首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined the role of individual integrins in promoting human keratinocyte migration. In short-term assays on collagen type I- or fibronectin-coated substrates, migration was blocked by antibody to the α2 integrin and the α5 integrin, respectively. Unexpectedly, antibodies to integrin α3 also significantly inhibited cell locomotion on both ligands. Time-course immunofluorescence staining revealed that keratinocyte migration was accompanied by deposition of endogenous laminin 5. Since α3β1 is a known receptor for this ligand, this observation suggested that migrating keratinocytes use freshly deposited laminin 5 in locomotion. Indeed, further investigation showed that anti-laminin 5 blocking antibodies effectively inhibited keratinocyte motility on both collagen and fibronectin substrates. Furthermore, cell migration on laminin 5-coated substrates was blocked by both anti-α3 and anti-laminin 5 antibodies. Laminin 5 did not appear important in the initial attachment of keratinocytes, since adhesion of cells to collagen type I- or fibronectin-coated surfaces was not blocked by antibody to α3 integrin or to laminin 5, but could be inhibited by antibody to α2 or α5, respectively. Using anin vitrowound assay, blocking antibodies to α3 integrin and to laminin 5 also blocked reepithelization of the denuded monolayer. These results show that α3β1 integrin plays an important role in the migration of keratinocytes via their interaction with laminin 5. Furthermore, they suggest that cell migration is dependent not only on exogenous ligands but, importantly, on endogenously secreted laminin 5. Finally, the data are consistent with our earlier finding that laminin 5 is the first extracellular matrix component to be expressed and deposited by migrating keratinocytes during wound healingin vivo[1].  相似文献   

2.
Collaborative role of various fibronectin-binding integrins (α5β1, αvβ1 and αvβ6) as mediators of cell adhesion and migration on fibronectin was studied using cultured HaCaT keratinocytes. This cell line spontaneously expressed all three fibronectin-binding integrins. In addition, the expression of αvβ6 integrin was strongly and specifically upregulated by transforming growth factor-β1 (TGFβ1) whereas the amount of other integrins remained practically unchanged on the cell surface. Adhesion, spreading and motility of HaCaT keratinocytes on fibronectin were promoted by TGFβ1. Based on antibody blocking experiments, both untreated and TGFβ1-treated HaCaT cells used αvβ6 integrin as their main fibronectin receptor for cell spreading. In contrast to TGFβ1-treated cells, the untreated cells also needed α5β1 integrin for maximal cell spreading on fibronectin. Combinations of antibodies blocking both of these receptors totally prevented spreading of both untreated and TGFβ1-treated cells. Haptotactic motility of individual HaCaT cells through fibronectin-coated membranes was again mainly dependent on αvβ6 integrin, while αvβ1 and α5β1 integrins played a lesser role both in untreated and TGFβ1-treated HaCaT cells. However, unlike haptotaxis, lateral migration of HaCaT cell sheet was mainly mediated by β1 integrins, and αvβ6 integrin showed a minor role. The migration process appeared to involve a number of β1 integrins that could adaptively replace each other when blocking antibodies were present. Thus, keratinocytes appear to use different fibronectin receptors for different functions, such as cell spreading, haptotaxis and lateral migration. The cells can also adapt to a situation where one receptor is unfunctional by switching to another receptor of the same ligand.  相似文献   

3.
CD9 is a member of the tetraspan (TM4) family of proteins and is abundantly expressed in the epidermis. As CD9 forms complexes with β1 integrins and the integrins are known to regulate keratinocyte behaviour, we investigated CD9 expression and function in human epidermal keratinocytes. CD9 was present in all the living layers of the epidermis, whereas the β1 integrins were largely confined to the basal layer; the same relative distribution was found in stratified cultures of keratinocytes. There was extensive co-localisation of CD9 and β1 integrins on microvilli and at cell-cell borders of basal keratinocytes; however, in contrast to the integrins, CD9 was not found in focal adhesions. CD9 was detected in β1 integrin immunoprecipitates and also in immunoprecipitates of CD44 and syndecan, but not of cadherins. CD9 was associated with α3β1 but not α5β1; small amounts of CD9 also co-immunoprecipitated with antibodies to α2β1, and α6β4. Antibodies to CD9 did not affect the proportion of keratinocytes that adhered to laminin 1, type IV collagen and fibronectin, but did inhibit motility of keratinocytes on tissue culture plastic. Like antibodies to the β1 integrin subunit, anti-CD9 inhibited suspension-induced terminal differentiation. These results suggest that CD9 may play a role in regulating keratinocyte motility and differentiation.  相似文献   

4.
Cellular receptors for collagens belong to the family of β(1) integrins. In the epidermis, integrin α(2)β(1) is the only collagen-binding integrin present. Its expression is restricted to basal keratinocytes with uniform distribution on the cell surface of those cells. Although α(2)β(1) receptors localized at the basal surface interact with basement membrane proteins collagen IV and laminin 111 and 332, no interaction partners have been reported for these integrin molecules at the lateral and apical membranes of basal keratinocytes. Solid phase binding and surface plasmon resonance spectroscopy demonstrate that collagen XXIII, a member of the transmembrane collagens, directly interacts with integrin α(2)β(1) in an ion- and conformation-dependent manner. The two proteins co-localize on the surface of basal keratinocytes. Furthermore, collagen XXIII is sufficient to induce adhesion and spreading of keratinocytes, a process that is significantly reduced in the absence of functional integrin α(2)β(1).  相似文献   

5.
We have compared the adhesive properties and integrin expression profiles of cultured human epidermal keratinocytes and a strain of nondifferentiating keratinocytes (ndk). Both cell types adhered to fibronectin, laminin, and collagen types I and IV, but ndk adhered more rapidly and at lower coating concentrations of the proteins. Antibody blocking experiments showed that adhesion of both cell types to fibronectin was mediated by the alpha 5 beta 1 integrin and to laminin by alpha 3 beta 1 in synergy with alpha 2 beta 1. Keratinocytes adhered to collagen with alpha 2 beta 1, but an antibody to alpha 2 did not inhibit adhesion of ndk to collagen. Both cell types adhered to vitronectin by alpha v-containing integrins. Immunoprecipitation of surface-iodinated and metabolically labeled cells showed that in addition to alpha 2 beta 1, alpha 3 beta 1, and alpha 5 beta 1, both keratinocytes and ndk expressed alpha 6 beta 4 and alpha v beta 5. ndk expressed all these integrins at higher levels than normal keratinocytes. ndk, but not normal keratinocytes, expressed alpha v beta 1 and alpha v beta 3; they also expressed alpha 1 beta 1, an integrin that was not consistently detected on normal keratinocytes. Immunofluorescence experiments showed that in stratified cultures of normal keratinocytes integrin expression was confined to cells in the basal layer; terminally differentiating cells were unstained. In contrast, all cells in the ndk population were integrin positive. Our observations showed that the adhesive properties of ndk differ from normal keratinocytes and reflect differences in the type of integrins expressed, the level of expression and the distribution of integrins on the cell surface. ndk thus have a number of characteristics that distinguish them from normal basal keratinocytes.  相似文献   

6.
This study describes the adhesion of human osteoblasts, culturedin vitro, to proteins of the extracellular matrix, the biosynthesis of integrins, their topography and organization in focal contacts. The adhesion of osteoblasts to laminin, type I collagen, vitronectin and fibronectin was 77–100%, in 2h and at 55nm substrata concentration, and it was accompained by spreading of the cells. Adhesion to fibronectin (FN), laminin (LN) and type I collagen (COL) was inhibited by antibodies to the β1 integrin and antibodies to the α5 chain affected adhesion only to fibronectin. Using a panel of polyclonal antibodies against α2, α3, α5, αv, β1 andβ3 integrins we detected synthesis of α3β1, α5β1, αvβ3, and an αvβ1-like dimer by immunoprecipitation of metabolically labelled cell lysates. Studies of immunolocalization demonstrated the presence of the same integrins identified in lysates, plus α4, α1 and β5 subunits. In cells adhering in the presence of serum we showed organization of β3 and αv integrins in focal contacts. In cells adhering to fibronectin α5 and β1 integrins were localized in focal contacts. In cells spread on laminin or type I collagen none of the integrins investigated was localized in focal contacts.  相似文献   

7.
8.
We have investigated the effects of altered cell shape on the regulation of the 92kDa type IV collagenase. In MDCK cells, anti-E-cadherin antibodies alter cell shape by disrupting normal cell—cell contacts, while sodium butyrate causes a marked flattening and spreading of cells. The disruption of cell—cell contacts led to a faint expression of the 92kDa collagenase. This effect was enhanced by sodium butyrate, which by itself did not induce collagenase expression. In contrast, stromelysin expression was not regulated in these conditions. Although mRNA expression was enhanced, the secreted collagenase activity was not altered in these conditions in either cell line. Examination of cytoskeletal and extracellular matrix proteins and cell—cell and cell—matrix adhesion proteins by immunofluorescence and Western blot revealed a disruption of the actin network, tight junctions, and fibronectin deposition by anti E-cadherin antibodies, and alterations in actin, cytokeratin 8, cytokeratin 14, laminin and β1 integrin induced by sodium butyrate. Thus, the induction of collagenase expression in epithelial cells by disrupted cell—cell adhesion and sodium butyrate is associated with changes in cell shape and structure.  相似文献   

9.
It has become apparent that extracellular matrix components and their cellular receptors, the integrins, are important regulators of glomerular development and function. In this rapidly evolving field we studied the production of extracellular matrix components and integrins by rat glomerular visceral epithelial and mesangial cells, using molecular probes and antibodies that have recently become available. Special attention was paid to laminin isoforms and to splice variants of the integrin subunits α3 and α6. Results were compared to the in vivo expression in human fetal, newborn and adult kidneys.

The mesangial cells were found to produce laminin-1, nidogen and two as yet unidentified laminin isoforms with putative α chains of about 395 (m) and of 375 kDa (cry), tentatively described before as bovine kidney laminin. Furthermore, they expressed the integrins α1β1, α2β, α3Aβ1, α5β1, αvβ3, αvβ5, and small amounts of α6Aβ1 and α6Bβ1. The glomerular visceral epithelial cells produced the two new laminin isoforms mentioned above, laminin-5, but no laminin-1 or nidogen. The integrins α2β1, αAβ1, α6Aβ4, αBβ4 and the integrin subunit av were found to be expressed.

We show that during nephrogenesis, the laminin α1 chain disappears and is replaced by another a chain, possibly one of the two as yet unidentified α chains mentioned above. The laminin β1 chain is replaced by the β2 chain somewhat later in glomerular development. In general, the integrins found to be expressed in glomeruli of adult kidney were consistent with those found in cultured glomerular visceral epithelial and mesangial cells. No splice variant switch of the integrin α3 or α6 subunits could be demonstrated during nephrogenesis.

Our results suggest an important role for the mesangial cell in providing nidogen as a crucial component of the supramolecular stucture of the glomerular basement membrane. Furthermore our results indicate that laminin αxβ2γ1 and αβ2γ1 isoforms are important in the glomerulus of adult kidney and that the integrin α3Aβ1 is the main integrin receptor for laminin isoforms on glomerular visceral epithelial and mesangial cells, both in vitro and in vivo.  相似文献   

10.
Integrins are major receptors for cell adhesion to the extracellular matrix (ECM). As transmembrane proteins, the levels of integrins at the plasma membrane or the cell surface are ultimately determined by the balance between two vesicle trafficking events: endocytosis of integrins at the plasma membrane and exocytosis of the vesicles that transport integrins. Here, we report that vesicle-associated membrane protein 2 (VAMP2), a SNARE protein that mediates vesicle fusion with the plasma membrane, is involved in the trafficking of α5β1 integrin. VAMP2 was present on vesicles containing endocytosed β1 integrin. Small interfering RNA (siRNA) silencing of VAMP2 markedly reduced cell surface α5β1 and inhibited cell adhesion and chemotactic migration to fibronectin, the ECM ligand of α5β1, without altering cell surface expression of α2β1 integrin or α3β1 integrin. By contrast, silencing of VAMP8, another SNARE protein, had no effect on cell surface expression of the integrins or cell adhesion to fibronectin. In addition, VAMP2-mediated trafficking is involved in cell adhesion to collagen but not to laminin. Consistent with disruption of integrin functions in cell proliferation and survival, VAMP2 silencing diminished proliferation and triggered apoptosis. Collectively, these data indicate that VAMP2 mediates the trafficking of α5β1 integrin to the plasma membrane and VAMP2-dependent integrin trafficking is critical in cell adhesion, migration and survival.  相似文献   

11.
Dermal fibroblasts are essential for the repair of cutaneous wounds. Fibroblasts presumably use cell surface receptors of the integrin family during migration into a wound from the adjacent uninjured tissue and for the subsequent matrix repairs. We have investigated the possible roles of platelet-derived growth factor and inflammatory cytokines in the regulation of integrin expression on wound fibroblasts using a porcine cutaneous wound model and cultured human cells. Tissue specimens collected from 4-day pig wounds were stained with antibodies specific for the α1 and α5 integrin subunits. Staining for α1 was markedly decreased on fibroblasts adjacent to the wound and in the granulation tissue, while staining for α5 was clearly enhanced in both locations. Normal adult human dermal fibroblasts in culture express the integrins α1β1, a collagen receptor, and α5β1, a fibronectin receptor. Quantitative flow cytometry was used to measure cell surface integrin expression after treatment with platelet-derived growth factor (PDGF)-AA, PDGF-AB, or PDGF-BB. Each isoform of PDGF produced a significant decrease in the level of α1 present on the cell surface and an increase in the level of α5. Furthermore, PDGF-BB produced a corresponding decrease in α1 mRNA and an increase in α5 mRNA. In contrast, treatment with three inflammatory cytokines, IL-1β, TNF-α, and IFN-γ, produced clear increases in the levels of α1 and α5 present on the cell surface. Our observations suggest that the differential effects of PDGF and inflammatory cytokines may be part of the mechanism regulating the expression of α1 and α5 integrins by dermal fibroblasts during wound repair. © 1996 Wiley-Liss, Inc.  相似文献   

12.
Cells of the rat neuronal line, PC12, adhere well to substrates coated with laminin and type IV collagen, but attach poorly to fibronectin. Adhesion and neurite extension in response to these extracellular matrix proteins are inhibited by Fab fragments of an antiserum (anti-ECMR) that recognizes PC12 cell surface integrin subunits of Mr 120,000, 140,000, and 180,000 (Tomaselli, K. J., C. H. Damsky, and L. F. Reichardt. 1987. J. Cell Biol. 105:2347-2358). Here we extend our study of integrin structure and function in PC12 cells using integrin subunit-specific antibodies prepared against synthetic peptides corresponding to the cytoplasmic domains of the human integrin beta 1 and the fibronectin receptor alpha (alpha FN) subunits. Anti-integrin beta 1 immunoprecipitated a 120-kD beta 1 subunit and two noncovalently associated integrin alpha subunits of 140 and 180 kD from detergent extracts of surface-labeled PC12 cells. Immunodepletion studies using anti-integrin beta 1 demonstrated that these two putative alpha/beta heterodimers are identical to those recognized by the adhesion-perturbing ECMR antiserum. Anti-alpha FN immunoprecipitated fibronectin receptor heterodimers in human and rat fibroblastic cells, but not in PC12 cells. Thus, low levels of expression of the integrin alpha FN subunit can explain the poor attachment of PC12 cells to FN. The PC12 cell integrins were purified using a combination of lectin and ECMR antibody affinity chromatography. The purified integrins: (a) completely neutralize the ability of the anti-ECMR serum to inhibit PC12 cell adhesion to laminin and collagen IV; (b) have hydrodynamic properties that are very similar to those of previously characterized integrin alpha/beta heterodimeric receptors for ECM proteins; and (c) can be incorporated into phosphatidylcholine vesicles that then bind specifically to substrates coated with laminin or collagen IV but not fibronectin. Thus, the ligand-binding specificity of the liposomes containing the purified PC12 integrins closely parallels the substrate-binding preference of intact PC12 cells. These results demonstrate that mammalian integrins purified from a neuronal cell line can, when incorporated into lipid vesicles, function as receptors for laminin and type IV collagen.  相似文献   

13.
Adhesive and migratory behavior can be cell type, integrin, and substrate dependent. We have compared integrin and substrate differences using three integrin receptors: α5β1, α6β1, and αLβ2 expressed in a common cell type, CHO.B2 cells, which lack integrin α subunits, as well as in different cell types that express one or more of these integrins. We find that CHO.B2 cells expressing either α6β1 or αLβ2 integrins migrate and protrude faster and are more directionally persistent on laminin or ICAM-1, respectively, than CHO.B2 cells expressing α5β1 on fibronectin. Despite rapid adhesion maturation and the presence of large adhesions in both the α6β1- and αLβ2-expressing cells, they display robust tyrosine phosphorylation. In addition, whereas myosin II regulates adhesion maturation and turnover, protrusion rates, and polarity in cells migrating on fibronectin, surprisingly, it does not have comparable effects in cells expressing α6β1 or αLβ2. This apparent difference in the integration of myosin II activity, adhesion, and migration arises from alterations in the ligand-integrin-actin linkage (molecular clutch). The elongated adhesions in the protrusions of the α6β1-expressing cells on laminin or the αLβ2-expressing cells on ICAM-1 display a novel, rapid retrograde flux of integrin; this was largely absent in the large adhesions in protrusions of α5β1-expressing cells on fibronectin. Furthermore, the force these adhesions exert on the substrate in protrusive regions is reduced compared to similar regions in α5-expressing cells, and the adhesion strength is reduced. This suggests that intracellular forces are not efficiently transferred from actomyosin to the substratum due to altered adhesion strength, that is, avidity, affinity, or the ligand-integrin-actin interaction. Finally, we show that the migration of fast migrating leukocytes on fibronectin or ICAM-1 is also largely independent of myosin II; however, their adhesions are small and do not show retrograde fluxing suggesting other intrinsic factors determine their migration differences.  相似文献   

14.
BackgroundIntegrins are extracellular matrix receptors involved in several pathologies. Despite homologies between the RGD-binding α5β1 and αvβ3 integrins, selective small antagonists for each heterodimer have been proposed. Herein, we evaluated the effects of such small antagonists in a cellular context, the U87MG cell line, which express both integrins. The aim of the study was to determine if fibronectin-binding integrin antagonists are able to impact on cell adhesion and migration in relationships with their defined affinity and selectivity for α5β1 and αvβ3/β5 purified integrins.MethodsSmall antagonists were either selective for α5β1 integrin, for αvβ3/β5 integrin or non-selective. U87MG cell adhesion was evaluated on fibronectin or vitronectin. Migration assays included wound healing recovery and single cell tracking experiments. U87MG cells stably manipulated for the expression of α5 integrin subunit were used to explore the impact of α5β1 integrin in the biological assays.ResultsU87MG cell adhesion on fibronectin or vitronectin was respectively dependent on α5β1 or αvβ3/β5 integrin. Wound healing migration was dependent on both integrins. However U87MG single cell migration was highly dependent on α5β1 integrin and was inhibited selectively by α5β1 integrin antagonists but increased by αvβ3/β5 integrin antagonists.ConclusionsWe provide a rationale for testing new integrin ligands in a cell-based assay to characterize more directly their potential inhibitory effects on integrin cellular functions.General significanceOur data highlight a single cell tracking assay as a powerful cell-based test which may help to characterize true functional integrin antagonists that block α5β1 integrin-dependent cell migration.  相似文献   

15.
A laminin receptor was isolated from human MG-63 osteosarcoma cells by affinity chromatography on human laminin. The isolated receptor was defined as the alpha 3 beta 1 integrin by immunoprecipitation with subunit-specific antibodies. A previously unclassified laminin-binding integrin from rat cells was shown also to contain the alpha 3 subunit. Both receptors bound to human and mouse laminin in a radioreceptor assay. They also both bound to some extent to fibronectin in this assay, but only the MG-63 cell receptor showed binding to type IV collagen. The binding of the radiolabeled receptor to insoluble laminin was inhibited by unlabeled receptor, by soluble laminin, and by chymotryptic fragments of laminin that have previously been shown to contain neurite-promoting and cell attachment-promoting activities. Moreover, the receptor binding was also inhibited by monoclonal antibodies capable of inhibiting the neurite-promoting activity of laminin and known to bind to laminin near the junction of the long arm and its terminal globule. One of these antibodies was reactive with fusion proteins expressed from laminin cDNA clones. The immunoreactive clones corresponded to the COOH-terminal end of the B1 subunit. These results identify the integrin-type laminin receptor isolated from the osteosarcoma cells as the alpha 3 beta 1 integrin and localize its binding site in close proximity of the B1 subunit COOH terminus.  相似文献   

16.
Rat pheochromocytoma PC12 cells exposed to nerve growth factor differentiate as sympathetic neurons and extend neurites on laminin and to a much lesser extent on fibronectin. Analysis of laminin fragments indicated that neurite outgrowth occurs mainly on fragment P1, corresponding to the center of the cross, and only poorly on fragment E8, a long arm structure that is active with other neuronal cells. Integrin antibodies prevented adhesion and neurite sprouting of these cells on laminin, fragment P1, and fibronectin. By affinity chromatography we isolated an integrin-type receptor for laminin consisting of two subunits with molecular massess of 180 and 135 kDa. The latter is recognized by an antiserum to integrin beta 1 subunit. The bound laminin receptor could be displaced by EDTA, but not by Arg-Gly-Asp or Tyr-Ile-Gly-Ser-Arg peptides. Affinity chromatography on laminin fragments showed that the 180/135 kDa receptor binds to P1. The expression of the 180-kDa alpha subunit of the laminin receptor at the cell surface was increased 10-fold after NGF treatment. The effect of NGF is specific since the amount of a 150-kDa fibronectin-binding integrin alpha subunit remained unchanged. Moreover, the increased expression of the 180/135 kDa receptor at the cell surface corresponded to a selective increase in cell adhesion to laminin and to fragment P1. The 180/135-kDa complex is thus an integrin-type receptor for laminin whose expression and binding specificity correlates with the capacity of NGF-induced PC12 cells to extend neurites on laminin.  相似文献   

17.
To investigate the mechanism of trophoblast adhesion to fibronectin, we cultured blastocysts in serum-free medium on proteolytic fibronectin fragments containing its major functional domains, and localized fibronectin-binding integrins in outgrowing trophoblast cells by immunofluorescent staining. Outgrowth comparable to that obtained with intact fibronectin was observed using a 120 kD chymotryptic fragment containing the central cell-binding domain (FN-120) and the Arg-Gly-Asp (RGD) recognition sequence. A 40 kD COOH-terminal chymotryptic fragment of fibronectin containing both a heparin-binding region and an alternate (non-RGD) cell-binding site was inactive in supporting trophoblast adhesion. Three synthetic peptides derived from the heparin-binding domain, including the CS1 alternate cell-binding site, were also unable to promote trophoblast cell adhesion. A 75 kD recombinant protein, ProNectin F, containing 13 copies of the cell recognition epitope of fibronectin, Val-Thr-Gly-Arg-Gly-Asp-Ser-Pro-Ala-Ser, vigorously supported blastocyst outgrowth. Blastocyst outgrowth was not significantly different when surfaces were precoated with cellular fibronectin, which contains an alternatively spliced type III repeat and is the form actually encountered in vivo. Several putative fibronectin receptors were localized in trophoblast outgrowths by immunofluorescent labeling. Antibodies reactive with integrin subunits α3, α5, αllb, αv, β1 and β3, but not α4, all bound to trophoblast cells. Antibodies raised against either the β1 or β3 integrin subunits significantly inhibited fibronectin-mediated outgrowth. These findings demonstrate the key role of the central cell-binding domain of fibronectin in trophoblast adhesion, and suggest four RGD-binding integrins, α3β1, α5β1, αllbβ3, and αvβ3, that could mediate trophoblast adhesion in vitro and may play an important role during implantation. © 1995 Wiley-Liss, Inc.  相似文献   

18.
We have used a quantitative cell attachment assay to compare the interactions of cranial and trunk neural crest cells with the extracellular matrix (ECM) molecules fibronectin, laminin and collagen types I and IV. Antibodies to the beta 1 subunit of integrin inhibited attachment under all conditions tested, suggesting that integrins mediate neural crest cell interactions with these ECM molecules. The HNK-1 antibody against a surface carbohydrate epitope under certain conditions inhibited both cranial and trunk neural crest cell attachment to laminin, but not to fibronectin. An antiserum to alpha 1 intergrin inhibited attachment of trunk, but not cranial, neural crest cells to laminin and collagen type I, though interactions with fibronectin or collagen type IV were unaffected. The surface properties of trunk and cranial neural crest cells differed in several ways. First, trunk neural crest cells attached to collagen types I and IV, but cranial neural crest cells did not. Second, their divalent cation requirements for attachment to ECM molecules differed. For fibronectin substrata, trunk neural crest cells required divalent cations for attachment, whereas cranial neural crest cells bound in the absence of divalent cations. However, cranial neural crest cells lost this cation-independent attachment after a few days of culture. For laminin substrata, trunk cells used two integrins, one divalent cation-dependent and the other divalent cation-independent (Lallier, T. E. and Bronner-Fraser, M. (1991) Development 113, 1069-1081). In contrast, cranial neural crest cells attached to laminin using a single, divalent cation-dependent receptor system. Immunoprecipitations and immunoblots of surface labelled neural crest cells with HNK-1, alpha 1 integrin and beta 1 integrin antibodies suggest that cranial and trunk neural crest cells possess biochemically distinct integrins. Our results demonstrate that cranial and trunk cells differ in their mechanisms of adhesion to selected ECM components, suggesting that they are non-overlapping populations of cells with regard to their adhesive properties.  相似文献   

19.
Collaborative role of various fibronectin-binding integrins (alpha5beta1, alphavbeta1 and alphavbeta6) as mediators of cell adhesion and migration on fibronectin was studied using cultured HaCaT keratinocytes. This cell line spontaneously expressed all three fibronectin-binding integrins. In addition, the expression of alphavbeta6 integrin was strongly and specifically upregulated by transforming growth factor-beta1 (TGFbeta1) whereas the amount of other integrins remained practically unchanged on the cell surface. Adhesion, spreading and motility of HaCaT keratinocytes on fibronectin were promoted by TGFbeta1. Based on antibody blocking experiments, both untreated and TGFbeta1-treated HaCaT cells used alphavbeta6 integrin as their main fibronectin receptor for cell spreading. In contrast to TGFbeta1-treated cells, the untreated cells also needed alpha5beta1 integrin for maximal cell spreading on fibronectin. Combinations of antibodies blocking both of these receptors totally prevented spreading of both untreated and TGFbeta1-treated cells. Haptotactic motility of individual HaCaT cells through fibronectin-coated membranes was again mainly dependent on alphavbeta6 integrin, while alphavbeta1 and alpha5beta1 integrins played a lesser role both in untreated and TGFbeta1-treated HaCaT cells. However, unlike haptotaxis, lateral migration of HaCaT cell sheet was mainly mediated by beta1 integrins, and alphavbeta6 integrin showed a minor role. The migration process appeared to involve a number of beta1 integrins that could adaptively replace each other when blocking antibodies were present. Thus, keratinocytes appear to use different fibronectin receptors for different functions, such as cell spreading, haptotaxis and lateral migration. The cells can also adapt to a situation where one receptor is unfunctional by switching to another receptor of the same ligand.  相似文献   

20.
Alteration in mesangial volume, due to an increase of the matrix surrounding mesangial cells, is a hallmark indicator of nephropathy in diabetes. Mesangial cells may also play a significant role in the development of nephropathy. Therefore, we examined the effect of glucose on the expression of integrins by cultured human mesangial cells and their ability to interact with collagen IV, a major component of the mesangial matrix. Human mesangial cells were grown in 5 and 25 mM glucose and their integrin profile was examined by immunoprecipitation and flow cytometry in each experimental condition. The results indicate that when mesangial cells were grown in 25 mM glucose, the expression of integrin subunit α2, was increased, while the α1 subunit was considerably decreased, as compared to cells grown in 5 mM glucose. Additionally, mesangial cells were tested for their ability to adhere to collagen IV in a solid-phase assay in the presence of neutralizing antibodies to integrin subunits. The results of these experiments indicate that both α1 and α2 complexed to β1 (α2β1 and α1β1) are major mesangial cell receptors for adhesion to collagen IV both in 5 and 25 mM glucose. The two receptors act in concert to mediate adhesion of mesangial cells to type IV collagen. When cell surface expression of the α1 subunit in 25 mM glucose was reduced, the α2 subunit was involved in adhesion to a greater extent than it was in 5 mM glucose. Immunoperoxidase histochemical studies localized both α1 and α2 integrin subunits in the mesangium of normal adult kidneys, suggesting that in vivo interaction with collagen IV could involve both of these receptors. These observations suggest that glucose-induced alterations in integrin expression may modify the ability of mesangial cells to interact with collagen IV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号