest in PE cells in 16 hours. After the incubation of cells with 0.2 mcg/ml nocodazole, the time of the reversible mitotic arrest is 12 hours. After the incubation of cells with 0.02 or 0.2 mcg/ml nocodazole, no multipolar mitoses are observed. After the 4 hours incubation with 0.6 mcg/ml nocodazole, multipolar mitotic figures are observed 1.5-2.5 hours after drug removal. It is concluded that the induction of multipolar divisions requires no prolonged mitotic arrest, but it may be caused by a complete depolymerization of spindle microtubules.  相似文献   

7.
Mitotic figures of diploid, tetraploid, octaploid and 16-ploid nuclei were observed in cultures of pea root protoplasts whose initial DNA content was apparently 2C and 4C. The distribution of these mitotic figures in the different ploidy levels paralleled the distribution of mitotic figures in the culture of intact root explants and may be related to the hormonal stimulation of mitoses in these cultures. The patterns of the time course of both DNA synthesis and cell division in the protoplast cultures were similar to such patterns observed in the culture of intact root explants, although longer lag periods were observed in the protoplast cultures. Mitotic abnormalities including both chromosome breakage and spindle disfunction were observed in protoplast cultures. A large portion of the cell pairs derived from mitoses (27 % in one experiment) contained Feulgen-positive micronuclei. An accumulation of an as yet unidentified differentiation product termed dense cytoplasmic protoplast derivative was observed. Some of the conditions influencing the development of these derivatives are reported.  相似文献   

8.
F. Pera  B. Rainer 《Chromosoma》1973,42(1):71-86
Cultures of kidney epithelium and fibroblasts of 39 specimens of Microtus agrestis were investigated. In all 77 cultures multipolar mitoses were found. They were studied in living state and after pulse labelling with 3H-thymidine. The ploidy of the multipolar mitoses and of their daughter nuclei was determined by measuring the relative Feulgen-DNA content and by counting the predominantly constitutive heterochromatic sex chromosomes. Constitutive heterochromatin was demonstrated by late replication, retarded separation of the chromatids in anaphase, heteropycnosis and by the Giemsa technique of Arrighi and Hsu (1971). The latter stained also the spindle apparatus of mitoses.—In living cells, transformation of multipolar mitoses into bipolar mitoses was observed. The chromosomes of multipolar mitoses are separated into complete genomes; the daughter nuclei can be haploid, diploid, triploid or tetraploid. The chromosomes of haploid and triploid metaphases were studied with the Giemsa banding technique. The banding pattern shows an exact monosomy and trisomy, respectively, for each chromosome. Haploid nuclei are likely to be viable only in multinucleate cells, whereas triploid cells behave like diploid cells during the S period and the mitosis.Dedicated to Prof. Dr. K. Goerttler on the occasion of his 75th birthday.Supported by the Bundesministerium für Bildung und Wissenschaft of the Federal Republic of Germany.  相似文献   

9.
Previous examination of dividing cells in the isthmus of the mouse pyloric antrum by using semithin (0.5-micron-thick) Epon sections revealed that the prophasic condensation of chromosomes began early in the DNA-synthesizing (S) stage. In order to examine whether the same observation could be made in other proliferating cell types, the crypt base columnar cells in mouse duodenum and the hepatocytes of the rat 48 hr after partial hepatectomy were investigated by morphologic and radioautographic techniques. When crypt base columnar cells were studied in semithin Epon sections, the four phases of mitosis showed the characteristic features described by classical cytologists. Moreover, the proportion of cells in prophase and telophase was high. To relate the mitotic phases to the stages of the cell cycle, the "frequency of labeled mitoses method" provided the duration of the cell cycle, 12.3 hr, and of the S stage, 7.3 hr. From the frequency of the occurrence of mitotic phases, it was estimated that metaphase lasted 0.3 hr and anaphase 0.11 hr, in line with previous estimates. However, the durations of prophase and telophase were long, 5.9 and 1.9 hr, respectively. The whole mitotic process took over 8 hr. From the duration of prophase and cycle stages, it was calculated that 67% of the S stage was occupied by prophasic cells. In fair agreement with this estimate, 68% of the labeled cells 10 min after a 3H-thymidine injection were found to be in prophase. In regenerating hepatocytes, the morphological features and frequency of prophase and telophase cells were similar to those observed in duodenal crypt cells. While the cycle time was not measured and, therefore, the duration of cycle stages and mitotic phases could not be estimated, it is likely that their duration would be of the same order of magnitude. In conclusion, the mitotic process in duodenal crypt cells takes over 8 hr. Moreover, the crypt cells, like antral isthmal cells, show features of early prophase soon after they enter the S stage of the cycle.  相似文献   

10.
Epithelial proliferation in the ventral surface of mouse tongue follows a pronounced circadian rhythm with a peak in mitotic activity at 10.00 a.m., preceded by a wave of DNA synthesis 8 h earlier. Nearly all cells (85%) pass through G2 and mitosis immediately after the S-phase; they subsequently divide again, usually after 2 or 3 days, indicating cohorts of cells with different G1-duration. The fraction of all nucleated cells comprised in one daily proliferation wave is about 20%, indicating a turnover time of the nucleated cell compartment of about 5 days. Cytotoxic injury by a single radiation dose of 20 Gy causes a steep decrease in cell counts, leading to complete denudation after 9–13 days. The difference between the latent period before ulceration and the tissue turnover time is explained by a marked proliferative activity of the doomed cells. The mitotic index increases steeply after day 1 to three times the control level, but most mitotic figures display gross abnormalities such as multipolar spindles or chromosome clumping. As a consequence cells with abnormal or multiple nuclei appear in the basal layers 3 days post irradiation and subsequently migrate to the upper layers. After denudation the epithelium rapidly becomes restored, with a phase of transient hyperplasia on days 13–14. Normal architecture is regained by day 15. Over the whole healing period the mitotic index remains at a high level, with most of the mitoses appearing histologically normal.  相似文献   

11.
Epithelial proliferation in the ventral surface of mouse tongue follows a pronounced circadian rhythm with a peak in mitotic activity at 10.00 a.m., preceded by a wave of DNA synthesis 8 h earlier. Nearly all cells (85%) pass through G2 and mitosis immediately after the S-phase; they subsequently divide again, usually after 2 or 3 days, indicating cohorts of cells with different G1-duration. The fraction of all nucleated cells comprised in one daily proliferation wave is about 20%, indicating a turnover time of the nucleated cell compartment of about 5 days. Cytotoxic injury by a single radiation dose of 20 Gy causes a steep decrease in cell counts, leading to complete denudation after 9-13 days. The difference between the latent period before ulceration and the tissue turnover time is explained by a marked proliferative activity of the doomed cells. The mitotic index increases steeply after day 1 to three times the control level, but most mitotic figures display gross abnormalities such as multipolar spindles or chromosome clumping. As a consequence cells with abnormal or multiple nuclei appear in the basal layers 3 days post irradiation and subsequently migrate to the upper layers. After denudation the epithelium rapidly becomes restored, with a phase of transient hyperplasia on days 13-14. Normal architecture is regained by day 15. Over the whole healing period the mitotic index remains at a high level, with most of the mitoses appearing histologically normal.  相似文献   

12.
It has been known for more than a century that neoplastic cells often exhibit disturbances of the mitotic process, but the causes have only recently been thoroughly explored. In many cancers, a combination of cell cycle checkpoint deficiency and abnormal shortening of telomeres predisposes to unbalanced chromosome segregation at cell division and the development of complex genomic rearrangements. Shortening of telomeric repeats beyond normal limits leads to fusion of chromosome ends and the formation of chromatin bridges at anaphase. In turn, these bridges may trigger at least three types of chromosomes mutation: (1) structural rearrangements of chromosomes through extensive chromatin fragmentation beyond the centromeric sequences, typically leading to the formation of isochromosomes and whole-arm translocations, (2) loss of whole chromosomes through mechanical detachment from the mitotic spindle machinery, and (3) failure of cytokinesis, leading to polyploidisation and supernumerary centrosomes, which may in turn orchestrate multipolar spindle configurations at a subsequent mitosis. Anaphase bridging rarely hinders further survival of tumour daughter cells. In contrast, multipolar mitoses may lead to extensive reshuffling of chromosome copies that compromise further clonal expansion. The telomere-dependent instability can be partly counteracted by expression of telomerase during tumour progression, but genomic stabilisation is rarely, if ever, complete.  相似文献   

13.
The liver cell polyploidy phenomenon, a characteristic of many species of mammals, is reviewed. The liver parenchyma of adult animals represents a mixed population of mononuclear and binuclear cells with different number of chromosome sets and, therefore DNA content per nucleus. The polyploid hepatocytes are formed during postnatal liver growth as a result of a change from normal mitoses to polyploidizing ones. Hence, the polyploidization of hepatocytes is regarded as an equivalent of cell multiplication.An hypothesis of the biological significance of liver cell polyploidy is based on the fact of a high level of spontaneous chromosome aberrations in mitotic hepatocytes. Ploidy increase is known to give resistance against different kinds of genome alteration. Polyploidization of the liver cells ensures protection against deleterious consequences of the aberrant genome formation resulting from aberrant mitoses.Some implications of the hypothesis are discussed: the reasons for species-specific differences of liver cell polyploidy; the mechanisms of hepatocyte radioresistance; the relation of polyploidy to liver cell aging. The prerequisite factors for unbalanced cell genome formation are adduced: DNA and chromosome damage as the first step in the process, stimulation of mitosis as the second one. The aberrant polyploid genome of hepatocytes is assumed to be the cytogenetic basis for some chronic liver diseases in man.  相似文献   

14.

Background

Normal cell division is coordinated by a bipolar mitotic spindle, ensuring symmetrical segregation of chromosomes. Cancer cells, however, occasionally divide into three or more directions. Such multipolar mitoses have been proposed to generate genetic diversity and thereby contribute to clonal evolution. However, this notion has been little validated experimentally.

Principal Findings

Chromosome segregation and DNA content in daughter cells from multipolar mitoses were assessed by multiphoton cross sectioning and fluorescence in situ hybridization in cancer cells and non-neoplastic transformed cells. The DNA distribution resulting from multipolar cell division was found to be highly variable, with frequent nullisomies in the daughter cells. Time-lapse imaging of H2B/GFP-labelled multipolar mitoses revealed that the time from the initiation of metaphase to the beginning of anaphase was prolonged and that the metaphase plates often switched polarity several times before metaphase-anaphase transition. The multipolar metaphase-anaphase transition was accompanied by a normal reduction of cellular cyclin B levels, but typically occurred before completion of the normal separase activity cycle. Centromeric AURKB and MAD2 foci were observed frequently to remain on the centromeres of multipolar ana-telophase chromosomes, indicating that multipolar mitoses were able to circumvent the spindle assembly checkpoint with some sister chromatids remaining unseparated after anaphase. Accordingly, scoring the distribution of individual chromosomes in multipolar daughter nuclei revealed a high frequency of nondisjunction events, resulting in a near-binomial allotment of sister chromatids to the daughter cells.

Conclusion

The capability of multipolar mitoses to circumvent the spindle assembly checkpoint system typically results in a near-random distribution of chromosomes to daughter cells. Spindle multipolarity could thus be a highly efficient generator of genetically diverse minority clones in transformed cell populations.  相似文献   

15.
G Obe  B Beek  G Dudin 《Humangenetik》1975,28(4):295-302
In human leukocyte cultures st up with TC medium 199,DNA synthesis and mitotic indices were analysed by means of 3H-thymidine autoradiography and cell counting. DNA synthesis starts at around 28 hrs. The frequencies of labelled cells rise slowly and reach a maximum of around 24%. The first mitoses appear at around 38 hrs but up to 49 hrs only very few mitoses can be seen. After that time the mitotic indices rise and reach values of up to 11% cultivation in the presence of BudR for 72 hrs and staining with Hoechst 33258 stain revealed that first, second and third mitoses occur together in the cultures at this time. Irradiation of whole blood and cultivation for 72 hrs leads to mitoses containing dicentric and ring chromosomes with and without fragments, to interphases with micronuclei, to premature chromosome condensations (PCC) and to polyploid mitoses indicating that at this time first and further mitoses are present.  相似文献   

16.
Centrosome amplification (the presence of more than two centrosomes at mitosis) is characteristic of many human cancers. Extra centrosomes can cause the assembly of multipolar spindles, which unequally distribute chromosomes to daughter cells; the resulting genetic imbalances may contribute to cellular transformation. However, this raises the question of how a population of cells with centrosome amplification can survive such chaotic mitoses without soon becoming non-viable as a result of chromosome loss. Recent observations indicate that a variety of mechanisms partially mute the practical consequences of centrosome amplification. Consequently, populations of cells propagate with good efficiency, despite centrosome amplification, yet have an elevated mitotic error rate that can fuel the evolution of the transformed state.  相似文献   

17.
The chromosomal passenger complex (CPC) is a key regulator of mitosis in many organisms, including yeast and mammals. Its components co-localise at the equator of the mitotic spindle and function interdependently to control multiple mitotic events such as assembly and stability of bipolar spindles, and faithful chromosome segregation into daughter cells. Here, we report the first detailed characterisation of a CPC mutation in Drosophila, using a loss-of-function allele of borealin (borr). Like its mammalian counterpart, Borr colocalises with the CPC components Aurora B kinase and Incenp in mitotic Drosophila cells, and is required for their localisation to the mitotic spindle. borr mutant cells show multiple mitotic defects that are consistent with loss of CPC function. These include a drastic reduction of histone H3 phosphorylation at serine 10 (a target of Aurora B kinase), a pronounced attenuation at prometaphase and multipolar spindles. Our evidence suggests that borr mutant cells undergo multiple consecutive abnormal mitoses, producing large cells with giant nuclei and high ploidy that eventually apoptose. The delayed apoptosis of borr mutant cells in the developing wing disc appears to cause non-autonomous repair responses in the neighbouring wild-type epithelium that involve Wingless signalling, which ultimately perturb the tissue architecture of adult flies. Unexpectedly, during late larval development, cells survive loss of borr and develop giant bristles that may reflect their high degree of ploidy.  相似文献   

18.
19.
《Plant science》1986,46(1):53-61
Cell cycle parameters of maize (Zea maysL cv Black Mexican Sweet) suspension cultures and root meristem cells were determined by pulse labelling with [3H]thymidine ([3H]TdR). Total cell cycle time for the suspension cultures was 27 h; 3 h in G1, 14 h in S, 6 h in G2, 2.2 h in prophase, 1 h in metaphase, 0.1 h in anaphase, and 0.7 h in telophase. Cell cycle durations in root meristem cells of Black Mexican Sweet (BMS) corn with and without B chromosomes in vivo were 20.0 h and 18.3h, respectively. Chemical and physical methods were used successfully to accumulate mitoses in the suspension cultures; compared to the untreated control, the mitotic index of the treated cultures was increased from 4 to 23% and the frequency of metaphase cells increased dramatically from 3 to 19%.  相似文献   

20.
A tumor was found for the first time in a musselMytilus trossulus from aheavily polluted area of Nakhodka Bay, Sea of Japan. Tumor cells were found in the connective tissue of different organs and also in gill vessels and hemal sinuses of the visceral mass. They were both attached and diffuse. The tumor was at an advanced stage, replacing the normal connective tissue cells, and formed nodes. The tumor cells were polymorphic, with a high nucleocytoplasmic ratio, and had a prominent nucleolus. The size of their nuclei was three to five times that of the nuclei of agranular hemocytes. The mitotic activity of the tumor cells was more than an order of magnitude higher than in the normal cells: The mean mitotic index was 1.4±0.5%, ranging from 0.97 to 2.3% in different organs. The mitotic indices in the connective tissue cells of three normal mussels were 0, 0, and 0.12%. A significant proportion (up to 78%) of the mitotic cells were at metaphase. The frequency of abnormal mitoses was 17%. Metaphases with displaced (often multiple) chromosomes constituted 71% of abnormal mitoses; anaphases, 8%; and tri- and tetrapolar mitoses, 11%. The tumor described is similar to diffuse sarcomatoid diseases of mussels from other geographical regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号