首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper reviews the literature on analytical applications of quantitative liquid phase chemiluminescence (CL) from 1991 to mid-1995. Other relevant reviews in this general area are also cited to provide an historical perspective. The focus is on the two major analytical techniques used in conjunction with flow-through CL detection, namely flow injection (FI) and liquid chromatography (LC). Entries have been tabulated under these two headings and are categorized in terms of the analyte, CL reaction, sample matrix and limits of detection.  相似文献   

2.
The sensitivity, speed and convenience of chemiluminescent (CL) and bioluminescent (BL) immunoassays and probe assays have led to a diverse range of applications for these technologies, mainly in the clinical laboratory. These methods are now being explored by the food and pharmaceutical industries. Demanding detection limits and the complexity of sample preparation for food and pharmaceutical analyses present daunting challenges for the analyst. Immunoassay and nucleic acid amplification technologies have been applied to food testing, but these have mostly favoured non-luminescent endpoints. Food assays with CL or BL endpoints are now emerging, e.g., Clostridium botulinum type A detection using a CL immunosorbent assay; Salmonella and Zygosaccharomyces detection using a combination of PCR and CL detection. The analytical challenges posed by the pharmaceutical industry include testing for contaminants in raw materials and drug products, and drug discovery. The sensitivity and rapid signal acquisition characteristics of CL and BL are advantageous for the high throughput, massively parallel testing of micro-sized samples demanded in drug discovery. Current progress and the prospects for CL and BL immunoassay and nucleic acid technologies in this and other pharmaceutical and food applications is reviewed. © 1998 John Wiley & Sons, Ltd.  相似文献   

3.
Hu Y  Li G  Zhang Z 《Luminescence》2011,26(5):313-318
In this paper, the novel trivalent copper–periodate complex {K5[Cu(HIO6)2], DPC} has been applied in a luminol‐based chemiluminescence (CL) reaction. Coupled with flow injection (FI) technology, the FI‐CL method was proposed for the determination of lincomycin hydrochloride. The CL reaction between luminol and DPC occurred in an alkaline medium. The CL intensity could be greatly enhanced by lincomycin hydrochloride. The relative CL intensity was proportional to the concentration of lincomycin hydrochloride in the range of 1 × 10?8 to 5 × 10?6 g mL?1 and the detection limit was at the 3.5 × 10?9 g mL?1 level. The relative standard deviation at 5 × 10?8 g mL?1 was 1.7% (n = 9). The sensitive method was successfully applied to the direct determination of lincomycin hydrochloride (ng mL?1) in serum. A possible mechanism of the lumonol–DPC CL reaction was discussed by the study of the CL kinetic characteristics and the spectra of CL reaction. The oxidability of DPC was studied by means of its electrochemical response. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
A novel flow injection analysis‐direct chemiluminescence (FI‐CL) method has been developed for determination of trace amounts of dopamine (DA) based on the enhancing effect of DA on the CL reaction of luminol with an Ag(III) complex in alkaline solution. Under optimum conditions, CL intensities are proportional to the concentration of DA in the range of 1.0 × 10?10 to 4.0 × 10?8 mol L?1. The detection limit is 3.0 × 10?11 mol L?1 for DA (3s), with a relative standard deviation (n = 13) of 2.3% for 1.0 × 10?8 mol L?1 DA. This method has also been applied for the determination of DA in commercial pharmaceutical injection samples. On the basis of the CL spectra and the results of the free‐radical trapping experiment of this work, a reaction mechanism for this CL reaction is proposed and discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
6.
Several authors have reported on high-sensitivity measurement of oxygen-dependent low-level chemiluminescence (CL) from Maillard reactions (MR), i.e. nonenzymatic amino-carbonyl reactions between reducing sugars and amino acids (also referred to as nonenzymatic browning). Here we report for the first time, that light from Maillard reactions can be seen by the human eye and also can be photographed. In parallel with visual perception and photography CL was monitored by means of a CL-detection programme of a liquid scintillation counter (LSC, single photon rate counting). CL emission spectrum was recorded by a monochromator-microchannel plate photomultiplier arrangement. CL intensity from reaction of 6-aminocaproic acid with D-ribose (200 mg each) in 5 mL H2O at pH 11 at 95°C was high enough for visual perception after adaptation to absolute darkness. Reaction in dimethylsulphoxide (DMSO) exhibited strongly enhanced CL (10 mg each in 5 mL were sufficient for visual detection) and could be photographed (15 minutes' exposure, ASA 6400); all characteristics of Maillard specific CL (O2-dependence, no CL from nonreducing sugars, inhibition by sulphur compounds) remained. Visual detection of CL and measurement by LSC were in full concordance. The CL emission spectrum showed two broad peaks at around 500 nm and 695 nm. Fluorescence emission of the brown reaction mixture matched the bluegreen part of the CL emission spectrum. Emission of visible light during Maillard reactions may partly originate from oxygen-dependent generation of excited states and energy transfer to simultaneously formed fluorescent products of the browning reaction.  相似文献   

7.
This review will discuss various approaches and techniques in which analysis using microfluidics–chemiluminescence systems (MF–CL) has been reported. A variety of applications is examined, including environmental, pharmaceutical, biological, food and herbal analysis. Reported uses of CL reagents, sample introduction techniques, sample pretreatment methods, CL signal enhancement and detection systems are discussed. A hydrodynamic pumping system is predominately used for these applications. However, several reports are available in which electro‐osmotic (EO) pumping has been implemented. Various sample pretreatment methods have been used, including liquid–liquid extraction, solid‐phase extraction and molecularly imprinted polymers. A wide range of innovative techniques has been reported for CL signal enhancement. Most of these techniques are based on enhancement of the mixing process in the microfluidics channels, which leads to enhancement of the CL signal. However, other techniques are also reported, such as mirror reaction, liquid core waveguide, on‐line pre‐derivatization and the use of an opaque white chip with a thin transparent seal. Photodetectors are the most commonly used detectors; however, other detection systems have also been used, including integrated electrochemiluminescence (ECL) and organic photodiodes (OPDs). Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
A practical exercise is presented for determination of very low amounts (ng/l) of As(III) by flow injection (FI) and hydride generation and atomic absorption spectrometry detection. The exercise is directed towards students at the advanced undergraduate level, and it is intended to be an introduction to procedures of FI, which by relatively uncomplicated equipment provide analysis with excellent performance. With the method presented, it can be shown that assays of As(III) in natural waters can be performed only if an on-line preconcentration step is incorporated into the FI manifold. The method offers a unique illustration of the versatility of the FI approach in sample manipulation to reach low detection limits as well as a demonstration of cleverly exploiting kinetic discrimination schemes for promoting the main reaction and eliminating potential side reactions and interferences.  相似文献   

9.
Fang Zhao  Qi Fan  Huan Cai 《Luminescence》2014,29(3):219-224
A novel, rapid and sensitive chemiluminescence (CL) method combined with flow‐injection (FI) has been established for the estimation of olanzapine. This method is based on the CL signal generated between N‐chlorosuccinimide and olanzapine in an alkaline medium in the presence of calcein and Zn(II). Under optimum conditions, the CL signal was proportional to the olanzapine concentration ranging from 1.0 × 10‐10 to 3.0 × 10‐7 g/mL. The detection limit is 8.9 × 10‐11 g/mL olanzapine (3σ) and the relative standard deviation for 3.0 × 10‐9 g/mL of olanzapine is 1.9% (n = 11). The current CL method was applied to determine olanzapine in pharmaceutical formulations and biological fluids with satisfactory results. The possible CL reaction mechanism is discussed briefly. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
A novel flow‐injection chemiluminescence (FI‐CL) analysis method for the determination of gemifloxacin in the presence of cetyltrimethylammonium bromide (CTAB) surfactant micelles is described. Strong CL signal was generated during the reaction of gemifloxacin with diperiodatoargentate (III) in a sulfuric acid medium sensitized by CTAB. Under optimum experimental conditions, the CL intensity was linearly related to the concentration of gemifloxacin from 1.0 × 10‐9 to 3.0 × 10‐7 g/mL and the detection limit was 7.3 × 10‐10 g/mL (3σ). The relative standard deviation (RSD) was 1.7 % for a 3.0 × 10‐8 g/mL gemifloxacin solution (11 repeated measurements). The proposed method was successfully applied to the determination of gemifloxacin in pharmaceutical preparations and biological fluids. The possible mechanism of the CL reaction is also discussed briefly. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
Guowei Wang  Fang Zhao  Ying Gao 《Luminescence》2014,29(8):1008-1013
A novel post‐chemiluminescence (PCL) reaction was discovered when lercanidipine was injected into the CL reaction mixture of N‐chlorosuccinimide with alkaline eosin Y in the presence of cetyltrimethylammonium bromide (CTAB), where eosin Y was used as the CL reagent and CTAB as the surfactant. Based on this observation, a simple and highly sensitive PCL method combined with a flow injection (FI) technique was developed for the assay of lercanidipine. Under optimum conditions, the CL signal was linearly related to the concentration of lercanidipine in the range 7.0 × 10‐10 to 3.0 × 10‐6 g/mL with a detection limit of 2.3 × 10‐10 g/mL (3σ). The relative standard deviation (RSD) was 2.1% for 1.0 × 10‐8 g/mL lercanidipine (n = 13). The proposed method had been applied to the estimation of lercanidipine in tablets and human serum samples with satisfactory results. The possible CL mechanism is also discussed briefly. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Liu Z  Jia F  Wang W  Wang C  Liu Y 《Luminescence》2012,27(4):297-301
A novel method was developed using molecular imprinting technology (MIT) coupled with flow‐injection chemiluminescence (FI‐CL) for highly sensitive detection of phenformin hydrochloride (PH). The phenformin imprinted polymer was synthesized with methacrylic acid (MAA) as a functional monomer and ethylene glycol dimethacrylate (EGDMA) as a cross‐linker. Newly synthesized molecularly imprinted polymer (MIP) particles were packed into a column as a selective recognition element for determination of PH. A CL method for the determination of PH was developed based on the CL reaction of PH with N‐bromosuccinimide sensitized by eosin Y in basic media. The optimization of detection conditions was investigated. The CL intensity responded linearly to the concentration of PH in the range 0.09–2.0 µg/mL, with a correlation coefficient of 0.9920. The detection limit was 0.031 µg/mL. The relative standard deviation for the determination of 1.0 µg/mL PH solution was 1.0% (n = 11). The method was applied to the determination of PH in urine samples, with satisfactory results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
A new chemiluminescence (CL) system based on the reaction of Ag(III) complex with luminol is, for the first time, reported in this work. Incorporated with a flow injection analyses (FIA), the new CL system has been applied for the determination of free cortisol in human sera. The system is based on the CL reaction of luminol with Ag(III) in alkaline solutions, while cortisol can dramatically enhance CL intensities. Under optimum conditions, CL intensities are proportional to concentration of cortisol in the range of 0.05-7.5 nM. The limit of detection is 2.0 × 10−11 M (3σ), with a relative standard deviation (n = 11) of 1.9% for 3.5 × 10−9 M cortisol. Eight human blood serum samples were all handled by solid-phase extraction (SPE) clean-up and enrichment before detection. This detection system is highly sensitive and convenient and may find wide applications. Based on the chemiluminescent spectra, a possible reaction mechanism is also suggested.  相似文献   

14.
A sensitive and convenient flow‐injection chemiluminescence (FI‐CL) turn‐on assay for alkaline phosphatase (ALP) activity without any label and synthesis is developed. Cu2+ can catalyze the luminol–H2O2 CL reaction. Pyrophosphate (PPi) can chelate Cu2+ and therefore the Cu2+‐mediated luminol‐H2O2 CL reaction is inhibited. The addition of ALP can catalyze the hydrolysis of PPi into phosphate ions, Cu2+ is released and the chemiluminescence recovers. A detection limit of 1 mU/mL ALP is obtained.  相似文献   

15.
Polymer dots (PDs) are a new family of quantum dots for which their behavior and potential applications have not yet been completely explored. In this study, nonconjugated PDs were synthesized using a simple pyrolysis method and used for the chemiluminescence (CL) assay of 4-nitrophenol (4-NP). PDs increased the CL signal of the Ce(IV)–Na2SO3 reaction 39-fold. Using the CL spectrum, it was concluded that the emission at 434 nm was generated by excited PDs (PDs*), which are produced by energy transfer from SO2* to PDs. Our experiments showed that 4-NP enhanced the CL signal of the Ce(IV)–Na2SO3–PDs reaction. The mechanism of this effect was explored by obtaining CL, ultraviolet–visible, and Fourier transform infrared spectra. Due to the high sensitivity and selectivity of the CL system for 4-NP, a probe was designed to determine 4-NP in the linear range 1.0–500 nmol/L with a detection limit of 0.33 nmol/L. Different spiked real samples were successfully analyzed using this probe.  相似文献   

16.
Jianxiu Du  Jiuru Lu 《Luminescence》2004,19(6):328-332
The post-chemiluminescence phenomenon arising from the permanganate-luminol reaction induced by hydrazine and isoniazid was investigated. When hydrazine or isoniazid was injected into the mixture after the end of the reaction of permanganate with alkaline luminol, a new chemiluminescence (CL) reaction was initiated and strong CL signal was detected. A possible CL mechanism is suggested, based upon the studies of the kinetic characteristics of the CL reaction, the UV-visible spectra, the CL spectra and some other experiments. The present reactions allow the determination of 0.1-10.0 mg/L hydrazine and 0.02-1.0 mg/L isoniazid, with detection limits of 0.03 mg/L and 0.006 mg/L, respectively. The method was applied to the determination of isoniazid in pharmaceutical preparations.  相似文献   

17.
The flow‐injection chemiluminescence (FI‐CL) behavior of a gold nanocluster (Au NC)–enhanced rhodamine B–KMnO4 system was studied under alkaline conditions for the first time. In the present study, the as‐prepared bovine serum albumin‐stabilized Au NCs showed excellent stability and reproducibility. The addition of trace levels of fluvoxamine maleate (Flu) led to an obvious decline in CL intensity in the rhodamine B–KMnO4–Au NCs system, which could be used for quantitative detection of Flu. Under optimized conditions, the proposed CL system exhibited a favorable analytical performance for Flu determination in the range 2 to 100 μg ml?1. The detection limit for Flu measurement was 0.021 μg ml?1. Moreover, this newly developed system revealed outstanding selectivity for Flu detection when compared with a multitude of other species, such as the usual ions, uric acid and a section of hydroxy compounds. Additionally, CL spectra, UV–visible spectroscopes and fluorescence spectra were measured in order to determine the possible reaction mechanism. This approach could be used to detect Flu in human urine and human serum samples with the desired recoveries and could have promising application under physiological conditions.  相似文献   

18.
The main purpose of this study was to develop an inexpensive, simple, rapid and sensitive chemiluminescence (CL) method for the determination of glutamine (Gln) using a flow‐injection (FI) system. Gln was found to strongly inhibit the CL signal of the luminol–H2O2–CuSO4 system in Na2B4O7 solution. A new FI‐CL method was developed for the determination of Gln. Parameters affecting the reproducibility and CL detection were optimized systematically. Under the optimized conditions, the corresponding linear regression equation was established over the range of 5.0 × 10?7 to 2.5 × 10?6 mol/L with the detection limit of 1.8 × 10?8 mol/L. The relative standard deviation was found to be 1.8% for 11 replicate determinations of 1.5 × 10?6 mol/L Gln. The proposed method has been satisfactorily applied for the determination of Gln in real samples (Marzulene‐s granules) with recoveries in the range of 98.7–108.6%. The minimum sampling rate was about 100 samples/h. The possible mechanism of this inhibitory CL was studied by fluorescence spectrophotometer and UV–vis spectrophotometer. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Formation of a semiquinone free radical derived from chlorophyll in the reaction of photoreduction has been discovered by A. A. Krasnovsky, Sr. in 1953. This review consider the results obtained in the author's laboratory, concerning the participation of free radicals in photochemical reactions under UV-irradiation of aromatic amino acids, proteins, and lipids, as well as in the reactions of chemiluminescence (CL) in the protein and chlorophyll-containing systems. Free radicals are the very first products of photochemical reactions in all systems studied. The back reactions of radicals are accompanied with photon emission. From the point of view of the molecular energetics, the radiativeless electronic transition in molecules is the most probable event, the transition triplet level is less probable, and the transition to the singlet excited level is virtually impossible. This may explain the low quantum yield of CL, similarity of CL and phosphorescence (rather than fluorescence) spectrum of the reaction products, low quantum yield of CL, and its high temperature coefficient.  相似文献   

20.
In this review, tagging techniques with reagents used for ultraviolet-visible (UV-Vis), fluorescent (FL), chemiluminescent (CL) and electrochemical detection (ED) for higher carboxylic acids in HPLC are evaluated in terms of the tagging reactions, handling, flexibility, stability of the reagents and the corresponding derivatives, sensitivity and selectivity. Emphasis is given to the applications of these tagging techniques to biologically important carboxylic acids of relatively high molecular mass including free fatty acids, prostaglandins, leukotrienes and thromboxanes etc. Some typical examples are described. Although RIA and GC-MS are powerful techniques for the highly sensitive determination of carboxylic acids, tagging for these techniques is not included in this review because recent progress in tagging methods has been mainly concerned with HPLC detection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号