首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The infectious cycle of human cytomegalovirus (HCMV) is intricately linked to the host's cell cycle. Viral gene expression can be initiated only in G0/G1 phase. Once expressed, the immediate-early gene product IE2 prevents cellular DNA synthesis, arresting infected cells with a G1 DNA content. This function is required for efficient viral replication in vitro. A prerequisite for addressing its in vivo relevance is the characterization of cell cycle-regulatory activities of CMV species for which animal models have been established. Here, we show that murine CMV (MCMV), like HCMV, has a strong antiproliferative capacity and arrests cells in G1. Unexpectedly, and in contrast to HCMV, MCMV can also block cells that have passed through S phase by arresting them in G2. Moreover, MCMV can also replicate in G2 cells. This is made possible by the cell cycle-independent expression of MCMV immediate-early genes. Transfection experiments show that of several MCMV candidate genes, only immediate-early gene 3 (ie3), the homologue of HCMV IE2, exhibits cell cycle arrest activity. Accordingly, an MCMV ie3 deletion mutant has lost the ability to arrest cells in either G1 or G2. Thus, despite interspecies variations in the cell cycle dependence of viral gene expression, the central theme of HCMV IE2-induced cell cycle arrest is conserved in the murine counterpart, raising the possibility of studying its physiological relevance at the level of the whole organism.  相似文献   

3.
Deprivation of growth factors has been shown to induce programmed cell death in many cell types, including mouse 3T3 fibroblasts. Programmed cell death (apoptosis) is an active process of self-destruction which is thought to require the expression of unique genes. Recently, the expression of cell cycle genes such as c-fos and c-myc, and re-entrance to cell cycle traverse, are thought to be necessary to induce programmed cell death. Previous work in this laboratory has shown that statin is a nonproliferation-specific nuclear protein present in the nuclei of young quiescent or senescent human fibroblasts, as well as in growth-arrested mouse 3T3 fibroblasts; we have reported that statin disappears rapidly after the blockage of growth arrest is removed and cells are allowed to resume cell cycle traverse. In this report we address the question of whether cells induced to enter the programmed cell death process also lose the expression of statin. We studied density-arrested quiescent mouse 3T3 cells, which undergo rapid cell death by apoptosis upon serum deprivation. Our results suggest that c-myc expression is induced, as previously reported in other systems of apoptotic death. Interestingly, we also find that statin indeed disappears after the induction of programmed cell death is initiated. These results further support the notion that when apoptosis is induced, cells behave as though released from replication arrest, and experience some part of the G1 phase of the cell cycle. The difference between this event and normal cell cycle traverse is that this experience of the G1 phase in the apoptotic process is an abortive one, with the end result of cell demise. © 1995 Wiley-Liss, Inc.  相似文献   

4.
Retinoids are known to induce the differentiation and cell cycle arrest of human myeloid leukemia cells in vitro. Differential display was used to identify putative early regulatory genes that are differentially expressed in HL-60 human promyelocytic leukemia cells treated with retinoic acid. One of the cDNAs cloned encodes sequences identifying Burkitt's lymphoma receptor 1 (BLR1), a recently described chemokine receptor. Northern blot analysis demonstrates that blr1 mRNA expression increases within 9 h of retinoic acid treatment, well before functional differentiation or G1/G0 growth arrest at 48 h or onset of morphological changes, suggesting a possible regulatory function. The expression of blr1 mRNA is transient, peaking at 72 h when cells are differentiated. blr1 mRNA also is induced by other differentiation-inducing agents, 1α,25-dihydroxyvitamin D3 and DMSO. Induction of blr1 mRNA by retinoic acid is not blocked by the protein synthesis inhibitor cycloheximide. In HL-60 cells stably transfected with blr1 cDNA, ectopic expression of blr1 causes an increase in ERK2 MAPK activation and promotes retinoic acid-induced G1/G0 growth arrest and cell differentiation. The early expression of blr1 mRNA during differentiation, its ability to increase ERK2 activation, and its enhancement of retinoic acid-induced differentiation suggest that blr1 expression may be involved in retinoic acid-induced HL-60 differentiation.  相似文献   

5.
6.
The ts 2 derivative of BALB/c-3T3 mouse fibroblasts is a cell division cycle (cdc) mutant. Upon expression of the heat-sensitive defect, ts 2 cells arrest late in G1 at, or very near the G1/S traverse. This conclusion derives from three kinds of experiment. In the first the cells were brought to different stages of the cell cycle by physiological manipulation, or with specific anti-metabolites. They were then released from the resulting blocks, and their subsequent cell-cycle progression, at the permissive- and non-permissive temperature (npt), was followed. The second experiment was an execution point analysis. In the third, premature chromosome condensation was performed between metaphase HeLa cells and temperature-blocked ts 2 cells. The resulting prematurely-condensed chromosomes were largely of the morphotype of very late G1 cells. The ts 2 cells are prevented from expressing their defect by temporary incubation at 38.5 degrees C in the G0, non-cycling state and by prior arrest in early S phase, imposed by hydroxyurea treatment. Such prevention is not allowed ts 2 cells incubated at the npt in the absence of isoleucine, a procedure which brings cells to mid-G1 arrest.  相似文献   

7.
Density-arrested BALB/c-3T3 cells that had received a transient exposure to PDGF and were then transferred to medium containing only EGF and somatomedin C (Sm-C) began DNA synthesis after the G0/G1 lag. Supraphysiological concentrations of insulin could be employed to replace the Sm-C requirement. This G0/G1 lag phase was bisected by the requirement for the exogenous presence of EGF. Our data indicated that EGF was required during the traverse of only the first half of G0/G1 phase (6 h) and not during the traverse of late G1. Subphysiological serum concentrations of Sm-C were also necessary to be present with EGF for progression through early G0/G1; however, traverse of the final half of G0/G1 and commitment to DNA synthesis required the presence of Sm-C. It was found that physiological concentrations of Sm-C were required for the traverse late G1. The requirement for Sm-C for G0/G1 traverse of BALB/c-3T3 cells as opposed to human fibroblasts or glial cells may be due to a difference in endogenous synthesis of an insulin-like growth factor. Our data are in close agreement with previous reports that EGF is only required for approximately the first 8 h during traverse of the G0/G1 phase. The requirement for EGF to be present for the first 6 h of G0/G1 could result from a continued or repetitious event or by more than one distinct EGF-requiring event.  相似文献   

8.
Transforming growth factor-β (TGF-β) inhibits the proliferation of T-lymphocytes in response to activation with mitogenic lectin. The influence of TGF-β on elevation of cytosolic Ca2+, induction of proliferation-associated mRNA species, and total cellular RNA content has been studied. The cells seem to exit G0 when activated in the presence of TGF-β, but they arrest in mid-G1 phase.  相似文献   

9.
The differentiation of myeloid progenitors to mature, terminally differentiated cells is a highly regulated process. Here, we showed that conditional disruption of the c-myb proto-oncogene in adult mice resulted in dramatic reductions in CMP, GMP and MEP myeloid progenitors, leading to a reduction of neutrophils, basophils, monocytes and platelets in peripheral blood. In addition, c-myb plays a critical role at multiple stages of myeloid development, from multipotent CMP and bipotent GMP to unipotent CFU-G and CFU-M progenitor cells. c-myb controls the differentiation of these cells and is required for the proper commitment, maturation and normal differentiation of CMPs and GMPs. Specifically, c-myb regulates the precise commitment to the megakaryocytic and granulo-monocytic pathways and governs the granulocytic-monocytic lineage choice. c-myb is also required for the commitment along the granulocytic pathway for early myeloid progenitor cells and for the maturation of committed precursor cells along this pathway. On the other hand, disruption of the c-myb gene favors the commitment to the monocytic lineage, although monocytic development was abnormal with cells appearing more mature with atypical CD41 surface markers. These results demonstrate that c-myb plays a pivotal role in the regulation of multiple stages in adult myelogenesis.  相似文献   

10.
The function of the c-myc proto-oncogene in cell cycle progression remains unclear. In order to examine the role c-myc may play in cell cycle progression, we have expressed the hormone-inducible MycER protein in the nontransformed, EGF-dependent mouse keratinocyte cell line BALB/MK. We have found that activation of MycER, but not a mutant MycER, Gal4ER, or FosER, leads to an EGF-dependent and hormone-dependent increased incorporation of labeled thymidine only during the S phase of the cell cycle in BALB/MK cells. A possible explanation for the increase in thymidine incorporation comes from flow cytometric analyses that reveal that activation of MycER leads to an increase in the total number of cells that enter S phase after EGF restimulation. Investigation of the intracellular effects of Myc activation shows that the expression of several putative Myc-sensitive proteins, cyclins A, E, and D1, and the E2F-1 protein are unaffected by Myc induction. Interestingly, we find that the histone H1 kinase activity associated with an E2F-1 complex containing Cyclin A and Cdk-2, but not that associated with Cyclin E, in late G1 and early S phases is increased in cells containing hormone-activated MycER, but not FosER. Although the mechanism for this Myc-dependent effect on E2F-1-associated kinase activity is still unknown, it does not appear to involve dissociation of the Cdk inhibitor p27Kip1 from the complexes as suggested by others. However, we have also found that hormone-treated cells actually show more p16INK4A inhibitor associated with another kinase, Cdk-4, as the cells are entering S phase. Altogether, the data suggest that the presence of excessive Myc protein in keratinocytes can stimulate otherwise noncycling cells to enter the cell cycle, and that this effect of Myc involves both positive effects on E2F-1-associated Cdk-2 and negative effects on Cdk-4 in late G1. J. Cell Biochem. 70:528–542, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

11.
The stimulation of DNA synthesis in quiescent, density-arrested BALB/c-3T3 cells by platelet-derived growth factor in plasma-supplemented medium was inhibited by the presence of isobutylmethylxanthine (IBMX) and cholera toxin, although neither IBMX or cholera toxin when used alone inhibited the stimulation of DNA synthesis. The cells were reversibly inhibited in mid G1 at a point 6 hr prior to the initiation of DNA synthesis. The inhibition of cell cycle traverse was associated with a 10-15 fold increase in cellular cyclic AMP concentration over basal levels. The reversal of this inhibition by removal of IBMX was correlated with a dramatic decrease in cyclic AMP levels. The traverse of G1 and the initiation of DNA synthesis after release from the cholera toxin and IBMX inhibition was dependent on the presence of plasma in the medium. Either somatomedin C (10-20 ng/ml) or insulin (10(-6)-10(-5) M) completely replaced the plasma requirement for late G1 progression and entry into S phase. Once the inhibited cells were released from the IBMX and cholera toxin block a subsequent increase in cyclic AMP did not prevent entry into S phase. The presence of cholera toxin alone inhibited the stimulation of human dermal fibroblasts. The elevation of intracellular cyclic AMP levels in the human dermal fibroblasts by cholera toxin was two to three fold greater than that found in the BALB/c-3T3 cells in the presence of cholera toxin and the IBMX.  相似文献   

12.
G0/G1 traverse in density-arrested BALB/c-3T3 cells is controlled by multiple serum-derived growth factors. Platelet-derived growth factor (PDGF) initiates a proliferative response, whereas factors present in plasma facilitate progression through G0/G1. In the absence of competence formation, progression factors are unable to stimulate cell cycle traverse. We have identified the stimulation of a biochemical process specific to competence formation in BALB/c-3T3 cells. PDGF treated BALB/c-3T3 cells incorporated 5-10-fold more [3H]-glucosamine (GlcN) into acid-insoluble material as compared to platelet-poor plasma (PPP) treated cultures. Increased GlcN incorporation occurred in density-arrested BALB/c-3T3 cells in response to treatment with other competence factors, fibroblast growth factor, and Ca3 (PO4)2 and was not due to cell-cycle traverse. Stimulation of [3H]-GlcN incorporation by PDGF was time dependent, and increased incorporation of [3H]-GlcN into protein required de novo protein synthesis. Several mechanisms through which PDGF could increase GlcN incorporation into cellular material were examined. Results of these studies suggest an increase in the cellular capacity to glycosylate proteins is a response to or a part of competence formation.  相似文献   

13.
Smooth muscle cell (SMC) proliferation plays an important role in the pathogenesis of vascular diseases such as atherosclerosis and postangioplasty restenosis. Recently we demonstrated the thiol antioxidantN-acetylcysteine (NAC) inhibits constitutive NF-κB/Rel activity and growth of vascular SMCs. Here we show that treatment of human and bovine aortic SMC with the thiol antioxidant NAC causes cells to exit the cell cycle and remain quiescent as determined by a greatly reduced incorporation of [3H]thymidine and G0/G1DNA content. Removal of NAC from the culture medium stimulates SMCs to synchronously reenter the cell cycle as judged by induction of cyclin D1 and B-mybgene expression during mid and late G1phase, respectively, and induction of histone gene expression and [3H]thymidine incorporation during S phase. The time course of cyclin D1, B-myb,and histone gene expression after NAC removal was similar to that of serum-deprived cells induced to resume cell cycle progression by the addition of fetal bovine serum to the culture medium. Taken together, these results indicate that NAC treatment causes SMCs to enter a reversible G0quiescent, growth-arrested state. Thus, NAC provides an important new method for synchronizing SMCs in culture.  相似文献   

14.
Cell cycle regulation during growth-dormancy cycles in pea axillary buds   总被引:10,自引:2,他引:8  
Accumulation patterns of mRNAs corresponding to histones H2A and H4, ribosomal protein genes rpL27 and rpL34, MAP kinase, cdc2 kinase and cyclin B were analyzed during growth-dormancy cycles in pea (Pisum sativum cv. Alaska) axillary buds. The level of each of these mRNAs was low in dormant buds on intact plants, increased when buds were stimulated to grow by decapitating the terminal bud, decreased when buds ceased growing and became dormant, and then increased when buds began to grow again. Flow cytometry was used to determine nuclear DNA content during these developmental transitions. Dormant buds contain G1 and G2 nuclei (about 3:1 ratio), but only low levels of S phase nuclei. It is hypothesized that cells in dormant buds are arrested at three points in the cell cycle, in mid-G1, at the G1/S boundary and near the S/G2 boundary. Based on the accumulation of histone H2A and H4 mRNAs, which are markers for S phase, cells arrested at the G1/S boundary enter S within one hour of decaptitation. The presence of a cell population arrested in mid-G1 is indicated by a second peak of histone mRNA accumulation 6 h after the first peak. Based on the accumulation of cyclin B mRNA, a marker for late G2 and mitosis, cells arrested at G1/S begin to divide between 12 and 18 h after decapitation. A small increase in the level of cyclin B mRNA at 6 h after decapitation may represent mitosis of the cells that had been arrested near the S/G2 boundary. Accumulation of MAP kinase, cdc2 kinase, rpL27 and rpL34 mRNAs are correlated with cell proliferation but not with a particular phase of the cell cycle.  相似文献   

15.
Our previous studies have implied that prostaglandins inhibit cell growth independent of cAMP. Recent reports, however, have suggested that prostaglandin arrest of the cell cycle may be mediated through protein kinase A. In this report, in order to eliminate the role of c-AMP in prostaglandin mediated cell cycle arrest, we use the-49 lymphoma variant (cyc?) cells that lack adenylate cyclase activity. We demonstrate that dimethyl prostaglandin A1 (dmPGA1) inhibits DNA synthesis and cell growth in cyc? cells. DNA synthesis is inhibited 42% by dmPGA1 (50 μM) despite the fact that this cell line lacks cellular components needed for cAMP generation. The ability to decrease DNA synthesis depends upon the specific prostaglandin structure with the most effective form possessing the α,β unsaturated ketone ring. Dimethyl PGA1 is most effective in inhibiting DNA synthesis in cyc? cells, with prostaglandins PGE1 and PGB1 being less potent inhibitors of DNA synthesis. DmPGE2 caused a significant stimulation of DNA synthesis. S-49 cyc- variant cells exposed to (30–50 μm) dmPGA1, arrested in the G1 phase of the cell cycle within 24 h. This growth arrest was reversed when the prostaglandin was removed from the cultured cells; growth resumed within hours showing that this treatment is not toxic. The S-49 cyc? cells were chosen not only for their lack of adenylate cyclase activity, but also because their cell cycle has been extensively studied and time requirements for G1, S, G2, and M phases are known. Within hours after prostaglandin removal the cells resume active DNA synthesis, and cell number doubles within 15 h suggesting rapid entry into S-phase DNA synthesis from the G1 cell cycle block. The S-49 cyc? cells are known to have a G1/S boundary through M phase transition time of 14.8 h, making the location of the prostaglandin cell cycle arrest at or very near the G1/S interface. The oncogenes, c-fos and c-myc which are normally expressed during G1 in proliferating cells have a 2–3 fold enhanced expression in prostaglandin G1 arrested cells. These data using the S-49 variants demonstrate that dmPGA1 inhibits DNA synthesis and arrests the cell cycle independent of cAMP-mediated effects. The prostaglandin arrested cells maintain the gene expression of a G1 synchronous cell which suggests a unique molecular mechanism for prostaglandin action in arresting cell growth. These properties indicate that this compound may be an effective tool to study molecular mechanisms of regulation of the cell cycle.  相似文献   

16.
The proto-oncogenes c-fos and c-jun have been shown in numerous model systems to be induced within minutes of growth factor stimulation, during the G0/G1 transition. In this report we use the mitotic shake-off procedure to generate a population of highly synchronized Swiss 3T3 cells. We show that both of these immediate-early, competence genes are also induced during the M/G1 transition, immediately after completion of mitosis. While c-fos mRNA levels drop to undetectable levels within 2 hr after division, c-jun mRNA levels are maintained at a basal level which is ~ 30% maximum throughout the remainder of G1. In order to access the functional significance of these patterns of c-fos and c-jun expression, antisense oligodeoxynucleotides specific to c-fos or c-jun were added to either actively growing Swiss 3T3 cells or mitotically synchronized cells, and their ability to inhibit DNA synthesis and cell division determined. Our results show that treatment of Swiss 3T3 cells with either c-fos or c-jun antisense oligodeoxynucleotides, while actively growing, during mitosis, or in early G1, results in a reduction in ability to enter S and subsequently divide. This was also true if Swiss 3T3 cells were treated during mid-G1 with c-jun antisense oligodeoxynucleotides. These results demonstrate that the regulation of G1 progression following mitosis is dependent upon the expression and function of the immediate-early, competence proto-oncogenes c-fos and c-jun. © 1994 Wiley-Liss, Inc.  相似文献   

17.
Bombesin is a potent mitogen for Swiss 3T3 cells and can stimulate DNA synthesis in the absence of any other growth factor. This effect is mediated by multiple synergistic signaling pathways, including an accumulation of intracellular cyclic AMP (cAMP) and an increase in c-fos mRNA expression. The cyclooxygenase inhibitor indomethacin abolished prostaglandin E2 release and substantially depressed cAMP levels induced by bombesin (EC50 - 10 nM). In contrast, indomethacin at 1 μM did not affect 80K phosphorylation or Ca2+ mobilization by bombesin, indicating that cAMP synthesis can occur through a phospholipase C-independent pathway. Indomethacin caused a 30 to 35% decrease in c-fos induction and DNA synthesis in cells treated with bombesin (EC50 - 40 nM). Significantly, the inhibitory effect of indomethacin was reversed in the presence of forskolin, a direct activator of adenylate cyclase. We conclude that cAMP plays a regulatory role in c-fos induction and mitogenesis in Swiss 3T3 cells treated with bombesin.  相似文献   

18.
19.
20.
Human Xeroderma pigmentosum “normal” fibroblasts AS16 (XP4 VI) were transformed after transfection with a recombinant v-myb clone. In this clone (pKXA 3457) derived from avian myeloblastosis virus (AMV), the expression of the oncogene sequences is driven by the AMV U-5 LTR promoter. The transformed cells (ASKXA), which have integrated a rearranged v-myb oncogene, grow in agar, are not tumorigenic in nude mice, and express a 45-kDa v-myb protein. The HMW DNA of these cells transform chicken embryo fibroblasts. The c-Ha-ras oncogene is overexpressed in the ASKXA cells but not in the parental “normal” AS16 cells and a revertant clone (ASKXA Cl 1.1 G). Our results lead to the conclusion that the XP fibroblasts are phenotipically transformed by the presence of the transfected v-myb oncogene, which is able to induce an overexpression of the c-Ha-ras gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号