首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied the postulated involvement of the protein kinase C β1 (PKCβ1) isoform in the regulation of endothelial permeability using human dermal microvascular endothelial cell line (HMEC-1). We overexpressed the recombinant PKCβ1 gene via retroviral-mediated transduction in these cells. PKCβ1 gene transfer was stable, and PKCβ1 protein production was persistent for at least 1 month posttransduction. Addition of 2 × 10−9 M and 2 × 10−8 M phorbol 12-myristate 13-acetate (PMA) to the control (nontransduced) HMEC-1 cells increased the transendothelial 125I-albumin clearance rate (an index of endothelial permeability) from 2.5 ± 0.2 × 10−2 μl/min to 5.4 ± 1.2 × 10−2 μl/min and 16.8 ± 3.1 × 10−2 μl/min, respectively. However, addition of 2 × 10−9 M PMA to PKCβ1-overexpressing HMEC-1 cells produced a maximal increase in the transendothelial 125I-albumin clearance rate of 15.9 ± 2.0 × 10−2 μl/min. Challenge of these cells with 2 × 10 −8 M PMA did not further augment the increase in permeability. Activation with PMA was associated with the translocation of the PKCβ1 from the cytosol to the membrane. These data show that PKCβ1 overexpression augments the increase in endothelial permeability in response to PKC activation, suggesting an important function for the PKCβ1 isoform in the regulation of endothelial barrier. © 1996 Wiley-Liss, Inc.  相似文献   

2.
3.
We determined whether activation of phosphatidylinositol-specific phospholipase C (PI-PLC) and a subsequent increase in cytosolic calcium concentration ([Ca2+]i) was an obligatory signaling event mediating the increase in transendothelial permeability induced by bradykinin (BK) and α-thrombin (α-T). Both BK and α-T (each at a concentration range of 0.01–1 μM) caused dose-dependent increases in transendothelial 125I-albumin permeability in cultured bovine pulmonary artery endothelial cell monolayers. Both agonists also produced a rise in inositol (1,4,5)-trisphosphate [Ins(1,4,5)P3] by 10 sec that was followed by a prolonged increase in [Ca2+]i. Pretreatment of endothelial cells with the PLC inhibitor, 1-(6-((17β-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dion [(U73122) at 10 μM for 15 min], prevented the increases in Ins(1,4,5)P3 and [Ca2+]i induced by both BK and α-T. However, inhibition of PLC with U73122 or another PLC inhibitor, neomycin, did not prevent the increase in endothelial permeability induced by either agonist. In contrast, depletion of cellular protein kinase C (PKC) with phorbol-12-myristate 13-acetate (0.01 μM for 20 hr) increased both BK- and α-T-induced phosphoinositide turnover but inhibited the agonist-induced increase in permeability. A PKC inhibitor, staurosporine (5 μM) likewise inhibited the BK-induced increase in endothelial cell permeability to albumin. We conclude that increases in endothelial permeability induced by the inflammatory mediators, BK and thrombin, can occur independently of PLC activation and increased [Ca2+]i but that a PKC-dependent pathway is required for the permeability response. J. Cell. Physiol. 173:387–396, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

4.
Neutrophil inhibitory factor (NIF), a 41-kD glycoprotein isolated from the canine hookworm, inhibits CD11b/CD18-dependent neutrophil adhesion by binding to CD11b. We studied the effects of NIF on neutrophil-dependent endothelial cell injury using bovine pulmonary microvessel endothelial cells grown on microporous filters. Endothelial injury was determined as an increase in the transendothelial 125I-albumin clearance rate (a measure of transendothelial permeability). Layering of neutrophils on the endothelial cell monolayer (ratio of 10 neutrophils: 1 endothelial cell) followed by activation of neutrophils with 500 nM of phorbol 12-myristate 13-acetate (PMA) increased transendothelial permeability of albumin by 3- to 4-fold over control monolayers. Pretreatment of neutrophils with NIF at concentrations of 100 nM and above prevented the increased permeability. Pretreatment of neutrophils with the anti-CD18 monoclonal antibody (mAb) IB4 similarly prevented the increase of permeability. Pretreatment of neutrophils with OKM-1, a control isotype-matched mAb directed against an irrelevant epitope on CD11b mAb, did not affect the neutrophil-dependent increase in permeability. NIF reduced the adhesion of neutrophils at concentrations of ≥100 nM and this effect was abolished by an anti-NIF polyclonal Ab. However, NIF did not prevent the generation of superoxide anions following PMA-induced activation of neutrophils layered on endothelial cell. These findings indicate that NIF inhibits the neutrophil-dependent endothelial injury by preventing CD11b/CD18-mediated neutrophil adhesion, but without altering the oxidant generating capacity of neutrophils interacting with the endothelial cell monolayer. J. Cell. Physiol. 171:212–216, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

5.
We examined the effect of tumor necrosis factor alpha (TNF alpha) on the increase in pulmonary microvascular endothelial monolayer permeability induced by activated neutrophils (PMN). Layering of PMN onto endothelial monolayers followed by activation of PMN with phorbol 12-myristate 13-acetate (PMA) increased 125I-albumin clearance rate across the monolayers. Pretreatment of endothelial monolayers for 6 hr with TNF alpha (200 U/ml) potentiated the PMN-dependent increase in endothelial permeability, whereas 1 hr or 6 hr pretreatment of endothelial monolayers with 200 U/ml and 100 U/ml, respectively, TNF alpha did not enhance the response. Adherence of PMN to the endothelial cells was increased at 1 and 6 hr after TNF alpha (200 U/ml) treatment, but the adherence response was markedly greater following 6 hr of TNF alpha. The TNF alpha treatment of endothelial cells did not enhance neutrophil activation responses to PMA. Pretreatment of PMN with IB4, a MAb to the CD18 integrin, the common beta subunit of the adhesion proteins LFA-1, Mac-1, and p150,95 of PMN, reduced the increases in PMN adherence and the endothelial monolayer permeability induced by the 6 hr TNF alpha treatment. In contrast, pretreatment of PMN with OKM-1, a MAb to the CD11b epitope (alpha-subunit), had no effect on the adherence and the potentiation of the increase in permeability. The potentiation of the PMN-dependent permeability increase and enhanced endothelial adhesivity at 6 hr after TNF alpha priming of endothelial cells was dependent on protein synthesis. The results indicate that protein synthesis-dependent expression of an endothelial ligand for CD18 and resultant endothelial hyperadhesiveness potentiates the PMN-mediated increase in endothelial permeability after TNF alpha activation of endothelial cells. The priming of endothelial cells by TNF alpha may be a critical step in the mediation of endothelial injury.  相似文献   

6.
We compared the thrombin-activated responses in human umbilical vein endothelial cells (HUVECs) and a HUVEC-derived cell line, ECV304. Thrombin induced a 40-50% decrease in transendothelial monolayer electrical resistance and a twofold increase in 125I-albumin permeability in HUVECs, whereas it failed to alter the endothelial barrier function in ECV304 cells. Thrombin produced a brisk intracellular Ca2+ concentration transient and phosphorylation of 20-kDa myosin light chain in HUVECs but not in ECV304 cells. Thrombin-induced phosphoinositide hydrolysis was comparable in ECV304 cells and HUVECs, indicating the activation of thrombin receptors in both cell types. La3+ reduced both the thrombin-induced decrease in endothelial monolayer electrical resistance and the increase in 125I-albumin permeability in HUVECs. Because the absence of Ca2+ signaling could explain the impairment in the permeability response in ECV304 cells, we studied the effect of increasing intracellular Ca2+ concentration in ECV304 cells with thapsigargin. Exposure of ECV304 cells to thapsigargin caused decreased endothelial monolayer electrical resistance and increased 125I-albumin permeability. These results indicate that Ca2+ influx and activation of Ca2+-dependent signaling pathways are important determinants of the thrombin-induced increase in endothelial permeability.  相似文献   

7.
Summary

Reactive oxygen species (ROS) such as hydrogen peroxide (H2O2), superoxide anion (O2?), and hydroxyl radical (OH?) have been implicated in mediating various pathological events such as cancer, atherosclerosis, diabetes, ischemia, inflammatory diseases, and the aging process. The glutathione (GSH) redox cycle and antioxidant enzymes—superoxide dismutase (SOD) and catalase (CAT)—play an important role in scavenging ROS and preventing cell injury. Pycnogenol has been shown to protect endothelial cells against oxidant-induced injury. The present study determined the effects of pycnogenol on cellular metabolism of H2O2 and O2? and on glutathione-dependent and -independent antioxidant enzymes in bovine pulmonary artery endothelial cells (PAEC). Confluent monolayers of PAEC were incubated with pycnogenol, and oxidative stress was triggered by hypoxanthine and xanthine oxidase or H2O2. Pycnogenol caused a concentration-dependent enhancement of H2O2 and O2? clearance. It increased the intracellular GSH content and the activities of GSH peroxidase and GSH disulfide reductase. It also increased the activities of SOD and CAT. The results suggest that pycnogenol promotes a protective antioxidant state by upregulating important enzymatic and nonenzymatic oxidant scavenging systems.  相似文献   

8.
We examined the effects of alterations in endothelial cell volume on transendothelial albumin permeability. Studies were done using a confluent monolayer of bovine pulmonary artery endothelial cells grown on gelatinized microporous filters. When endothelial cells were exposed to media made hypertonic with 200 mM mannitol, the intracellular volume (measured with 14C-urea) decreased twofold and remained decreased over a 30-minute time-span, thus showing no significant regulatory volume increase (RVI) within this time period. When endothelial cells were exposed to hypotonic media, intracellular volume rapidly doubled within 2 minutes, and then decreased to baseline values within 10 minutes in spite of the sustained hypotonic environment, a process known as regulatory volume decrease (RVD). We also measured the transendothelial flux of 125I-albumin with the cells exposed to the same osmotic changes. We observed that only under hypertonic conditions was there a significant change in the 125I-albumin permeability. These results indicate that the pulmonary artery endothelial cells in culture alter their cell volume when exposed to variations in the osmotic environment, and also show RVD in response to hypotonic conditions but no RVI within 40 minutes after exposure to hypertonic conditions. The transendothelial albumin permeability did not change under hypotonic conditions but increased under hypertonic conditions. Thus, endothelial cells shrinkage may be an important mechanism of increased endothelial macromolecule permeability. These volume changes may occur in endothelial cells in situ and have a role in inducing alterations in the transendothelial permeability to proteins.  相似文献   

9.
While propolis is known to have abundant bioactive constituents and a variety of biological activities, it is not clear whether propolis has beneficial effects on high glucose-mediated vascular endothelial impairment. The aim of the present study was to investigate the potential protective effect of propolis extract against the acute vascular endothelial dysfunction resulting from exposure to high glucose load and to elucidate its underlying mechanism. Rat aortic rings were incubated with normal glucose (11 mM), high glucose (44 mM), or mannitol (44 mM) for 3 h with or without propolis extract (400 μg/ml). Contraction to phenylephrine (Phe, 10?9–10?5 M) and relaxation to acetylcholine (ACh, 10?9–10?5 M) and sodium nitroprusside (SNP, 10?9–10?5 M) were measured before and after incubation. Changes in malondialdehyde (MDA), reduced glutathione (GSH), and superoxide dismutase (SOD) were also measured. Phe-induced contraction was impaired by high glucose as the E max decreased from 138.87?±?11.43 to 103.65?±?11.5 %. In addition, ACh-induced relaxation was impaired as the E max decreased from 99.80?±?7.25 to 39.20?±?6.5 %. SNP-induced relaxation was not affected. Furthermore, high glucose decreased the levels of both SOD (by 6 U/ml) and GSH (by 68 %) and increased levels of MDA (by 85 %). Propolis extract prevented high glucose-induced impairment of Phe and ACh responses and increased both SOD and GSH, leading to decreased MDA levels. In conclusion, propolis can protect against high glucose-induced vascular dysfunction by reducing oxidative stress.  相似文献   

10.
We studied the effects of contact of bovine pulmonary artery endothelial cell monolayers with fibrin on the endothelial barrier function. Fibrin formed by clotting purified fibrinogen (0.5 to 3.0 mg/ml) with alpha-thrombin (1 U/ml) was added to endothelial monolayers and permeability measurements were made after fibrin removal. Fibrin incubation for 3 hours resulted in 2- to 5-fold increases in transendothelial 125I-albumin permeability. Permeability returned to baseline value within 3 hours after fibrin removal. Direct contact with fibrin was necessary for the response, since fibrin separated from the endothelium did not increase permeability. Contact with agarose (2 mg/ml) or fibrinogen (0.5 to 3.0 mg/ml) also did not increase endothelial permeability. Transmission electron microscopic examination indicated normal appearance of interendothelial junctions at a time when albumin permeability was increased and no overt evidence of endothelial injury. Incubation of fibrin with endothelial monolayers at 4 degrees C prevented the increase in albumin permeability. We examined the possibility that increased albumin transcytosis was responsible for fibrin's effect using 14C-sucrose (Mr = 342D), a lipid insoluble tracer. Fibrin increased sucrose flux by 1.5-fold compared to 2- to 5-fold increases in albumin flux. The results indicate that fibrin contact with the endothelial cell increases endothelial permeability. The effect of fibrin may involve activation of temperature-sensitive bulk phase transcytosis of albumin.  相似文献   

11.
《Biomarkers》2013,18(7):473-479
Inhaled endotoxin (lipopolysaccharide, LPS) initiates an inflammatory response and leads to the expression of CR3 (CD11b/CD18) receptors on polymorphonuclear leukocytes (PMNs). We determined if PMN activation in nasal lavage fluid (NLF) is a possible biomarker of occupational endotoxin exposure. Seven subjects exposed to endotoxin provided NLF samples that were split into three aliquots (negative control – 1?M nicotinamide; sham; positive control – 11 ηg of exogenous LPS) and PMN activation was measured using a chemiluminometer. Differences in mean PMN activation were apparent, negative control: 548?±?15.65 RLU 100 μl?1; sham: 11469?±?2582 RLU 100 μl?1; positive control: 42026?±?16659 RLU 100 μl (n?=?7; p <0.05). This technique shows promise as a diagnostic method for measuring upper airway LPS exposure.  相似文献   

12.
The effects of phorbol esters and synthetic diglycerides on thrombin- and histamine-stimulated increases in inositol trisphosphate (IP3) and cytosolic free calcium ([Ca2+]i) were studied in cultured human umbilical vein endothelial cells (HEC). Thrombin (0.003–3.0 U/ml) and histamine (10?7–10?4 M) induced rapid increases in [Ca2+]i in suspended cells as monitored with the fluorescent calcium indicator fura-2. In [3H]myoinositol-labeled cells, both thrombin (3 U/ml)- and histamine (10?4 M)-induced IP3 increases (195% ± 6% and 98% ± 4%, respectively) occurred in less than 15 sec and were temporally correlated with [Ca2+]i increases. Brief incubations (5–60 min) with different protein kinase C activators [4-β-phorbol 12-myristate 13-acetate (1–100 nM), mezerein (100 nM), and sn-1,2 dioctanoylglycerol (0.1–10 μM)] attenuated agonist-induced increases in [Ca2+]i. These compounds also inhibited thrombin- and histaminestimulated IP3 formation, thus suggesting a tight coupling between phospholipase C activation and calcium flux in cultured HEC. Overall, these observations suggest that the pathway linking receptors to phospholipase C stimulation in human endothelial cells is sensitive to protein kinase C activation.  相似文献   

13.
Ghrelin is thought to directly exert a protective effect on the cardiovascular system, specifically by promoting vascular endothelial cell function. Our study demonstrates the ability of ghrelin to promote rat CMEC (cardiac microvascular endothelial cell) proliferation, migration and NO (nitric oxide) secretion. CMECs were isolated from left ventricle of adult male Sprague—Dawley rat by enzyme digestion and maintained in endothelial cell medium. Dil‐ac‐LDL (1,1′‐dioctadecyl‐3,3,3′,3′‐ tetramethylindocarbocyanine‐labelled acetylated low‐density lipoprotein) intake assays were used to identify CMECs. Cells were split into five groups and treated with varying concentrations of ghrelin as follows: one control non‐treated group; three ghrelin dosage groups (1×10?9, 1×10?8, 1×10?7 mol/l) and one ghrelin+PI3K inhibitor group (1×10?7 mol/l ghrelin+20 μmol/l LY294002). After 24 h treatment, cell proliferation capability was measured by MTT [3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyl‐2H‐tetrazolium bromide] assay and Western blot for PCNA (proliferating cell nuclear antigen) protein expression. Migration of CMECs was detected by transwell assays, and NO secretion of CMECs was measured via nitrate reduction. Protein expression of AKT and phosphorylated AKT in CMECs was measured by Western blot after exposure to various concentrations of ghrelin and the PI3K inhibitor LY294002. Our results indicate that ghrelin significantly enhanced cell growth at concentrations of 10?8 mol/l (0.271±0.041 compared with 0.199±0.021, P=0.03) and 10?7 mol/l (0.296±0.039 compared with 0.199±0.021, P<0.01). However, addition of the PI3K/AKT inhibitor LY294002 inhibited the ghrelin‐mediated enhancement in cell proliferation (0.227±0.042 compared with 0.199±0.021, P=0.15). At a concentration between 10?8 and 10?7 mol/l, ghrelin caused a significant increase in the number of migrated cells compared with the control group (126±9 compared with 98±7, P=0.02; 142±6 compared with 98±7, P<0.01), whereas no such change could be observed in the presence of 20 μmol/l of the PI3K/Akt inhibitor LY294002 (103±7 compared with 98±7, P=0.32). Ghrelin treatment significantly enhanced NO production in a dose‐dependent fashion compared with the untreated control group [(39.93±2.12) μmol/l compared with (30.27±2.71) μmol/l, P=0.02; (56.80±1.98) μmol/l compared with (30.27±2.71) μmol/l, P<0.01]. However, pretreatment with 20 μmol/l LY294002 inhibited the ghrelin‐stimulated increase in NO secretion [(28.97±1.64) μmol/l compared with (30.27±2.71) μmol/l, P=0.37]. In summary, we have found that ghrelin treatment promotes the proliferation, migration and NO secretion of CMECs through activation of PI3K/AKT signalling pathway.  相似文献   

14.
15.
Glutathione belongs to a vital intra‐ and extra‐cellular protective antioxidant and is found almost exclusively in its reduced form. The ratio between its reduced and oxidized within cells is often used as a marker of cellular toxicity. The objectives of the study were to (i) determine both the reduced (GSH) and oxidized glutathione (GSSG) and cysteine (Cys) in the sperm of the Acipenser baerii and Acipenser ruthenus, as well as in Perca fluviatilis and Sander lucioperca, and (ii) to demonstrate the differences in concentration levels between representatives of acipenseriform and teleost species. High performance liquid chromatography with electrochemical detection was employed. The average content of the thiols determined in the sperm samples were as follows: Acipenser baerii (cysteine 55 ± 8 μg ml?1; GSH 126 ± 19 μg ml?1; GSSG 49 ± 7 μg ml?1), Acipenser ruthenus (cysteine 62 ± 9 μg ml?1; GSH 768 ± 115 μg ml?1; GSSG 180 ± 16 μg ml?1), Sander lucioperca (cysteine 251 ± 38 μg ml?1; GSH 185 ± 28 μg ml?1; GSSG 93 ± 14 μg ml?1), Perca fluviatilis (cysteine 281 ± 42 μg ml?1; GSH 496 ± 74 μg ml?1; GSSG 138 ± 21 μg ml?1). Based on the results obtained it can be concluded that this method is sensitive and selective for the determination of these compounds in real samples. Results revealed differences in cysteine content between species of the two systematic categories but also showed that ratios between GSH and GSSG can vary between species while potentially predict oxidative stress in fish sperm.  相似文献   

16.
Summary An essential component of anyin vitro model for endothelial permeability is a confluent cell monolayer. The model reported here utilizes primary human umbilical vein endothelial cells (HUVEC) cultured on recently developed polyethylene terephthalate micropore membranes. Using a modification of the Wright-Giemsa stain, confluent HUVEC monolayers grown on micropore membranes were routinely assessed using light microscopy. Determination of confluence using this method was confirmed by scanning electron microscopy. Transendothelial electrical resistance of HUVEC monolayers averaged 27.9±11.4 Ω · cm2, 10 to 21% higher than literature values. Studies characterizing the permeability of the endothelial cell monolayer to3H-inulin demonstrated a linear relationship between the luminal concentration of3H-inulin and its flux across HUVEC monolayers. The slope of the flux versus concentration plot, which represents endothelial clearance of3H-inulin, was 2.01±0.076 × 10−4 ml/min (r2=.9957). The permeability coefficient for the HUVEC monolayer-micropore membrane barrier was 3.17±0.427×10−6 cm/s with a calculated permeability coefficient of the HUVEC monolayer alone of 4.07±0.617×10−6 cm/s. The HUVEC monolayer reduced the permeability of the micropore membrane alone to3H-inulin (1.43±0.445×10−5 cm/s) by 78%. Evans blue dye-labeled bovine serum albumin could not be detected on the abluminal side without disruption of the HUVEC monolayer. These results demonstrate a model for endothelial permeability that can be extensively assessed for monolayer integrity by direct visualization, transendothelial electrical resistance, and the permeability of indicator macromolecules.  相似文献   

17.
High plasma levels of linoleic acid (18:2) may injure endothelial cells, resulting in decreased barrier function of the vascular endothelium. The effects of linoleic acid on endothelial barrier function (transendothelial movement of albumin), membrane-bound enzyme activities, and possible autooxidation of linoleic acid under experimental conditions were studied. The exposure of endothelial monolayers to 18:2 for 24 hr at 60, 90, and 120 μM. fatty acid concentrations caused a significant increase in transendothelial movement of albumin, with maximum albumin transfer at 90 μM. Fatty acid treatment resulted in the increased appearance of cytosolic lipid droplets. Activities of the membrane-bound enzymes, angiotensin-converting enzyme (ACE), and Ca2+-ATPase increased steadily with increasing time of cell exposure to 90 μM 18:2, reaching significance at 24 hr. Treatment of endothelial cultures with up to 120 μM 18:2 did not cause cytotoxicity, as evidenced by a nonsignificant change in cellular release of [3H]-adenine. Incubation of 18:2-supplemented serum-containing culture media with 1000 μM 18:2 at 37°C for up to 48 hr did not result in formation of autooxidation products. These results suggest that 18:2 itself, and not its oxidation products, plays a major role in disrupting endothelial barrier function.  相似文献   

18.
The effects of ionizing irradiation (0, 600, 1,500, or 3,000 rads) on the permeability of pulmonary endothelial monolayers to albumin were studied. Pulmonary endothelial cells were grown to confluence on gelatin-coated polycarbonate filters, placed in serum-free medium, and exposed to a 60Co source. The monolayers were placed in modified flux chambers 24 hours after irradiation; 125I-albumin was added to the upper well, and both the upper and lower wells were serially sampled over 4 hours. The amount of albumin transferred from the upper well/hour over the period of steady-state clearance (90-240 min after addition of 125I-albumin) was 2.8 +/- 0.2% in control monolayers and was increased in monolayers exposed to 1,500 or 3,000 rads (increase of 63 +/- 10% and 61 +/- 10%, respectively, P less than 0.01). No increase was found in monolayers exposed to 600 rads. The increases in endothelial albumin transfer rates were associated with morphologic evidence of monolayer disruption and endothelial injury which paralleled the changes in albumin permeability. Dose-dependent alterations in endothelial actin filament organization were also found. Incubation of the monolayers exposed to 3,000 rads with medium supplemented with 10% fetal calf serum for 24 hours resulted in normalization of albumin permeability, improvement in morphologic appearance of the monolayers, and reorganization of the actin filament structure. These studies demonstrate that ionizing radiation is an active principle in the reversible disorganization of cultured pulmonary endothelial cell monolayers without the need of other cell types or serum components.  相似文献   

19.
Atrial natriuretic peptide (ANP) is a fluid-regulating peptide hormone that promotes vasorelaxation, natriuresis, and diuresis. The mechanisms for the release of ANP and for its clearance from the circulation play important roles in modulating its biological effects. Recently, we have reported that the cell surface of an endothelial cell line, CPA47, could degrade 125I-ANP in the presence of EDTA. In this study, we have characterized this degradation of 125I-ANP. The kinetics of ANP degradation by the surface of CPA47 cells were first order, with a Km of 320 ± 60 nM and Vmax of 35 ± 14 pmol of ANP degraded/10 min/105 cells at pH 7.4. ANP is degraded by the surface of CPA47 cells over a broad pH range from 7.0–8.5. Potato carboxypeptidase inhibitor and bestatin inhibited 125I-ANP degradation, suggesting that this degradative activity on the surface of CPA47 cells has exopeptidase characteristics. The selectivity of CPA47 cell-surface degradation of ANP was demonstrated when 125I-ANP degradation was inhibited in the presence of neuropeptide Y and angiotensin I and II but not bradykinin, bombesin, endothelin-1, or substance P. The C-terminal amino acids phe26 and tyr28 were deduced to be important for ANP interaction with the cell-surface peptidase(s) based on comparison of the IC50 of various ANP analogues and other natriuretic peptides for the inhibition of ANP degradation. These data suggest that a newly characterized divalent cation-independent exopeptidase(s) that selectively recognizes ANP and some other vasoactive peptides exists on the surface of endothelial cells.  相似文献   

20.
Vasculotropin/vascular endothelial cell growth factor (VAS/VEGF) is a newly purified growth factor with a unique specificity for vascular endothelial cells. We have investigated the interactions of VAS/VEGF with human umbilical vein endothelial cells (HUVE cells). 125I-VAS/VEGF was bound to HUVE cells in a saturable manner with a half-maximum binding at 2.8 ng/ml. Scatchard analysis did show two classes of high-affinity binding sites. The first class displayed a dissociation constant of 9 pM with 500 sites/cell. The dissociation constant and the number of binding sites of the second binding class were variable for different HUVE cell cultures (KD = 179 ± 101 pM, 5,850 ± 2,950 sites/cell). Half-maximal inhibition of 125I-VAS/VEGF occurred with a threefold excess of unlabeled ligand. Basic fibroblast growth factor (bFGF) and heparin did not compete with 125I-VAS/VEGF binding. In contrast, suramin and protamin sulfate completely displaced 125I-VAS/VEGF binding from HUVE cells. VAS/VEGF was shown to be internalized in HUVE cells. Maximum internalization (55% of total cell-associated radioactivity) was observed after 30 min. 125I-VAS/VEGF was completely degraded 2–3 hr after binding. At 3 hr, the trichloroacetic acid (TCA)-soluble radioactivity accumulated in the medium was 60% of the total radioactivity released by HUVE cells. No degradation fragment of 125I-VAS/VEGF was observed. Chloroquine completely inhibited degradation. VAS/VEGF was able to induce angiogenesis in vitro in HUVE cells. However, it did not significantly modulate urokinase-type plasminogen activator (u-PA), tissue-type plasminogen activator (t-PA), plasminogen activator inhibitor (PAI-1), and tissue factor (TF). Prostacyclin production was only stimulated at very high VAS/VEGF concentrations. Taken together, these results indicate that VAS/VEGF might be a potent inducer of neovascularization resulting from a direct interaction with endothelial cells. The angiogenic activity seems to be independent of the plasminogen activator or inhibitor system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号