首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As one form of actin binding protein (ABP), LIM domain protein can trigger the formation of actin bundles during plant growth and development. In this study, a cDNA (designated GhPLIM1) encoding a LIM domain protein with 216 amino acid residues was identified from a cotton flower cDNA library. Quantitative RT‐PCR indicated that GhPLIM1 is specifically expressed in cotton anthers, and its expression levels are regulated during anther development of cotton. GhPLIM1:eGFP transformed cotton cells display a distributed network of eGFP fluorescence, suggesting that GhPLIM1 protein is mainly localised to the cell cytoskeleton. In vitro high‐speed co‐sedimentation and low co‐sedimentation assays indicate that GhPLIM1 protein not only directly binds actin filaments but also bundles F‐actin. Further biochemical experiments verified that GhPLIM1 protein can protect F‐actin against depolymerisation by Lat B. Thus, our data demonstrate that GhPLIM1 functions as an actin binding protein (ABP) in modulating actin filaments in vitro, suggesting that GhPLIM1 may be involved in regulating the actin cytoskeleton required for pollen development in cotton.  相似文献   

2.
The gelation reaction of 100 000 g supernatants of sarcoma 180 homogenates has been investigated in an attempt to delineate the factors which are important in the reaction. Gel filtration and sucrose density gradient centrifugation indicate that actin-binding protein is in the form of a membrane-bound complex in the 100 000 g supernatants prior to gelation. When the sarcoma 100 000 g supernatants are warmed to room temperature, gelation occurs. Three major proteins are concentrated in the gel: actin, ABP and a component (E) which barely penetrates dodecyl sulfate polyacrylamide gels. Proteolysis of the 100 000 g supernatants enhances the rate of gelation and eliminates the temperature dependence. At 4 °C the enhancement of gelation by protease occurs without substantial cleavage of ABP or actin. Proteolysis does not enhance actin polymerization under the same conditions. The combined results of these experiments suggest that the temperature and proteolysis effects do not occur directly on the gelation reaction, but rather on factors controlling the ABP or actin interactions necessary for gelation.  相似文献   

3.
Actin and actin-binding protein (ABP) have recently been purified from human platelet cytoskeletons (S. Rosenberg, A. Stracher, and R.C. Lucas, 1981, J. Cell Biol. 91:201-211). Here, the effect of ABP on the sedimentation of actin was studied. When ABP was added to preformed F- actin filaments, it bound until a maximum ratio of 1:9 (ABP:actin, mol:mol) was reached. however, when actin was polymerized in the presence of ABP, two and a half times more ABP was able to bind to the actin- that is, every 3.4 actin monomers were now bound by an ABP dimer. ABP was not able to induce the sedimentation of actin under nonpolymerizing conditions but was able to reduce the time and concentration of actin required for sedimentation under slow polymerizing conditions. ABP, therefore, exerts its effect of G-actin by either nucleating polymerization or by cross-linking newly formed oligomers into a more sedimentable form.  相似文献   

4.
Caldesmon, calmodulin-, and actin-binding protein of chicken gizzard did not affect the process of polymerization of actin induced by 0.1 M KCl. Caldesmon binds to F-actin, thus inhibiting the gelation action of actin binding protein (ABP; filamin). Low shear viscosity and flow birefringence measurements revealed that in a system of calmodulin, caldesmon, ABP, and F-actin, gelation occurs in the presence of micromolar Ca2+ concentrations, but not in the absence of Ca2+. Electron microscopic observations showed the Ca2+-dependent formation of actin bundles in this system. These results were interpreted by the flip-flop mechanism: in the presence of Ca2+, a calmodulin-caldesmon complex is released from actin filaments on which ABP exerts its gelating action. On the other hand, in the absence of Ca2+, caldesmon remains bound to actin filaments, thus preventing the action of ABP.  相似文献   

5.
Androgen-binding protein (ABP) is found in the salivas of a wide variety of rodents and it has been proposed that ABP functions in sex and/or subspecies recognition (Karn and Dlouhy,J. Hered. 82, 453, 1991). This is a report of significant identity between the alpha subunit of mouse salivary ABP and Chain 1 of cat allergen Fel dI (50% identity), as well as with two other proteins that share identity with Chain 1 of Fel dI, rabbit uteroglobin (27% identity with ABP alpha) and human lung Clara 10 (27% identity with ABP alpha). The secondary structure predicted for the mouse ABP alpha subunit is a very good fit with the secondary structure determined by X-ray crystallography for rabbit uteroglobin, a protein that shares with mouse ABP the capability of binding steroid. Fel dI is found in cat saliva, sebaceous glands, and pelt. Its function is not known but it has been proposed to be involved in protecting dry epithelia, a parallel to uteroglobin protecting wet epithelia. Since mice, like cats, lick themselves and each other extensively, coating their pelts with ABP may be part of this or another biological function.  相似文献   

6.
A large number of actin-binding proteins (ABPs) regulate various kinds of cellular events in which the superstructure of the actin cytoskeleton is dynamically changed. Thus, to understand the actin dynamics in the cell, the mechanisms of actin regulation by ABPs must be elucidated. Moreover, it is particularly important to identify the side, barbed-end or pointed-end ABP binding sites on the actin filament. However, a simple, reliable method to determine the ABP binding sites on the actin filament is missing. Here, a novel electron microscopic method for determining the ABP binding sites is presented. This approach uses a gold nanoparticle that recognizes a histidine tag on an ABP and an image analysis procedure that can determine the polarity of the actin filament. This method will facilitate future study of ABPs.  相似文献   

7.
Platelets have been shown to possess several, different, low-molecular-mass, guanine-nucleotide-binding proteins (G-proteins) with molecular masses about 20-30 kDa. We report here that a 25-kDa G-protein copurified with the bovine platelet actin-binding protein (ABP), a cross-linker of actin filaments which is known to generate the three-dimensional network of actin. Both the G-protein and ABP were recovered in a fraction that was insoluble in Triton X-100 and were extracted in 0.6 M NaCl. Gel-filtration chromatography of the high-salt extract and rechromatography in a low-salt solution indicated that the two proteins may be associated with each other. The association of the two proteins was suggested by cosedimentation of the G-protein with the actin gel formed by actin and ABP. The amounts of the cosedimented G-protein and ABP was unaffected by guanosine-5'-O-[beta-thio]diphosphate and guanosine-5'-O-[gamma-thio]triphosphate, but the G-protein, not ABP, was partially released from the actin gel by phosphorylating ABP with cAMP-dependent protein kinase. Thus, the association of the two proteins was affected by modification of ABP, but not by modification of G-proteins. The physiological significance of the possible association of the two proteins might be that the membrane skeleton functions as a modulator of the G-protein, rather than that the G-protein modulates the function of the membrane skeleton which comprises ABP.  相似文献   

8.
There is evidence that auxin-binding protein 1 (ABP1) is an auxin receptor on the plasma membrane. Maize (Zea mays L.) possesses a high level of auxin-binding activity due to ABP1, but no other plant source has been shown to possess such an activity. We have analyzed the ABP1 content of tobacco (Nicotiana tabacum L.) to examine whether or not the ABP1 content of maize is exceptionally high among plants. The ABP1 content of tobacco leaves was shown by quantitative immunoblot analysis to be between 0.7 and 1.2 μg ABP1 per gram of fresh leaf. This value is comparable to the reported value in maize shoots, indicating that ABP1 is present at a similar level in both monocot and dicot plants. The ABP1 content of tobacco leaves was increased up to 20-fold by expression of a recombinant ABP1 gene, and decreased to half of the original value by expression of the antisense gene. Although ABP1 was found mainly in the endoplasmic reticulum fraction, a secreted protein showing a molecular size and epitopes similar to intracellular ABP1 was also detected in the culture medium of tobacco leaf disks. The secretion of this protein was dependent on the expression level of the ABP1 gene. Received: 24 February 1999 / Accepted: 25 March 1999  相似文献   

9.
T Ito  A Suzuki    T P Stossel 《Biophysical journal》1992,61(5):1301-1305
Actin filaments inhibit osmotically driven water flow (Ito, T., K.S. Zaner, and T.P. Stossel. 1987. Biophys. J. 51: 745-753). Here we show that the actin gelation protein, actin-binding protein (ABP), impedes both osmotic shrinkage and swelling of an actin filament solution and reduces markedly the concentration of actin filaments required for this inhibition. These effects depend on actin filament immobilization, because the ABP concentration that causes initial impairment of water flow by actin filaments corresponds to the gel point measured viscometrically and because gelsolin, which noncovalently severs actin filaments, solates actin gels and restores water flow in a solution of actin cross-linked by ABP. Since ABP gels actin filaments in the periphery of many eukaryotic cells, such actin networks may contribute to physiological cell volume regulation.  相似文献   

10.
Expression of Arabidopsis thaliana ABP1 (AUXIN-BINDING PROTEIN 1) was studied using a promoter:GUS approach. Two promoter regions were analyzed. The 1585-bp promoter region upstream of the translation start site (P ABP1 ) showed different activity compared to the promoter region that included, in addition, the first two introns and three exons of the transcribed ABP1 sequence (P ABP1i1,2), indicating that cis elements were present downstream of the start codon. P ABP1i1,2-driven β-glucuronidase activity was highest in growing leaves, in the root meristem, in vascular tissues, and in hydathodes. ABP1 promoter activities overlapped largely but not completely with that of DR5, which is a marker for the ARF-AuxRE-dependent auxin response. Subcellular ABP1 localization was studied using a constitutively overexpressed EGFP-ABP1 fusion protein. Results confirmed predominant localization to the endoplasmic reticulum as was concluded previously.  相似文献   

11.
Kilchert C  Spang A 《The EMBO journal》2011,30(17):3567-3580
In budding yeast, several mRNAs are selectively transported into the daughter cell in an actin-dependent manner by a specialized myosin system, the SHE machinery. With ABP140 mRNA, we now describe the first mRNA that is transported in the opposite direction and localizes to the distal pole of the mother cell, independent of the SHE machinery. Distal pole localization is not observed in mutants devoid of actin cables and can be disrupted by latrunculin A. Furthermore, localization of ABP140 mRNA requires the N-terminal actin-binding domain of Abp140p to be expressed. By replacing the N-terminal localization motif, ABP140 mRNA can be retargeted to different subcellular structures. In addition, accumulation of the mRNA at the distal pole can be prevented by disruption of polysomes. Using the MS2 system, the mRNA was found to associate with actin cables and to follow actin cable dynamics. We therefore propose a model of translational coupling, in which ABP140 mRNA is tethered to actin cables via its nascent protein product and is transported to the distal pole by actin retrograde flow.  相似文献   

12.
The Mr approximately 540,000 dimeric actin gelation protein, actin-binding protein (ABP), has previously been shown in human platelets to link actin to membrane glycoprotein Ib (GPIb) (Fox, J. E. B. (1985) J. Biol. Chem. 260, 11970-11977; Okita, J. R., Pidard, D., Newman, P. J., Montgomery, R. R., and Kunicki, T. J. (1985) J. Cell Biol. 100, 317-321). We have examined further the interaction between ABP and GPIb. Platelet extracts were depleted of ABP by precipitation with anti-ABP monoclonal antibodies (mAbs); in resulting precipitates, ABP monomer is complexed with GPIb in a 5:1 molar ratio. The ABP.GPIb complex is resistant to chaotropic solvents but dissociated by the ionic detergent, sodium dodecyl sulfate. Treatment of intact platelets with the ionophore A23187 activates a Ca2+-dependent protease which cleaves the Mr approximately 270,000 ABP subunit into three fragments of Mr 190,000, 100,000, and 90,000; the latter fragment is derived from the Mr 100,000 fragment. Anti-ABP mAbs coprecipitated GPIb with the Mr 100,000 and 90,000 fragments, but not with the Mr 190,000 fragment which contains the ABP self-association site. In the reciprocal experiment, anti-GPIb antibodies co-precipitated only the Mr 100,000 and 90,000 ABP fragments. Actin also co-precipitated with the Mr 100,000 and 90,000, but not with the Mr 190,000 ABP fragment. The anti-ABP mAb that precipitated the Mr 100,000-90,000 GPIb-binding ABP fragment recognizes a trypsin cleavage fragment of ABP that binds actin filaments in vitro. These findings establish that both the GPIb-binding site and actin-binding sites are in the same region of the ABP monomer. Because of the extended bipolar conformation of the ABP molecule, the data suggest that the GPIb.actin-binding region is located remote from the self-association, or dimerization, site of the ABP subunit.  相似文献   

13.
14.
The villin/gelsolin/fragmin superfamily is a major group of Ca2+-dependent actin-binding proteins (ABPs) involved in various cellular processes. Members of this superfamily typically possess three or six tandem gelsolin-like (G) domains, and each domain plays a distinct role in actin filament dynamics. Although the activities of most G domains have been characterized, the biochemical function of the G3 domain remains poorly understood. In this study, we carefully compared the detailed biochemical activities of ABP29 (a new member of this family that contains the G1-G2 domains of lily ABP135) and ABP135G1-G3 (which contains the G1-G3 domains of lily ABP135). In the presence of high Ca2+ levels in vitro (200 and 10 μM), ABP135G1-G3 exhibited greater actin severing and/or depolymerization and nucleating activities than ABP29, and these proteins had similar actin capping activities. However, in the presence of low levels of Ca2+ (41 nM), ABP135G1-G3 had a weaker capping activity than ABP29. In addition, ABP29 inhibited F-actin depolymerization, as shown by dilution-mediated depolymerization assay, differing from the typical superfamily proteins. In contrast, ABP135G1-G3 accelerated F-actin depolymerization. All of these results demonstrate that the G3 domain plays specific roles in regulating the activities of the lily villin/gelsolin/fragmin superfamily proteins.  相似文献   

15.
16.
The high diversity of cytoskeletal actin structures is accomplished by myriads of actin binding proteins (ABPs). Depending on its concentration, even a single type of ABP can induce different actin microstructures. Thus, for an overall understanding of the cytoskeleton, a detailed characterization of the cross-linker's effect on structural and mechanical properties of actin networks is required for each ABP. Using confocal microscopy and macrorheology, we investigate both cross-linked and bundled actin/filamin networks and compare their microstructures as well as their viscoelastic properties in the linear and the nonlinear regime.  相似文献   

17.
Auxin-binding protein 1 (ABP1) has an essential role in auxin-dependent cell expansion, but its mechanisms of action remain unknown. Our previous study showed that ABP1-mediated cell expansion is auxin concentration dependent. However, auxin distribution in plant tissue is heterogeneous, complicating the interpretation of ABP1 function. In this study, we used cells in culture that have altered expression of ABP1 to address the mechanism of ABP1 action at the cellular level, because cells in culture have homogeneous cell types and could potentially circumvent the heterogeneous auxin-distributions inherent in plant tissues. We found that cells overexpressing ABP1 had altered sensitivity to auxin and were larger, with nuclei that have undergone endoreduplication, a finding consistent with other data that support an auxin extracellular receptor role for ABP1. These cells also had a higher free auxin pool size, which cannot be explained by altered auxin transport. In cells lacking detectable ABP1, a higher rate of auxin metabolism was observed. The results suggest that ABP1 has, beyond its proposed role as an auxin extracellular receptor, a role in mediating auxin availability.  相似文献   

18.
In a search for membrane “docking proteins” interacting with Zea mays auxin-binding protein (ABP1) the binding of purified ABP1 to maize coleoptile plasma-membrane vesicles was investigated. Concentration-dependent, saturable binding of ABP1 to the membrane vesicles was observed in binding assays using 10−8–10−6␣M ABP1. Biotinylated ABP1 was displaced from the membrane binding sites by competition with unlabeled ABP1, demonstrating specific binding. The association step proved to be pH-dependent with maximum binding at pH 5.0 or lower. Auxins did not influence the ABP1 binding to plasma-membrane vesicles, but ABP1 associated with plasma-membrane vesicles was still able to specifically bind [3H]naphthalene-1-acetic acid. The rather stable interaction of ABP1 with plasma-membrane vesicles was only affected by strong alkaline buffers or detergents. The binding capacity was calculated to be in the range of 0.2 pmol ABP1 per g coleoptile fresh weight. Received: 29 April 1996 / Accepted: 20 September 1996  相似文献   

19.
Vasopressin regulates transepithelial osmotic water permeability in the kidney collecting duct and in target cells in other tissues. In the presence of hormone, water channels are inserted into an otherwise impermeable apical plasma membrane and the apical surface of these cells is dramatically remodelled. Because cytochalasin B and D greatly reduce the response of these cells to vasopressin, actin filaments are believed to participate in the events leading to an increase in transepithelial water permeability. Modulation of the actin filamentous network requires the concerted action of specific actin regulatory proteins, and in the present study we used protein A-gold immunocytochemistry to localize two important molecules, gelsolin and actin binding protein (ABP), in epithelial cells of the kidney inner medulla. Gelsolin and, to a lesser extent, ABP were concentrated in clusters in the apical cell web of principal cells of the collecting duct. Aggregates of gold particles were often associated with the cytoplasmic side of plasma membrane regions forming surface extensions or microvilli. The basolateral plasma membrane was labeled to a much lesser extent than the apical plasma membrane. In the thin limbs of Henle, ABP was localized over the apical plasma membrane in ascending limbs, but gelsolin labeling was weak in these cells. In thin descending limbs, the pattern of labeling was completely reversed, with abundant apical gelsolin labeling but only weak ABP immunolabeling. Although the significance of the distribution of actin regulatory proteins in thin limbs is unknown, the abundance and the predominantly apical polarization of both ABP and gelsolin in principal cells of the collecting duct is consistent with a role of the actin cytoskeleton in the mechanism of vasopressin actin.  相似文献   

20.
Although the structure of cross-linking molecules mainly determines the structural organization of actin filaments and with that the static elastic properties of the cytoskeleton, it is largely unknown how the biochemical characteristics of transiently cross-linking proteins (actin-binding proteins (ABPs)) affect the viscoelasticity of actin networks. In this study, we show that the macroscopic network response of reconstituted actin networks can be traced back to the microscopic interaction potential of an individual actin/ABP bond. The viscoelastic response of cross-linked actin networks is set by the cross-linker off-rate, the binding energy, and the characteristic bond length of individual actin/ABP interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号