首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
To determine whether the alterations in ventricular loading and myocyte cellular contractile performance produced by short-term coronary artery constriction were associated with the activation of genes implicated in myocyte DNA synthesis including changes in the expression of insulin-like growth factor-1 (IGF1) and insulin-like growth factor-1 receptors (IGF1-R), nonocclusive coronary artery narrowing (CAN) was induced in rats. Animals were examined 2 and 7 days after coronary constriction. Following the in vivo documentation of severe impairment of ventricular performance, estimations of single-cell mechanics in vitro showed that peak shortening was decreased in left and right myocytes of coronary stenosed rats. Moreover, time to peak shortening was prolonged whereas velocity of shortening was decreased. These defects in myocyte contractility were accompanied by increases in cell length and width, indicative of myocyte enlargement biventricularly. In addition, CAN led to an enhanced expression of proliferating cell nuclear antigen (PCNA) and histone-H3 genes in myocytes at 2 and 7 days after surgery. PCNA protein was also detected in these stressed cells. These molecular responses were associated with increases in mRNA for IGF1 and IGF1-R in combination with enhanced DNA synthesis and appearance of myocyte nuclear mitotic division. In conclusion, cardiac myocytes may respond to the elevation in wall and myocyte stress by activating an IGF1-IGF1-R autocrine system which may modulate the induction of late growth related genes which are essential for DNA replication and myocyte cellular hyperplasia.  相似文献   

3.
Ten successive3H-thymidine injections at 12h intervals (which is a little shorter than the adult heart myocyte S phase) were performed for labeling of the majority of cardiac myocytes synthesizing DNA at any moment of such a 5 days experiment. In the hearts of control unoperated rats ten-fold repeated3H-thymidine administration results in labeling of 2–3% myocyte nuclei, in both atria, ca. 1% of the specialized muscle cell nuclei in the atrioventricular conductive system, only occasional muscle cells being labeled in the working ventricular myocardium. When ten successive3H-thymidine injections were made between the 5th and 10th days following extended left ventricle infarction, the percentage of labeled myocytes in left and right atria reaches, respectively, 51.4±4.4% and 34.7±3.6%. In the left ventricle labeled muscle nuclei are accumulated predominantly (9.3±2.1%) within the thin subepicardial layer of the surviving myofibers, while myofibers located in other perinecrotic areas contained only 1.3±0.5% labeled muscle nuclei. The number of these nuclei in the atrioventricular system remains at the level observed in control hearts (up to 2%), approaching closely the zero level in the working myocardium of both the ventricles and interventricular septum, located at the considerable distance from the infarcted region. When similar experiments with ten-fold repeated3H-thymidine injections were performed between 15th and 20th post-infarction days the number of labeled myocyte nuclei was found to be reduced 4–6 times in atria, being changed rather a little in the perinecrotic ventricular myocardium and in the specialized myocardium of the atrioventricular system. Some possible reasons of the observed differences in the proliferative behaviour of cardiac myocytes in terms of their topology and/or specialization are discussed  相似文献   

4.
As a result of 30 times repeated injections of 3H-thymidine (3HTdr) to neonate rats, beginning from days 13 or 21 post partum, ca. 20 and 10% of myonuclei in the left and right atria were labeled, respectively, while in both ventricles cumulative labeling of myocytes was nearly ten times lower. In rats of the same age with experimental infarction of the left ventricular myocardium the number of myonuclei labeled after 30-fold 3HTdr injections increased in atria up to 40-50%, in perinecrotic myofibers of the left ventricles up to 8-11%, and in myofibers of the left and right ventricle located far from the necrotic foci up to 3-4 and 2-3%, respectively. In some of rats subendocardial and/or subepicardial layers of the surviving left ventricular myocardium contained up to 15-35% of labeled myonuclei. Thus, in neonatal rats the extent of DNA synthesis reactivation in the nuclei of cardiomyocytes, the majority of which have recently completed normal ontogenetic proliferation, is, on the whole, of the same order as found in similar experiments on adult rats (Rumiantsev, Kassem, 1976; Oberpriller et al., 1984). However, still immature ventricular myocytes of neonatal rats resume mitotic cycle easier than those of adult animals which is evidenced not only by higher numbers of 3HTdr labeled myonuclei in subepicardial and subendocardial ventricular myocardia of some rats, but even more by reactivation of DNA synthesis in a limited fraction (2-3%) of the whole population of non-perinecrotic myocytes in both ventricles. Besides, reactive proliferation of cardiomyocytes in the atria of neonate rats, unlike in adults, starts on day 3 rather than on day 5 after infarction is induced. In the atria of neonatal rats polyploidization of myonuclei at later postinfarction stages is less pronounced than in adult rats which may be accounted for by formation of individual daughter nuclei during acytokinetic mitoses or, more seldom, by completion of cytotomy.  相似文献   

5.
Right and left ventricular myocytes originate from different cellular progenitors; however, it is unknown whether these cells differ in their response to endotoxemia. We hypothesized that 1) the percentage of endotoxemic functional depression within the right ventricle (RV) would be smaller than that of the left ventricle; and 2) that better RV function would correlate with lower levels of right ventricular TNF production. Adult Sprague-Dawley rats were divided into right and left control and endotoxin groups. Controls received vehicle, while endotoxin groups received LPS at 20 mg/kg ip. Hearts were excised either 2 or 6 h after injection. Hearts excised at 2 h were assayed for TNF, IL-6, TNF receptor 1 (TNFR1), TNFR2, and via ELISA, while hearts excised at 6 h were assayed via the Langendorff model. The percentage of cardiac functional depression, exhibited as developed pressure, contractility, and rate of relaxation (expressed as a percentage of control) was significantly smaller in right ventricles compared with left ventricles following endotoxin exposure. Tissue levels of TNF were significantly elevated in both right and left ventricles 2 h after endotoxin exposure, and right ventricular endotoxin groups expressed higher levels of TNF compared with their left ventricular counterparts. No significant differences in IL-6, TNFR1, or TNFR2 levels were noted between endotoxin-exposed ventricles. This is the first study to demonstrate that right and left ventricular function differs after endotoxin exposure.  相似文献   

6.
We have performed cytophotometry for DNA in isolated myocytes of the left ventricle from 16 men, aged 19–39 years, who died from various non-cardiac or pulmonary causes. The mean ploidy of myocytes varied from 3.2–3.9 c to 6.6–7.3 c in different layers of the anterior wall of the left ventricle (where c is the haploid DNA content measured by cytophotometry in Feulgenstained preparations). There was no correlation between the layers. The percentage of binuclear cells varied from 25 to 86% and correlated in every layer with the mean ploidy value of the whole myocyte population. Approximate calculation of total ploidy revealed low values in the ventricles of some individuals, and high values in others. Averaging the values for all the hearts studied obscures this variation. Mean myocyte ploidy in different layers of the anterior wall was similar: in the external layer it was 5.1±0.3 c, in the middle layer 5.5±0.3 c and in the inner layer 4.8±0.4 c. The mean percentage of binuclear myocytes in these three layers was also similar, being 61±3%, 63±4% and 54±5%, respectively. Myocyte ploidy in tissue from the posterior wall of the left ventricle also varied, but was always higher than for the same layer of the anterior wall in the same ventricle. We propose that high or low myocyte ploidy, as well as different proportions of mono- and binucleate cells, can be a factor affecting the course and result of cardiac pathology in the absence of any changes of myocyte genome determined during early ontogenesis and representing a stable characteristic of the individual.  相似文献   

7.
We have performed cytophotometry for DNA in isolated myocytes of the left ventricle from 16 men, aged 19-39 years, who died from various non-cardiac or pulmonary causes. The mean ploidy of myocytes varied from 3.2-3.9 c to 6.6-7.3 c in different layers of the anterior wall of the left ventricle (where c is the haploid DNA content measured by cytophotometry in Feulgen-stained preparations). There was no correlation between the layers. The percentage of binuclear cells varied from 25 to 86% and correlated in every layer with the mean ploidy value of the whole myocyte population. Approximate calculation of total ploidy revealed low values in the ventricles of some individuals, and high values in others. Averaging the values for all the hearts studied obscures this variation. Mean myocyte ploidy in different layers of the anterior wall was similar: in the external layer it was 5.1 +/- 0.3 c, in the middle layer 5.5 +/- 0.3 c and in the inner layer 4.8 +/- 0.4 c. The mean percentage of binuclear myocytes in these three layers was also similar, being 61 +/- 3%, 63 +/- 4% and 54 +/- 5%, respectively. Myocyte ploidy in tissue from the posterior wall of the left ventricle also varied, but was always higher than for the same layer of the anterior wall in the same ventricle. We propose that high or low myocyte ploidy, as well as different proportions of mono- and binucleate cells, can be a factor affecting the course and result of cardiac pathology in the absence of any changes of myocyte genome determined during early ontogenesis and representing a stable characteristic of the individual.  相似文献   

8.
The DNA synthesis has been studied in the conductive system (CS) myocytes, compared to that in atrial and ventricular myocytes: 1) in the left ventricular myocardial infarction induced in two- and three-week-old and adult rats, 2) after isoproterenol injections to adult rats and mice, and 3) in the hypertrophied human heart. The extent of DNA synthesis reactivation was evaluated by the cumulative labeling indices in experiments with multiple 3HTdR injections to rats and mice. In the human cardiac myocyte nuclei, the DNA content was determined by the Feulgen-cytophotometry. The difference between the control and experimental mean values of the labeling indices for CS myocyte nuclei was statistically significant only for atrioventricular part of the CS in the infarcted hearts of adult rats. In the human heart CS the ability of myocytes to polyploidization varies from one cell type to another, the lowest being in nodal cells.  相似文献   

9.
The left atrium of young rats has previously been demonstrated to respond with DNA synthesis and binucleation 11 days after left ventricular infarction. This investigation was designed to examine the hypertrophic response of the left atrial myocyte of the rat at 20 and 60 days after ventricular infarction. Male Sprague-Dawley rats were subjected to left coronary artery ligation (CAL) or sham operation. Following enzymatic separation, left atrial myocytes were examined at 20 and 60 days postoperation for number of nuclei and cellular dimensions (cell length, width and area, and nuclear area). Results demonstrated that the level of binucleation at 20 days (77.3%) and 60 days (71.3%) was nearly twice that observed in sham-operated animals, which were 33.1% binucleated at 20 days and 43.5% binucleated at 60 days. In both mononucleated and binucleated myocytes, the mean lengths, widths, and cell areas from CAL hearts were significantly greater than those of corresponding sham-operated animals. In all cases, these values were larger in binucleated myocytes than in mononucleated cells. The mean area of CAL cells was approximately twice that of sham-operated myocytes. With regard to mean lengths and widths, although both were greater in the CAL animals, there was a decrease in length and increase in width between 20 and 60 days in the CAL group. Mean nuclear areas were significantly greater in CAL myocytes than in those from the sham-operated group. These increases in nuclear number and cellular dimensions of the atrial myocyte are prominent features of the response to the stress imposed by left ventricular infarction.  相似文献   

10.
The DNA-ploidy of the left and right ventricular wall in 48 patients aged 80-98 years was investigated by scanning cytophotometry. The great variation in nuclear ploidy previously described in the heart muscle was shown to persist during the ninth decade. In addition, the percentage of nuclei with more than 2C DNA content in both ventricles correlated with the degree of coronary stenosis, and in the right ventricle with the presence and severity of pulmonary emphysema, and with the duration of digitalis therapy where this drug was given.  相似文献   

11.
Assuming truncated ellipsoidal geometry for the right and left ventricles, a model is developed for the myocardium enabling biventricular mechanical behavior to be studied. Employing pressure-volume data taken from normal dog hearts and from hearts in which the pulmonary artery has been banded over periods of 2–40 weeks, it is shown that: (a) right ventricular wall stresses are higher than left ventricular stresses; (b) right ventricular wall stress increases initially to a maximum after 3–4 weeks followed by a decline to normal and even subnormal levels, attaining a minimum value at 32–33 weeks; (c) left ventricular stresses behave in a similar manner, attaining their maximum and minimum levels after 7–8 weeks and 32–33 weeks respectively. These results suggest that surgical or medical therapy in patients with hypertrophied ventricles might be more appropriate during the period of wall stress reduction.  相似文献   

12.
After injections of 3H thymidine or 3H proline, the physiological hearth growth in mice of the CBA strain belonging to various age groups was studied by means of autoradiography. The most important results are the following: The duration of the postnatal growth period is determined by the degree of maturity of the heart at the time of birth. It varies from species to species. 2. In the perinatal developmental phase the percentage of the 3H thymidine-labelled connective-tissue nuclei is higher than that of the muscle nuclei. In this period the connective supporting tissue is considerably strengthened. 3. During the postnatal developmental phase the DNA synthesis in the muscle nuclei aids the preparation of mitoses. After the postnatal duplication of cells the mitotic genes are repressed. The further growth is effected by the increase in weight of the individual fibres. 4. The process of growth is substantially determined by the intracardiac or intramyocardiac pressure and thus by the extension of the muscle fibre. Prior to birth the percentage of the labelled nuclei of muscle cells and connective tissue cells in the right ventricle was higher than in the left ventricular wall. In the postnatal period we observed a shift in the percentage of the labelled cells towards the left ventricular wall. The basis and the median section of the ventricular wall. The basis and the median section of the ventricular wall contain a higher percentage of labelled cells than does the apex cordis. During the first two weeks of live most of the DNA synthesising nuclei of muscle and connective tissue cells are localized in the two inner muscle shells. Later in life no clear distinctions can be demonstrated between the individual ventricular layers.  相似文献   

13.
OBJECTIVE: To investigate how the morphological and physiological properties of single myocytes isolated from the hypertrophied, failing left ventricles (LV) differ from those of normal or hypertrophied not failing ventricles. METHOD: Single myocytes were isolated separately from right (RV) and left ventricles (LV) of male spontaneously hypertensive rats (SHR) or Wistar-Kyoto (WKY) rats at the age of 6 and 12 months and of SHRs which developed or not developed heart failure at the age of 20-24 months. We measured cells dimensions, range and kinetics of electrically stimulated or initiated by caffeine contractions and Ca2+ transients, and investigated the response of cells to thapsigargin. RESULTS: The transversal dimensions of the LV myocytes of 6 months old SHRs showed approximately 20% increase with respect to transversal dimensions of their RV myocytes and LV and RV myocytes of WKY rats. The difference did not change with progressing age and in the heart failure. The LV myocytes of 6 or 12 months old SHRs showed slowed kinetics of the Ca2+ transients and of contraction and relaxation and decreased contractile response to 2 s superfusion with 15 mM caffeine preceded by 5 mM Ni2+ used as an index of the sarcoplasmic reticulum (SR) Ca2+ content. Despite of this the range of shortening and relative contribution of the SR to contraction (assessed by measuring of the residual contractile response to electrical stimulation in cells poisoned with thapsigargin) or relaxation (assessed by calculation of the ratio of rate constants of the electrically stimulated and stimulated by 30 s superfusion with caffeine Ca2+ transients) was not altered in the hypertrophied myocytes. Properties of the LV myocytes of the 20-24 old SHRs with or without heart failure did not differ from those of LV myocytes of younger SHRs. The contractile response to caffeine of their RV myocytes dropped to the level of that in the LV myocytes. CONCLUSION: Our results suggest that transition from the compensated hypertrophy to the heart failure in 20-24 months old SHRs did not result from the further changes in properties of the surviving myocytes. Data from literature suggest that myocyte apoptosis and remodeling of the extramyocyte space is the more likely reason.  相似文献   

14.
Thyroid hormones (THs) play a pivotal role in cardiac homeostasis. TH imbalances alter cardiac performance and ultimately cause cardiac dysfunction. Although short-term hyperthyroidism typically leads to heightened left ventricular (LV) contractility and improved hemodynamic parameters, chronic hyperthyroidism is associated with deleterious cardiac consequences including increased risk of arrhythmia, impaired cardiac reserve and exercise capacity, myocardial remodeling, and occasionally heart failure. To evaluate the long-term consequences of chronic hyperthyroidism on LV remodeling and function, we examined LV isolated myocyte function, chamber function, and whole tissue remodeling in a hamster model. Three-month-old F1b hamsters were randomized to control or 10 months TH treatment (0.1% grade I desiccated TH). LV chamber remodeling and function was assessed by echocardiography at 1, 2, 4, 6, 8, and 10 months of treatment. After 10 months, terminal cardiac function was assessed by echocardiography and LV hemodynamics. Hyperthyroid hamsters exhibited significant cardiac hypertrophy and deleterious cardiac remodeling characterized by myocyte lengthening, chamber dilatation, decreased relative wall thickness, increased wall stress, and increased LV interstitial fibrotic deposition. Importantly, hyperthyroid hamsters demonstrated significant LV systolic and diastolic dysfunction. Despite the aforementioned remodeling and global cardiac decline, individual isolated cardiac myocytes from chronically hyperthyroid hamsters had enhanced function when compared with myocytes from untreated age-matched controls. Thus, it appears that long-term hyperthyroidism may impair global LV function, at least in part by increasing interstitial ventricular fibrosis, in spite of normal or enhanced intrinsic cardiomyocyte function.  相似文献   

15.
We utilized Wistar rats with monocrotaline (MCT)-induced right ventricular hypertrophy (RVH) in order to evaluate the T-type Ca2+ channel current (ICaT) for myocardial contraction. RT-PCR provides that mRNA for T-type Ca2+ channel alpha1-subunits in hypertrophied myocytes was significantly higher than those in control rats (alpha1G; 264+/-36%, alpha1H; 191+/-34%; P<0.05). By whole-cell patch-clamp study, ICaT was recorded only in hypertrophied myocytes but not in control myocytes. The application of 50 nmol/L nifedipine reduced the twitch tension of the right ventricles equally in the control and RVH rats. On the other hand, 0.5 micromol/L mibefradil, a T-type Ca2+ channel blocker, strongly inhibited the twitch tension of the RVH muscle (control 6.4+/-0.8% vs. RVH 20.0+/-2.3% at 5 Hz; P<0.01). In conclusion, our results indicate the functional expression of T-type Ca2+ channels in the hypertrophied heart and their contribution to the remodeling of excitation-contraction coupling in the cardiac myocyte.  相似文献   

16.
Fetal right ventricular dominance of flow and arterial pressure sensitivity were recently recognized but controversial findings. We investigated ventricular volumes, weights and dimensions in order to understand if there were anatomic differences between the ventricles which might explain these differential functional findings in the fetal sheep. Forty-four near term lambs and their hearts were weighed. Right and left ventricular free wall weights were not different. Volumes were measured by generating in vitro pressure-volume relations and by casting the two ventricles after fixation at equal, physiologic pressures. Right ventricular volume was greater than left ventricular volume by both techniques. Ventricular interaction and a restraining effect of the pericardium were present. Measurements of the fixed ventricles and their casts revealed the following: left ventricular wall thickness was slightly greater than right ventricular wall thickness; lateral ventricular diameters were not different but anteroposterior ventricular diameters were much greater in the right than left ventricle. Because of these findings, the right ventricular circumferential radii of curvature were greater than for the left ventricle as was the radius to wall thickness ratio. Greater right ventricular volume and radius to wall thickness ratio may be important factors in right ventricular flow dominance and greater sensitivity to arterial pressure.  相似文献   

17.
The amount of work the heart can perform during ejection is governed by the inherent contractile properties of individual myocytes. One way to alter contractile properties is to alter contractile proteins such as myosin heavy chain (MyHC), which is known to demonstrate isoform plasticity in response to disease states. The purpose of this study was to examine myocyte functionality over the complete range of MyHC expression in heart, from 100% alpha-MyHC to 100% beta-MyHC, using euthyroid and hypothyroid rats. Peak power output in skinned cardiac myocytes decreased as a nearly linear function of beta-MyHC expression during maximal (r2 = 0.85, n = 44 myocyte preparations) and submaximal (r2 = 0.82, n = 31 myocyte preparations) Ca2+ activation. To determine whether single myocyte function translated to the level of the whole heart, power output was measured in working heart preparations expressing varied ratios of MyHC. Left ventricular power output of isolated working heart preparations also decreased as a linear function of increasing beta-MyHC expression (r2 = 0.82, n = 34 myocyte preparations). These results demonstrate that power output is highly dependent on MyHC expression in single myocytes, and this translates to the performance of working left ventricles.  相似文献   

18.
Atrial natriuretic factor (ANF) is present in high concentration in atria but in very low concentration in the ventricles. Under conditions of haemodynamic overload ventricular gene expression may become activated, but it is not clear if ventricular ANF can be released through a regulated or constitutive pathway. The purpose of this study was to determine whether basal and stimulated release of ANF are increased in perinephritic rabbits with mild hypertension. Six rabbits were rendered hypertensive by wrapping both kidneys in cellophane, and six sham-operated rabbits were used as controls. Eight weeks after renal wrapping, mean arterial pressure was approximately 20 mmHg higher in the experimental group. After anaesthesia, the renal-wrapped group had a higher vascular resistance. Right and left atrial wall stress was measured using sonomicrometry. Volume expansion by 30% of blood volume, using donor blood, caused a small increase in right and left atrial diastolic and systolic wall stress but did not significantly increase plasma ANF. Pacing the heart at 6 Hz caused increases in systolic but not diastolic wall stress and caused a significant increase in plasma ANF; the increase was larger after volume expansion. There were no significant differences between the responses of the experimental and control groups. It is concluded that mild hypertension, in the rabbit, does not lead to changes in atrial wall stress or either basal or stimulated release of ANF.  相似文献   

19.
A myocyte system that senses and responds to mechanical inputs might be activated by any number of features of the time-varying length or force signals experienced by the myocytes. We therefore characterized left ventricular volume and wall stress signals during early volume overload with high spatial and temporal resolution. Left ventricular pressure and volume were measured in open-chest isoflurane-anesthetized male Sprague-Dawley rats 4 and 7 days after surgical creation of an infrarenal arteriovenous fistula or sham operation. Mean wall stresses were calculated by using a simple thick-walled ellipsoidal model. Consistent with previous reports, this surgical model produced a 66% increase in cardiac output and a 10% increase in left ventricular mass by day 7. A number of features of the time-varying volume signal (maximum, mean, amplitude, rates of rise and fall) were significantly altered during early volume overload, whereas many other proposed hypertrophic stimuli, including peak systolic wall stress and diastolic strain, were not. Treating hemodynamic variables more generally as time-varying signals allowed us to identify a wider range of candidate mechanical stimuli for hypertrophy (including some not previously proposed in the literature) than focusing on standard time points in the cardiac cycle. We conclude that features of the time-varying ventricular volume signal and related local deformations may drive hypertrophy during volume overload and propose that those features of the volume signal that also change during pressure overload might be the most interesting candidates for further exploration.  相似文献   

20.
In the ventricles of adult mammalian hearts, production of atrial natriuretic peptide (ANP) is negligible, restricted to the impulse-conducting cells, the papillary muscles, and a minority of subendocardial myocytes. ANP expression is reinduced in the ventricles of pressure-overloaded and failing hearts and is frequently used as a marker for myocyte hypertrophy. Using an immunohistochemical approach, we have characterized the size distribution of ANP-containing myocytes in the left ventricle of the spontaneously hypertensive rat (SHR) before and after chronic antihypertensive therapy and compared the results to age-matched normotensive Wistar rats (WR). Our findings show that in SHR the frequency of cells presenting ANP granularity is positively correlated with myocyte size (r=0.746, P<0.02). The highest proportion of ANP-positive myocytes (55-57%) was measured among cells of diameters 30-34 microm. In any corresponding cell size, the proportion of ANP-presenting myocytes was five- to tenfold higher in SHR than in the normotensive WR. We studied the effects of the antihypertensive drugs captopril, hydralazine, and nifedipine and found that, regardless of their effect on blood pressure or hypertrophy, all three eliminated ANP immunoproducts from the majority of the left ventricular myocytes and reduced the level of ANP mRNA, captopril being the most effective. The positive correlation between myocyte size and ANP expression was not maintained in the hearts of drug-treated SHR. Myocytes on the border of fibrotic areas or in regions of ANP presentation within the normal heart resisted the suppressive effect of the antihypertensive therapy, indicating that blood pressure or hypertrophy are not the sole correlates for ANP expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号