首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Growth of rat intestinal crypt derived cells IEC-6 ceased when the key enzyme of cholesterol synthesis, hydroxymethylglutaryl-CoA reductase, was blocked by the competitive inhibitor mevinolin. This effect was reversed by the addition of mevalonolactone. LDL suppressed reductase activity as well as cholesterol synthesis from [14C]octanoate and stimulated acyl-CoA cholesterol acyltransferase, but failed to support cell growth despite rapid receptor mediated degradation even in the presence of low mevalonolactone concentrations. Inhibition of cholesterol esterification by Sandoz-Compound 58-035 enhanced cell growth in the presence of mevinolin, but did not promote proliferation in the additional presence of low-density lipoproteins. HDL3 but not HDL2 or tetranitromethane-modified HDL3 totally reversed the mevinolin induced inhibition of cell growth. This rescue by HDL3 was overcome by an increased dose of mevinolin. HDL3 derepressed reductase, stimulated cholesterol synthesis and reduced cholesterol esterification, but did not reverse the cholesterol synthesis inhibition by mevinolin. It is concluded that IEC-6 cells preferentially use endogenously synthesized cholesterol for membrane formation rather than low-density lipoprotein cholesterol. High-density lipoproteins appear to normalize cell growth in the presence of mevinolin by inhibition of cholesterol esterification and probably by inducing the formation of non sterol products of mevalonate.  相似文献   

2.
Several in vitro and in vivo studies have suggested that surface bleb formation during oxidative cell injury is related to alteration in cytoskeleton organization. Various cell lines different in origin and growth characteristics were exposed to 2-methyl-1,4-naphthoquinone (menadione) which is known to induce bleb formation and cytotoxicity by generating considerable amounts of oxygen-reactive species. Treated cells were analyzed by means of immunocytochemistry and electron microscopy in order to investigate the morphological and molecular features underlying bleb generation. The results obtained indicate that menadione-induced bleb formation is a widely observed phenomenon present mainly in round or mitotic cells. Surface blebs appear free of organelles and contain only few ribosomes and amorphous material. Occasionally, they undergo detachment from the cell surface as large cytoplasmic vesicles. Bleb surfaces with protein clusters as well as bald blisters with an almost exclusive localization of intramembrane particles on their narrow base were detected using freeze-fracture techniques. Immunocytochemical investigations performed on menadione-exposed cells revealed that some surface proteins (collagen IV, sialo-proteins, beta 2 microglobulin and fibronectin) and adhesion molecules (vinculin) underwent changes in their expression over the bleb surface. Moreover, different behavioural characteristics of actin microfilaments, vimentin and keratin intermediate filaments and microtubules was observed. Alpha-actinin, vimentin and microtubular proteins (tubulin, MAPs and tau) were detected within the blebs. On the other hand, actin and keratin filaments appeared to be absent. The results presented here demonstrate that cytoskeletal structures and the microfilament system in particular, represent important targets in menadione-induced morphological changes in cultured cells. These changes appear to lead to the redistribution of several cytoskeletal and membrane proteins as well as dissociation of the cytoskeleton network from its anchoring domains in the plasma membrane thus generating sites of structural weakness where blebs would arise and progressively grow. Experimental evidence supporting a crucial role of thiol oxidation and elevation of cytoplasmic calcium concentration in bleb formation is also provided.  相似文献   

3.
The requirement for the sterol biosynthetic pathway for the occurrence of DNA synthesis in glial cells and, in particular, the relative roles of cholesterol and of mevalonate have been studied. Primary cultures of developing glial cells were synchronized by reducing the content of fetal calf serum (FCS) in the culture medium from 10% to 0.1% (vol/vol) for 48 h between days 4 and 6 in culture. Reversal of the resulting quiescent state by the return of the cultures to 10% serum caused after 24 h a marked increase in DNA synthesis, and this increase was prevented by the simultaneous addition of mevinolin, a specific inhibitor of the sterol biosynthetic pathway at the 3-hydroxy-3-methylglutaryl coenzyme A reductase step, at the time of serum repletion. A dose-dependent reversal of the mevinolin inhibition of DNA synthesis occurred with simultaneous addition of mevalonate to the culture medium. The induction of DNA synthesis by serum repletion, its inhibition by mevinolin, and the reversal of the inhibition by mevalonate were unaffected by a 95% reduction in exogenous cholesterol produced by utilization of lipoprotein-poor serum (LPPS) rather than FCS. Similarly, return of quiescent cultures to 10% LPPS containing mevinolin and sufficient low-density lipoprotein (LDL) to raise the cholesterol concentration 80-fold failed to restore DNA synthesis. In addition, reversal of the mevinolin inhibition of DNA synthesis by mevalonate occurred despite the continuous presence of mevinolin if mevalonate was added as late as 12 h after serum repletion, but not if added after 16 h or more.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
H4-II-E-C3 hepatoma cells in culture respond to lipid-depleted media and to mevinolin with increased sterol synthesis from [14C]acetate and rise of 3-hydroxy-3-methylglutaryl coenzyme A reductase levels. Mevalonate at 4 mM concentration represses sterol synthesis and the reductase, and completely abolishes the effects of mevinolin. Mevalonate has little or no effect on sterol synthesis or reductase in enucleated hepatoma cells (cytoplasts) or on reductase in cytoplasts of cultured Chinese hamster ovary (CHO) cells. The sterol-synthesizing system of hepatoma cell cytoplasts and the reductase in the cytoplasts of CHO cells were completely stable for at least 4 hr. While reductase levels and sterol synthesis from acetate followed parallel courses, the effects on sterol synthesis--both increases and decreases--exceeded those on reductase. In vitro translation of hepatoma cell poly(A)+RNAs under various culture conditions gave an immunoprecipitable polypeptide with a mass of 97,000 daltons. The poly(A)+RNA from cells exposed for 24 hr to lipid-depleted media plus mevinolin (1 microgram/ml) contained 2.8 to 3.6 times more reductase-specific mRNA than that of cells kept in full-growth medium, or cells exposed to lipid-depleted media plus mevinolin plus mevalonate. Northern blot hybridization of H4 cell poly(A)+RNAs with [32P]cDNA to the reductase of CHO cells gave two 32P-labeled bands of 4.6 and 4.2 K-bases of relative intensities 1.0, 0.61-1.1, 2.56, and 1.79 from cells kept, respectively, in full-growth medium, lipid-depleted medium plus mevinolin plus mevalonate, lipid-depleted medium plus mevinolin, and lipid-depleted medium. These values approximate the reductase levels of these cells. We conclude that mevalonate suppresses cholesterol biosynthesis in part by being a source of a product that decreases the level of reductase-specific mRNA.  相似文献   

5.
Growth arrest induced by serum depletion and/or treatment with mevinolin (an inhibitor of mevalonate synthesis) in the human breast cancer cell line Hs578T was overcome by exogenous mevalonate, indicating that some product or metabolite of mevalonate may be involved in the mediation of serum-regulated growth of these cells. In the search for such compounds we first tested a variety of known end products of mevalonate with respect to their ability to counteract the inhibition of DNA synthesis caused by serum-free medium and mevinolin. Thereby high doses (10 μg/ml) of dolichol-20 were found to cause a partial counteraction. After straight-phase HPLC purification of endogenous lipids, isolated from 3H- or 14C-mevalonate-labelled Hs578T cultures, we found that non-sterol lipids co-eluting with dolichols efficiently induced DNA synthesis. After further purification with reverse-phase HPLC it was confirmed that virtually all of this effect was achieved by compound(s) (seen as a single UV and radioactive peak) co-eluting with dolichol-20. Nanogram doses, at most, of this (these) compound(s) elicited a substantial stimulation of DNA synthesis. The lipid(s) also counteracted the inhibition by mevinolin of N-linked glycosylation, indicating that it (they) also interfere(s) with this processing. Since treatment with tunicamycin (an inhibitor of N-linked glycosylation) abolished this growth-stimulative effect, N-linked glycosylation seems to be a necessary event in the processes leading to lipid-induced initiation of DNA synthesis.  相似文献   

6.
We have studied the relationship between differentiation capacity, plasma membrane composition, and epidermal growth factor (EGF) receptor expression of normal keratinocytes in vitro. The plasma membrane composition of the cells was modulated experimentally by cholesterol depletion, using specific inhibitors of cholesterol synthesis, such as 25-hydroxycholesterol and mevinolin. Exposure of the cells towards these inhibitors resulted in a drastic decrease of cholesterol biosynthesis, as determined from 14C-acetate incorporation into the various lipid fractions. This effect on cholesterol biosynthesis was reflected by changes in plasma membrane composition, as determined by lipid analysis of isolated plasma membrane fractions, these resulting in a decreased cholesterol-phospholipid ratio. The experimental modulation of plasma membrane composition by 25-hydroxycholesterol or mevinolin were accompanied by a decreased cornified envelope formation and by high expression of EGF binding sites. These phenomena were more pronounced in cells induced to differentiate by exposure of cells grown under low Ca2+ to normal Ca2+ concentrations, as compared to cells grown persistently under low Ca2+ concentrations. These results suggest a close correlation between plasma membrane composition, differentiation capacity, and EGF receptor expression.  相似文献   

7.
Primary astroglial cultures were used to compare the relationships to cell cycling of dolichol-linked glycoprotein synthesis, and of availability of mevalonate, the precursor of dolichol and other isoprenoid lipids. With shift-up to 10% serum (time 0) after 48 h of serum depletion, the proportion of cells in S phase (bromodeoxyuridine immunofluorescence) remained under 15% for 12 h, then increased by 20 h to 72 +/- 10%; DNA synthetic rates (thymidine incorporation) increased 5-fold. S phase transition was prevented by addition at 10-12 h of tunicamycin, an inhibitor of transfer of saccharide moieties to dolichol. Mevinolin, an inhibitor of mevalonate biosynthesis, also blocked cycle progression when added at this time. However, mevinolin markedly inhibited the isoprenoid pathway, as reflected by over 90% reduction of sterol synthesis, without inhibiting net glycoprotein synthesis. Removal of mevinolin after a 24 h exposure delayed S phase until 48 h, following recovery of sterol synthesis, even though kinetics of glycoprotein synthesis were unaffected. Tunicamycin removal after 24 h spared sterol synthesis, but caused delay of S phase until 72 h, following recovery of glycoprotein synthesis. In mevinolin-treated cultures, S phase transition was restored by 1 h of exposure to mevalonate at 10 h, although cycling was thereby rendered sensitive to inhibition by cycloheximide and by tunicamycin. Cell cycle progression following hydroxyurea exposure and release was unaffected by mevinolin, tunicamycin, or cycloheximide. Thus, in these developing astroglia, mevalonate and its isoprenoid derivatives have at least two cell cycle-specific roles: dolichol-linked glycoprotein synthesis is required at or before the G1/S transition, while a distinct mevalonate requirement is apparent also in late G1.  相似文献   

8.
Vascular smooth muscle cells (SMCs) grown in primary culture are converted from a contractile to a synthetic phenotype. This includes a marked morphological reorganization, with loss of myofilaments and formation of a large ER-Golgi complex. In addition, the number of cell surface caveolae is distinctly reduced and the handling of lipoprotein-derived cholesterol changed. Here we used filipin as a marker to study the distribution of cholesterol in SMCs by electron microscopy. In contractile cells, filipin-sterol complexes were preferentially found in caveolae and adjacent ER cisternae (present in both leaflets of the membranes). After exposure to LDL or cholesterol, labeling with filipin was increased both in membrane organelles and in the cytoplasm. In contrast, treatment with mevinolin (a cholesterol synthesis inhibitor) or beta-cyclodextrin (a molecule that extracts cholesterol from cells) decreased the reaction with filipin but did not affect the close relation between the ER and the cell surface. In synthetic cells, filipin-sterol complexes were diffusely spread in the plasma membrane and the strongest cytoplasmic reaction was noted in endosomes/lysosomes, both under normal conditions and after incubation with LDL or cholesterol. On the basis of the present findings, we propose a mechanism for direct exchange of cholesterol between the plasma membrane and the ER and more active in contractile than in synthetic SMCs.  相似文献   

9.
In order to investigate a requirement for isoprenoid compounds in the cell cycle, DNA synthesis was examined in cultured Chinese hamster ovary cells in which mevalonate biosynthesis was blocked with mevinolin, a competitive inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase. Treatment of exponentially-growing cultures with mevinolin led to a decline in DNA synthesis and cell cycle arrest in G1. Synchronous DNA synthesis and cell division could be restored in the arrested cultures, in the absence of exogenous mevalonate, by removing the inhibitor from the culture thereby allowing expression of an induced level of HMG-CoA reductase. In order to quantitate the mevalonate requirement for entry into S phase, recovery of DNA synthesis was made dependent upon added mevalonate by preventing the induction of the enzyme using 25-hydroxycholesterol, a specific repressor of HMG-CoA reductase synthesis. When cultures were treated with both inhibitors, optimal recovery of DNA synthesis was obtained with 200 micrograms/ml mevalonate following an 8 h lag, whereas a progressively longer lag-time was found with lower concentrations of mevalonate. Exogenous dolichol, ubiquinone, or isopentenyladenine had no effect on the arrest or recovery of DNA synthesis. Cholesterol was required during the arrest incubation for cell viability, but was not sufficient for recovery in the absence of mevalonate. The recovery of DNA synthesis by 200 micrograms/ml mevalonate, which was maximal 14-16 h after the addition of mevalonate, only required that the mevalonate be present for the first 4 h, whereas more than an 8-h incubation was required for maximal recovery with 25 micrograms/ml mevalonate. Maximal recovery at either concentration of mevalonate was achieved after approximately 400 fmol mevalonate/micrograms protein was incorporated into non-saponifiable lipids. This quantity represents approximately 0.1% of the mevalonate required for the synthesis of total cellular isoprenoid compounds. The results indicate that production of a quantitatively minor product(s) of mevalonate metabolism is required during the first 4 h following release of the block before other cellular events necessary for entry into S phase can occur.  相似文献   

10.
Cellular adhesion and motility are fundamental processes in biological systems such as morphogenesis and tissue homeostasis. During these processes, cells heavily rely on the ability to deform and supply plasma membrane from pre-existing membrane reservoirs, allowing the cell to cope with substantial morphological changes. While morphological changes during single cell adhesion and spreading are well characterized, the accompanying alterations in cellular mechanics are scarcely addressed. Using the atomic force microscope, we measured changes in cortical and plasma membrane mechanics during the transition from early adhesion to a fully spread cell. During the initial adhesion step, we found that tremendous changes occur in cortical and membrane tension as well as in membrane area. Monitoring the spreading progress by means of force measurements over 2.5 h reveals that cortical and membrane tension become constant at the expense of excess membrane area. This was confirmed by fluorescence microscopy, which shows a rougher plasma membrane of cells in suspension compared with spread ones, allowing the cell to draw excess membrane from reservoirs such as invaginations or protrusions while attaching to the substrate and forming a first contact zone. Concretely, we found that cell spreading is initiated by a transient drop in tension, which is compensated by a decrease in excess area. Finally, all mechanical parameters become almost constant although morphological changes continue. Our study shows how a single cell responds to alterations in membrane tension by adjusting its overall membrane area. Interference with cytoskeletal integrity, membrane tension and excess surface area by administration of corresponding small molecular inhibitors leads to perturbations of the spreading process.  相似文献   

11.
McFarlane HE  Young RE  Wasteneys GO  Samuels AL 《Planta》2008,227(6):1363-1375
During their differentiation Arabidopsis thaliana seed coat cells undergo a brief but intense period of secretory activity that leads to dramatic morphological changes. Pectic mucilage is secreted to one domain of the plasma membrane and accumulates under the primary cell wall in a ring-shaped moat around an anticlinal cytoplasmic column. Using cryofixation/transmission electron microscopy and immunofluorescence, the cytoskeletal architecture of seed coat cells was explored, with emphasis on its organization, function and the large amount of pectin secretion at 7 days post-anthesis. The specific domain of the plasma membrane where mucilage secretion is targeted was lined by abundant cortical microtubules while the rest of the cortical cytoplasm contained few microtubules. Actin microfilaments, in contrast, were evenly distributed around the cell. Disruption of the microtubules in the temperature-sensitive mor1-1 mutant affected the eventual release of mucilage from mature seeds but did not appear to alter the targeted secretion of vesicles to the mucilage pocket, the shape of seed coat cells or their secondary cell wall deposition. The concentration of cortical microtubules at the site of high vesicle secretion in the seed coat may utilize the same mechanisms required for the formation of preprophase bands or the bands of microtubules associated with spiral secondary cell wall thickening during protoxylem development.  相似文献   

12.
Serially cultivated thyroid follicular cells are not active in hormone synthesis but retain a thyrotropin-responsive adenylate cyclase. The exposure of such cells to thyrotropin leads to an increase in the concentration of intracellular cAMP and a drastic change in morphology including a total cytoplasmic arborization. The present communication describes these changes at the cytoskeletal level using a cell line derived from a human functioning thyroid adenoma. Phase contrast microscopy showed that the cytoplasmic arborization was preceded by a total disappearance of stress fibers, visible within 20 min of exposure. Small marginal membrane ruffles could also be seen. These morphological changes could also be induced by the addition of dibutyryl cAMP. The action of both thyrotropin and dibutyryl cAMP was potentiated by theophylline. High voltage electron microscopy of whole mounted cells confirmed the loss of stress fibers (microfilament bundles). In addition, thyrotropin treatment led to an uneven redistribution of the cytoplasmic ground substance and to changes in the organization of the microtrabecular lattice. Stereo images demonstrated numerous minute surface ruffles. The thyrotropin-induced arborization was reversible even in the presence of thyrotropin. After 24 h of treatment, cells had flattened and then contained very straight and condensed microfilament bundles. The results thus demonstrate that thyrotropin induces a disintegration of microfilament bundles in human, partially dedifferentiated, follicular cells and that this effect to all appearances is caused by cAMP, the second messenger in thyrotropin action. The relation of this event in partially dedifferentiated cells to the effect of thyrotropin in the intact thyroid gland is unclear. The fact that several other cultured hormone-responsive cells round up or become arborized in conjunction with an increase in cAMP levels implies that cAMP may be a major factor in the disassembly of microfilament bundles in these cells.  相似文献   

13.
The effects of brief trypsin treatment on cell shape, surface topography, cytoskeletal components and the freeze-fracture distribution of plasma membrane intramembranous particles (PMP) are examined in contact-inhibited 3T3 cells. Untreated 3T3 cells are flat without many surface modifications, have highly organized microfilaments and microtubules and have clusters of PMP. Within seconds of trypsin treatment using a concentration of trypsin used for routine passage numerous zeiotic blebs appear on the cell surface which appear to “cap” or coalesce on the central superior aspect of the cell. In later stages retraction fibers are observed and the cells then round up and detach from the substrate. Using thin section transmission electron microscopy (TEM) the zeiotic blebs are observed and various constituents of the cytosol, including lysosomes, ribosomes, etc. pinch off and are surrounded by plasma membrane. In general there is a profound disruption of microfilaments and cortical microtubules. There is, however, a focal coalescence of microfilaments subjacent to the zones of the “capped” zeiotic blebs and some relative resistance of centriolar associated microtubules to tryptic degradation. Trypsin also causes profound changes in the nucleus which transforms from the normal round shape to a very convoluted and irregular shape. In addition to the zeiotic bleb formation which can be visualized by freeze-fracture the distribution of PMP goes from the normally clustered state to a more uniform distribution following treatment with trypsin. These studies suggest that there may be some coordinated control of the changes in cell surface topography, cytoskeletal components and intramembranous particle distribution.  相似文献   

14.
Mevinolin, a competitive inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, stimulates neurite outgrowth and acetylcholinesterase (ACE) activity in C1300 (Neuro-2A) murine neuroblastoma cells. Sprouting of neurites began within 4-8 h, before changes in cell proliferation could be detected by [3H]thymidine incorporation or flow cytometry. In contrast, the increase in ACE activity was temporally correlated with suppression of DNA synthesis, which occurred after 8 h. The activity of the membrane marker enzyme phosphodiesterase I was not stimulated by mevinolin. Suppression of protein synthesis with cycloheximide blocked the induction of ACE activity but only partially inhibited neurite outgrowth in the mevinolin-treated cultures. When mevinolin was removed from the culture medium, most of the cells retracted their neurites within 2 h, but ACE activity did not decline until DNA synthesis began to return to control levels after 10 h. Similarly, retraction of neurites in differentiated cells exposed to colchicine was not accompanied by a decrease in ACE activity. DNA histograms suggested that mevinolin arrests neuroblastoma cells in both the G1 and G2/M compartments of the cell cycle. Other cytostatic drugs that arrest cells at different stages of the cell cycle did not cause Neuro-2A cells to form neurites such as those seen in the mevinolin-treated cultures. When incorporation of [3H]acetate into isoprenoid compounds was studied in cultures containing mevinolin in concentrations ranging from 0.25 microM to 25 microM, the labeling of cholesterol, dolichol, and ubiquinone was suppressed by 90% or more at all concentrations. However, significant growth arrest and cell differentiation were observed only at the highest concentrations of mevinolin. Supplementing the medium with 100 microM mevalonate prevented the cellular response to mevinolin, but additions of cholesterol, dolichol, ubiquinone, or isopentenyl adenine were generally ineffective. The cholesterol content of neuroblastoma cells incubated with 25 microM mevinolin for 24 h was not diminished, and protein glycosylation, measured by [3H]mannose incorporation, was decreased only after 24 h at high mevinolin concentration. These studies suggest that the stimulation of neurite outgrowth and the increase in ACE activity induced by mevinolin are independent phenomena. Whereas neurite outgrowth is not related directly to the effects of mevinolin on cell cycling, the induction of ACE is correlated with the inhibition of cell proliferation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Monoterpenes as S-(-)-perillyl alcohol (PA) have been shown to inhibit the isoprenylation of such growth regulatory proteins as ras. In this study, we investigated the effects of the R-(+) enantiomer of PA on cell cycle, signaling, and cytoskeletal control in the colonic adenocarcinoma cell line SW480, which carries a K-ras mutation. Cell cycle analysis by flow cytometry of SW480 cells treated with 1 mM PA for 24 hours demonstrated an increase in the number of cells in G0/G1 with a decrease in S phase, compared with untreated control cells. These cell cycle changes correlated with an inhibition of protein isoprenylation from (14)C-mevalonate and decreased expression of the cell cycle regulatory kinase p34(cdc2). Additionally, PA-treated cells acquired a flattened morphology with a condensation of cytoskeletal actin spikes to the periphery. This was in contrast to treatment with 15 microM mevinolin (MVN), a direct mevalonate synthesis inhibitor, which imparted to SW480 cells a more rounded and spindly morphology, associated with the depolymerization of actin microfilaments. Together, these data suggest that fluctuations in mevalonate and isoprenoid pools may involve different morphologic phenomenon. Because ras mediated signaling is related to the organization of the actin cytoskeleton, we investigated the effects of PA on the isoprenylation of ras. Although MVN treatment inhibited ras farnesylation, PA treatment decreased the expression of total ras protein. In summary, R-(+)-PA-induced cell signaling events correlated with alterations in the organization of cytoskeletal actin and decreased protein expression of growth regulatory proteins, such as ras and cdc2 kinase. These effects may contribute to the growth inhibitory activity of R-(+)-PA.  相似文献   

16.
Mevinolin, a competitive inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase, stimulated outgrowth of neurites and increased acetylcholinesterase activity in C1300-N2A murine neuroblastoma cells cultured in medium containing 10% fetal calf serum. Changes in cell morphology and enzyme activity were concentration-dependent in the range of 0.25-25 microM mevinolin, and were accompanied by decreased incorporation of [3H]thymidine into DNA. The expression of differentiated characteristics induced by 25 microM mevinolin was blocked by simultaneous addition of 100 microM mevalonate to the culture medium. The data suggest that changes in intracellular levels of mevalonate or one of its isoprenoid derivatives may play a role in the regulation of cell differentiation.  相似文献   

17.
In the presence of lovastatin (mevinolin), an inhibitor of endogenous mevalonate synthesis, C1300 murine neuroblastoma cells incorporated (2-14C)mevalonate into several discrete polypeptides that were separable by SDS-PAGE. The electrophoretic pattern of the labeled proteins did not vary substantially when cells were homogenized with Ca++, Mg++, high concentrations of NaCl or phosphatase inhibitor, or when cells were lysed immediately in trichloroacetic acid. When cells that had been prelabeled with (14C)mevalonate were incubated with lovastatin and simultaneously deprived of exogenous mevalonate, there was a 50-60% decline in the concentration of protein-bound isoprenoid label within 17 h. In contrast, there was little change in the radioactivity in the sterol, dolichol, or ubiquinone fractions. The time course of the decline in mevalonate-derived label in cellular polypeptides paralleled the onset of neurite outgrowth and preceded the decline of DNA synthesis, suggesting that a decreased intracellular concentration of protein-bound isoprenoid groups may contribute to the well-documented effects of mevalonate deprivation on cell morphology and cell cycling. Fractionation of neuroblastoma cells by differential centrifugation and sucrose density-gradient centrifugation revealed that mevalonate-labeled proteins of 53 kDA, 22-26 kDa, and 17 kDa were concentrated in the cytosol. Proteins migrating at 45 kDa were found in both the soluble and particulate fractions, including those enriched in mitochondria and plasma membrane. The isoprenylated proteins migrating at approximately 66 kDa were localized exclusively in the nuclear fraction. When chromatin was removed from the nuclei by extraction with 2 M NaCl, the 66 kDa isoprenylated proteins remained associated with the residual components of the nuclear matrix and lamina. Isoprenylated proteins with electrophoretic mobilities similar to those observed in neuroblastoma cells were detected in a variety of established cell lines. However, there was considerable variation among cell lines in the overall efficiency of protein labeling with (14C) mevalonate and in the prominence and mobilities of specific labeled proteins in the 45-70 kDa range. Comparisons of paired transformed vs. nontransformed fibroblast cell lines suggested that the profile of mevalonate-labeled proteins in a given cell line is not altered by malignant transformation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
CD44 is a multifunctional adhesion molecule that binds to hyaluronic acid, type I collagen, and fibronectin. We have studied the immunohistochemical localization of CD44 in bone cells by confocal laser scanning microscopy and transmission electron microscopy in order to clarify its role in the cell-cell and/or cell-matrix interaction of bone cells. In round osteoblasts attached to bone surfaces, immunoreactivity is restricted to their cytoplasmic processes. On the other hand, osteocytes in bone matrices show intense immunoreactivity on their plasma membrane. Intense immunoreactivity for CD44 can be detected on the basolateral plasma membranes of osteoclasts. There is considerably less reactivity observed in the area of the plasma membrane that is in direct contact with bone. The pre-embedding electron-microscopical method has revealed that CD44 is mainly localized on the basolateral plasma membrane of osteoclasts. However, the ruffled border and clear zone show little immunoreactivity. A CD44-positive reaction can be detected on both plasma membranes in the contact region between osteoclasts and osteocytes. These findings suggest that: 1) cells of the osteoblast lineage express CD44 in accordance with their morphological changes from osteoblasts into osteocytes; 2) osteoclasts express CD44 on their basolateral plasma membrane; 3) CD44 in osteoclasts and osteocytes may play an important role in cell-cell and/or cell-matrix attachment via extracellular matrices.  相似文献   

19.
Mevinolin, which is a highly specific competitive inhibitorof 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase,was used in a search for photoinducible enzyme(s) other thanHMG-CoA reductase in the pathway of carotenoid biosynthesisin Rhodotorula minuta. The photoinduced production of carotenoids was competitivelyinhibited by mevinolin. The concentration of mevinolin thatis required to inhibit completely the production of carotenoidsdepends on the light dose given to the cells. However, the relationshipbetween the inhibition ratio and the concentration of mevinolinwas almost identical regardless of the light dose. These resultssuggest that the activity of enzymes involved in the formationof HMG-CoA may not be affected by light. When an adequate amount of mevalonate was added to the growthmedium that contained sufficient mevinolin for the completeinhibition of the photoinduction of the production of carotenoids,the same quantity of carotenoids was produced as in the absenceof mevinolin. Moreover, the production of carotenoids in thepresence of both mevinolin and mevalonate was inhibited by cycloheximide. It appears from these results that one or more photoinducibleenzymes, such as HMG-CoA reductase, may be present in the carotenogenicpathway beyond mevalonate. (Received April 12, 1989; Accepted January 16, 1990)  相似文献   

20.
The kinetics of the apoprotein B (apo B) of very-low-density (VLDL; d less than 1.006) and low-density (LDL; d 1.019-1.063) lipoproteins were studied in six rabbits by using radioiodinated homologous lipoproteins, before and during oral administration of mevinolin (5 mg/kg per day), a competitive inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (EC 1.1.1.34), to explore the mechanism by which the drug reduces LDL synthesis. Before treatment LDL-apo B production greatly exceeded VLDL-apo B production in all animals, indicating that a large proportion of plasma LDL was derived from a VLDL-independent pathway. Five animals responded to mevinolin with a fall in plasma cholesterol (mean change - 53%; P less than 0.01). This was associated with a 66% decrease in LDL-apo B synthesis (P less than 0.05). In contrast, VLDL-apo B synthesis was unaffected by mevinolin. Furthermore, in all but one animal the decrement in LDL-apo B synthesis was greater than the rate of VLDL-apo B synthesis before treatment, demonstrating that mevinolin had reduced the VLDL-independent production of LDL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号