首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neuropeptide Y (NPY), immunoreactive (IR), and tyrosine hydroxylase (TH)-IR nerve fibers were scarce at birth in rat heart, but increased rapidly during the first 2 postnatal weeks, reaching approximately adult levels by the third week. The sequence of development was: interatrial septum and atrial wall, free ventricular wall starting from the epicardium, and finally the atrial appendages and interventricular septum. In ventricles and atrial appendages both fiber types developed similarly. In interatrial septum and atrial walls more NPY-IR than TH-IR fibers were evident, and NPY-IR, but not TH-IR, neurons were detected in intrinsic ganglia. Doublelabel immunohistochemistry provided further evidence that NPY is located in ventricular and atrial noradrenergic nerves, but is also located in nonnoradrenergic nerves in atria.  相似文献   

2.
Summary Histochemical, immunocytochemical, and radioenzymatic techniques were used to examine the neurotransmitter-related properties of the innervation of thoracic hairy skin in rats during adulthood and postnatal development. In the adult, catecholamine-containing fibers were associated with blood vessels and piloerector muscles, and ran in nerve bundles throughout the dermis. The distribution of tyrosine hydroxylase (TH)-immunoreactive (IR) fibers was identical. Neuronal fibers displaying neuropeptide Y (NPY) immunoreactivity were seen in association with blood vessels. Double-labeling studies suggested that most, if not all, NPY-IR fibers were also TH-IR and likewise most, if not all, vessel-associated TH-IR fibers were also NPY-IR. Calcitonin gene-related peptide (CGRP)-IR fibers were observed near and penetrating into the epidermis, in close association with hair follicles and blood vessels, and in nerve bundles. A similar distribution of substance P (SP)-IR fibers was evident. In adult animals treated as neonates with the sympathetic neurotoxin 6-hydroxydopamine, a virtual absence of TH-IR and NPY-IR fibers was observed, whereas the distribution of CGRP-IR and SP-IR fibers appeared unaltered. During postnatal development, a generalized increase in the number, fluorescence intensity, and varicose morphology of neuronal fibers displaying catecholamine fluorescence, NPY-IR, CGRP-IR, and SP-IR was observed. By postnatal day 21, the distribution of the above fibers had reached essentially adult levels, although the density of epidermal-associated CGRP-IR and SP-IR fibers was significantly greater than in the adult. The following were not evident in thoracic hairy skin at any timepoint examined: choline acetyltransferase activity, acetylcholinesterase histochemical staining or immunoreactivity, fibers displaying immunoreactivity to vasoactive intestinal peptide, cholecystokinin, or leucine-enkephalin. The present study demonstrates that the thoracic hairy skin in developing and adult rats receives an abundant sympathetic catecholaminergic and sensory innervation, but not a cholinergic innervation.  相似文献   

3.
Interscapular brown adipose tissue (IBAT), a site of nonshivering thermogenesis in mammals, is neurally controlled. The co-existence of sympathetic and peptidergic innervation has been demonstrated in different brown adipose depots. We studied the morphological profile of IBAT innervation and tested by immunohistochemical methods whether cold and warm stimulation are accompanied by modifications in the density of parenchymal noradrenergic nerve fibers. We also studied the immunoreactivity of afferent fibers—which contain calcitonin gene-related peptide (CGRP) and substance P (SP)<197>in different functional conditions. IBAT was obtained from adult rats (6 weeks old) acclimated at different temperatures (4°, 20°, and 28°C). Tissue activity was evaluated by studying the immunolocalization of uncoupling protein (UCP-1), a specific marker of brown adipose tissue. Noradrenergic and peptidergic innervation were seen to arise from morphologically different nerves. Fibers staining for tyrosine hydroxylase (TH) were thin, unmyelinated hilar nerves, and CGRP- and SP-positive fibers were in thick nerves containing both myelinated and unmyelinated fibers. Under cold stimulation, noradrenergic neurons produce greater amounts of TH, and their axons branch, resulting in increased parenchymal nerve fibers density. Neuropeptide Y (NPY) probably co-localizes with TH in noradrenergic neurons, but only in the perivascular nerve fiber network. The parenchymal distribution of NPY to interlobular arterioles and capillaries suggests that this peptide must have other functions besides that of innervating arteriovenous anastomoses, as hypothesized by other researchers. The different distribution of CGRP and SP suggests the existence of different sensory neuronal populations. The detection of CGRP at the parenchymal level is in line with the hypothesis of a trophic action of this peptide.  相似文献   

4.
The postnatal development of the human hippocampal formation establishes the time and place at which we start autobiographical memories. However, data concerning the maturation of the neurochemical phenotypes characteristic of interneurons in the human hippocampus are scarce. We have studied the perinatal and postnatal changes of the dentate gyrus (DG) interneuron populations at three rostrocaudal levels. Immunohistochemically identified neurons and fibers for somatostatin (SOM-12 and SOM-28) and neuropeptide Y (NPY) and the co-localization of SOM-28 and NPY were analyzed. In total, 13 cases were investigated from late pregnancy (1 case), perinatal period (6 cases), first year (1 case), early infancy (3 cases), and late infancy (2 cases). Overall, the pattern of distribution of these peptides in the DG was similar to that of the adult. The distribution of cells was charted, and the cell density (number of positive cells/mm2) was calculated. The highest density corresponded to the polymorphic cell layer and was higher at pre- and perinatal periods. At increasing ages, neuron density modifications revealed a decrease from 5 postnatal months onward. In contrast, by late infancy, two immunoreactive bands for SOM-28 and NPY in the molecular layer were much better defined. Double-immunohistochemistry showed that NPY-positive neurons co-localized with SOM-28, whereas some fibers contained only one or other of the neuropeptides. Thus, this peptidergic population, presumably inhibitory, probably has a role in DG maturation and its subsequent functional activity in memory processing.  相似文献   

5.
The developmental pattern and distribution of peptide-containing neurons in the rat heart right atrium has been studied by indirect immunofluorescence. Antibodies against neuropeptide Y (NPY), substance P (SP), and vasoactive intestinal polypeptide (VIP) were applied to whole-mount stretch preparations of the right atria from hearts of newborn to 40-day-old animals. NPY-like immunoreactivity (LI) was compared with the synaptic vesicle marker SV2 in double immunoincubation studies. The distribution of immunofluorescence was studied by confocal laser scanning microscopy. NPY-LI and SP-LI were present throughout the atria already at birth, in contrast to VIP-LI that was observed at day 10. The postnatal changes of innervation were basically quantitative, with an increase in density of nerve fibres and number of varicosities, while the basic pattern of innervation was essentially established during the first 1–10 days. NPY- and SP-positive bundles of fibres appeared to enter the right atrium along the superior caval vein, having extrinsic origins. Nerve fibres with NPY-LI colocalized in most nerve terminals with SV2-LI, and showed a developmental pattern similar to that observed for adrenergic neurons earlier. These NPY/SV2 positive fibres probably represent the extrinsic NPY innervation. In addition, NPY-LI was identified in large intrinsic nerve cells bodies located near the atrioventricular (AV) region. Most of the VIP-LI was observed in short nerve fibres originating in intrinsic VIP-positive cell bodies, but a few apparently extrinsic VIP-positive fibres were found, probably representing preganglionic parasympathetic neurons. SP in the atria was probably of extrinsic (sensory) origin and no nerve cell bodies with SP-LI were detected. The results show that the peptidergic innervation in the developing rat right atrium involves both extrinsic and intrinsic peptidergic neurons which may participate in the regulation of neurotransmission in local neuronal circuits.  相似文献   

6.
We have used immunofluorescence to study the postnatal development of the sympathetic and sensory innervation to the rhesus monkey (Macaca mulatta) ovary. Sympathetic nerves were identified as adrenergic by their content of tyrosine hydroxylase (TH)-like immunoreactivity and as peptidergic by the presence of neuropeptide Y (NPY). Fibers containing substance P (SP) or calcitonin gene-related peptide (CGRP)-like immunoreactivity were considered as sensory, whereas vasoactive intestinal peptide (VIP)-positive fibers were only defined as peptidergic because VIP may be present in both sympathetic and sensory nerves. Ovaries from neonatal (2-mo-old), juvenile (9-18-mo-old), peripubertal (3-3.5-yr-old), adult (9-14-yr-old), and senescent (20-27-yr-old) monkeys were studied. At all ages, with the exception of senescence, TH-, NPY-, and VIP-containing fibers were associated with follicles in different developmental stages. In peripubertal and adult animals, some primordial follicles were found to be selectively innervated by VIPergic fibers that almost completely encircled each follicle. Both sympathetic and VIP fibers were also detected in the interstitial tissue and associated with the ovarian vasculature at all ages. The number of sympathetic and VIP fibers increased significantly (p < 0.01) between 2 mo and 9-18 mo of age, and again increased (p < 0.01) around the age of puberty (approximately 3 yr of age). After this time, the number of NPY and TH fibers remained constant. Conversely, the number of VIP fibers decreased (p < 0.05) by 9-14 yr of age, but remained constant thereafter.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
8.
The distribution of calcitonin gene-related peptide (CGRP), substance P/tachykinin (SP/TK), vasoactive intestinal polypeptide (VIP), neuropeptide Y (NPY) and gastrin-releasing peptide (GRP) immunreactivities (IR) in the rat pancreas was investigated using radioimmunoassay and immunohistochemistry. CGRP, NPY and VIP tissue contents are much higher than GRP and SP/TK concentrations. Peptide-containing nerves are distributed to both the exocrine and endocrine pancreas. However, differences exist in terms of density and targets of innervation for each peptidergic system. In the acini and through the stroma, fibers IR for CGRP, NPY and VIP are greater than GRP- and SP/TK-containing processes. The vasculature is supplied by a prominent NPY, CGRP and, to a lesser extent, SP/TK innervation. VIP-IR is found occasionally, and GRP-IR is never detected, in fibers associated with blood vessels. Around ducts, CGRP- and NPY-positive neurites are greater than SP/TK- greater than or equal to VIP-IR fibers, whereas GRP-containing nerves are not visualized. In the islets, the density of peptidergic nerves is: VIP-, GRP- greater than or equal to CGRP-IR greater than NPY or SP/TK. In intrapancreatic ganglia. VIP- and, to a lesser extent, NPY-IRs are found in numerous neuronal cell bodies and in nerve fibers; GRP-IR is present in numerous nerve processes and in few cell bodies; CGRP- and SP/TK-IRs are detected only in fibers wrapping around unlabeled ganglion cells. The majority of CGRP-IR fibers contain SP/TK-IR. The existence of differential patterns of peptidergic nerves suggests that peptides exert their effects on pancreatic functions via different pathways.  相似文献   

9.
Melnick I  Pronchuk N  Cowley MA  Grove KL  Colmers WF 《Neuron》2007,56(6):1103-1115
Homeostatic regulation of energy balance in rodents changes dramatically during the first 3 postnatal weeks. Neuropeptide Y (NPY) and melanocortin neurons in the arcuate nucleus, a primary energy homeostatic center in adults, do not fully innervate the paraventricular nucleus (PVN) until the third postnatal week. We have identified two classes of PVN neurons responsive to these neuropeptides, tonically firing neurosecretory (NS) and burst-firing preautonomic (PA) cells. In neonates, NPY could inhibit GABAergic inputs to nearly all NS and PA neurons, while melanocortin regulation was minimal. However, there was a dramatic, age-dependent decrease in NPY responses specifically in the PA neurons, and a 3-fold increase in melanocortin responses in NS cells. These age-dependent changes were accompanied by changes in spontaneous GABAergic currents onto these neurons. This primarily NPYergic regulation in the neonates likely promotes the positive energy balance necessary for growth, while the developmental switch correlates with maturation of homeostatic regulation of energy balance.  相似文献   

10.
本实验用免疫细胞化学技术观察了不同年龄金黄地鼠视皮层和上丘中P物质(SP)阳性神经元数量和分布的变化,同时观察了不同年龄金黄地鼠视皮层SP阳性神经元的形态和类型。结果表明,出生后10天小鼠视皮层SP阳性神经元为36%,Ⅱ—Ⅳ层密度最大,约占40%。上丘中SP阳性神经元约为37%。出生后20天,视皮层及上丘中SP阳性神经元分别减少到23%和16%。视皮层Ⅱ—Ⅳ层减少最明显,Ⅴ层和Ⅵ层变化不大。成年鼠视皮层及上丘中偶见SP神经元,但出现一些SP阳性纤维。出生10天及20天鼠视皮层中SP阳性神经元的形态及类型没有差别。  相似文献   

11.
Immunocyochemical labeling was applied to follow the developmental changes in the calcium-binding proteins parvalbumin (PV), calbindin D28k (CaB), and calretinin (CaR) during fetal and infant development of Macaca monkey dorsal lateral geniculate nucleus (LGN). For all three proteins, LGN cell body and retinal ganglion cell (RGC) axon labeling patterns changed temporally and spatially over development, and many of these were LGN laminar specific. CaR+ and CaB+ cells were present at the youngest age studied, fetal day 55 (F55). After lamination of the LGN occurred between F90 and F115, CaR+ and CaB+ neurons were specific markers for the S, intercalated, and interlaminar layers. Double label immunocytochemistry showed that all CaR+ cells contained CaB, and none contained GABA. CaR+ cell bodies decreased in number soon after birth so that adult LGN contained only a very small number of CaR+ cells. These patterns and cell counts indicated that a downregulation of CaR had occurred in the CaB+ population. Although CaB+ cell density in S and interlaminar zones declined in the adult, cell counts indicated that this is due to dilution of a stable population into a much larger nucleus during development. PV+ cells appeared at F85 only within the putative magnocellular (M) and parvocellular (P) layers, and PV remained a marker for these layers throughout development. Fetal PV cells also contained GABA, indicating that they were LGN interneurons. After birth, GABA−/PV+ cell numbers increased dramatically throughout the whole nucleus so that by the end of the first year, P and M layers were filled with PV+ cells. Their number and size indicated that these were the LGN projection neurons. Beginning at F66, bundles of PV+ axons occupied the anterior-middle LGN and filled the optic tract. Up to F101, PV+ synaptic terminals were restricted to P layers, but after F132 labeling in M layers was heavier than in P layers. Axonal labeling for CaR began at F125. Prenatally CaR+ terminals were present mainly in P layers, whereas by postnatal 9 weeks labeling in M layers much exceeded P layers. Axonal labeling for CaB was present at F132, but CaB+ terminals were observed only after birth with labeling always heavier in M than P layers. By postnatal 9 weeks, PV, CaR, and CaB were colocalized in the same axons and terminals. These experiments indicated that during development and in the adult LGN, both CaR and CaB were markers for the LGN neurons in the S and intercalated pathway. CaR was present transiently while CaB persisted into adulthood. PV was a M and P layer marker first for interneurons and later for projection cells. The complex temporal developmental patterns found in this study suggested that viewing PV, CaB, and CaR simply as calcium-buffering proteins severely underestimates their functional roles during visual system maturation. © 1996 John Wiley & Sons, Inc.  相似文献   

12.
The immunochemical distribution of peptidergic and aminergic neurotransmitters in the exocrine pancreas of the Houbara bustard, Chlamydotis undulata, was determined. Immunoreactivity to choline acetyltransferase (ChAT), vasoactive intestinal polypeptide (VIP), and galanin (Gal) occurred mainly as varicose terminals in the walls of capillaries around the acini and arterioles within the connective tissue. Neuronal cell bodies immunoreactive to ChAT were infrequently observed. Neuropeptide Y (NPY), pancreatic polypeptide (PP), and somatostatin (Som) were observed mainly in intra-acinar cell bodies but nerve fibers immunoreactive to these neuropeptides were also seen along the basal surfaces of the acini. Immunoreactivity to NPY and PP was also discernible in cells of the pancreatic ducts. In addition, NPY occurred as varicose terminals in vessels around the ducts. SP occurred rarely in interacinar ganglia. The distribution of tyrosine hydroxylase (TH) was similar to that of ChAT and, in addition, the occasional TH immunoreactive intra-acinar neuronal cell body was observed. Neuronal nitric oxide synthase (nNOS) occurred in neuronal cell bodies among the acinar cells as well as nerve fibers along the bases of the acini. The potential roles of these peptidergic and aminergic neurotransmitters in the neurohormonal control of pancreatic secretion are discussed.  相似文献   

13.
In this study, we investigated whether the proangiogenic neuropeptides secretoneurin (SN), substance P (SP), and neuropeptide Y (NPY) contribute to the development of abnormal neovascularization in the oxygen-induced retinopathy (OIR) model in mice. By exposing litters of C57Bl/6N mice to 75% oxygen from postnatal day 7 (P7) until postnatal day 11 (P11) and then returning them to normoxic conditions, retinal ischemia and subsequent neovascularization on the retinal surface were induced. Retinae were dissected on P9, P11, P12-P14, P16 and P20, and the concentrations of SN, SP, NPY and VEGF determined by radioimmunoassay or ELISA. The levels of SN and SP increased in controls from P9 until P16 and from P9 until P14, respectively, whereas the levels of NPY were high at P9 and decreased thereafter until P20, suggesting that NPY may participate in the development of the retina. However, dipeptidyl peptidase IV (DPPIV) and the NPY-Y2 receptor were not detectable in the immature retina indicating that NPY is not involved in the physiological vascularization in the retina. Compared to controls, OIR had no effect on the levels of SN, whereas levels of both SP and NPY slightly decreased during hyperoxia. Normalization of the levels of SP, and to a more pronounced extent of NPY, was significantly delayed during relative hypoxia. This clearly indicates that these three neuropeptides are not involved in the pathogenesis of neovascularization in OIR. Moreover, since there were no differences in the expression of two vessel markers in the retina of NPY knockout mice versus controls at P14, NPY is also not involved in the delayed development of the intermediate and deep vascular plexus in the retina in this animal model.  相似文献   

14.
Ontogeny of the FMRFamide (molluscan cardioexcitatory neuropeptide)-containing structures in the forebrain and diencephalon of the rat was investigated by employing immunohistochemical methods. FMRFamide-like immunoreacted (FMRF-IR) fibers first appeared in the borders of the periventricular zone and the preoptic area at embryonic day 18 (E18). Toward birth, the FMRF-IR fibers gradually increased both in immunoreactivity and in number in these areas. A pronounced increase in FMRF-IR was also found in the septum, the arcuate nucleus, the median eminence, the paraventricular nucleus and the amygdaloid complex. A few FMRF-IR fibers appeared at the prenatal stage in the caudate nucleus, the bed nucleus of the stria terminalis, the dorsomedial nucleus and the cortex. The first FMRFamide-immunoreactive neurons were seen in the caudate-putamen and the amygdaloid complex at E21. These FMRF-IR cells increased in immunoreactivity and a significant number of cells was noted in these nuclei in the adult rat. The highest density of FMRF-IR neurons, especially in the amygdala and tuberal hypothalamic area, was detected at postnatal two weeks (P15). FMRFamide-like immunoreactivity in the forebrain and diencephalon appeared in the cell fibers prior to that observed in the cell bodies. This may suggest that some of the immunoreacted fibers may have originated from the lower areas of the rat brain. High densities of FMRF-IR cells present in the embryonic and early postnatal stages may indicate that FMRFamide is an important factor involved in developmental organization of the central nervous system. These results also indicate a differential genesis of FMRF-IR neuronal groups in different regions.  相似文献   

15.
Summary Immunohistochemical localization of substance P (SP), CGRP, VIP, neuropeptide Y (NPY), and somatostatin (SOM) in the carotid labyrinth were compared in some species of amphibians using the peroxidase-antiperoxidase method. Immunoreactivity of SP, CGRP, VIP, and NPY was found in the nerve fibers distributed in the intervascular stroma of the carotid labyrinth. SP, CGRP, and VIP immunoreactive varicose fibers were densely distributed in the peripheral portion of the carotid labyrinth. Some SP-immunoreactive fibers were distributed similarly to CGRP-immunoreactive fibers. The density of NPY and SOM immunoreactive varicose fibers was low. No immunoreactivity of enkephalins was observed in the labyrinth. The intensities of these peptides were varied from species to species. No glomus cells showed immunoreactivity for any of the 7 peptides studied. These results suggest that the vascular regulatory function, which is one of the possible functions of the carotid labyrinth, is controlled by the peptidergic mechanisms in addition to regulation through intimate apposition of glomus and smooth muscle cells (g-s connection).  相似文献   

16.
This study describes the immunocytochemical distribution of five neuropeptides (calcitonin gene-related peptide [CGRP], enkephalin, galanin, somatostatin, and substance P), three neuronal markers (neurofilament triplet proteins, neuron-specific enolase [NSE], and protein gene product 9.5), and two synaptic-vesicle-associated proteins (synapsin I and synaptophysin) in the spinal cord and dorsal root ganglia of adult and newborn dogs. CGRP and substance P were the only peptides detectable at birth in the spinal cord; they were present within a small number of immunoreactive fibers concentrated in laminae I-II. CGRP immunoreactivity was also observed in motoneurons and in dorsal root ganglion cells. In adult animals, all peptides under study were localized to varicose fibers forming rich plexuses within laminae I-III and, to a lesser extent, lamina X and the intermediolateral cell columns. Some dorsal root ganglion neurons were CGRP- and/or substance P-immunoreactive. The other antigens were present in the spinal cord and dorsal root ganglia of both adult and newborn animals, with the exception of NSE, which, at birth, was not detectable in spinal cord neurons. Moreover, synapsin I/synaptophysin immunoreactivity, at birth, was restricted to laminae I-II, while in adult dogs, immunostaining was observed in terminal-like elements throughout the spinal neuropil. These results suggest that in the dog spinal cord and dorsal root ganglia, peptide-containing pathways complete their development during postnatal life, together with the full expression of NSE and synapsin I/synaptophysin immunoreactivities. In adulthood, peptide distribution is similar to that described in other mammals, although a relative absence of immunoreactive cell bodies was observed in the spinal cord.  相似文献   

17.
The abundance of neuropeptide Y (NPY)-, vasoactive intestinal polypeptide (VIP)-, substance P (SP)-, and calcitonin gene-related peptide (CGRP)-immunoreactive nerve fibers in the carotid body was examined in chronically hypercapnic hypoxic rats (10% O2 and 6-7% CO2 for 3 months), and the distribution and abundance of these four peptidergic fibers were compared with those of previously reported hypocapnic- and isocapnic hypoxic carotid bodies to evaluate the effect of arterial CO2 tension. The vasculature in the carotid body of chronically hypercapnic hypoxic rats was found to be enlarged in comparison with that of normoxic control rats, but the rate of vascular enlargement was smaller than that in the previously reported hypocapnic- and isocapnic hypoxic carotid bodies. In the chronically hypercapnic hypoxic carotid body, the density per unit area of parenchymal NPY fibers was significantly increased, and that of VIP fibers was unchanged, although the density of NPY and VIP fibers in the previously reportetd chronically hypocapnic and isocapnic hypoxic carotid bodies was opposite to that in hypercapnic hypoxia as observed in this study. The density of SP and CGRP fibers was decreased. These results along with previous reports suggest that different levels of arterial CO2 tension change the peptidergic innervation in the carotid body during chronically hypoxic exposure, and altered peptidergic innervation of the chronically hypercapnic hypoxic carotid body is one feature of hypoxic adaptation.  相似文献   

18.
19.
Immunohistochemical localization of substance P (SP), CGRP, VIP, neuropeptide Y (NPY), and somatostatin (SOM) in the carotid labyrinth were compared in some species of amphibians using the peroxidase-antiperoxidase method. Immunoreactivity of SP, CGRP, VIP, and NPY was found in the nerve fibers distributed in the intervascular stroma of the carotid labyrinth. SP, CGRP, and VIP immunoreactive varicose fibers were densely distributed in the peripheral portion of the carotid labyrinth. Some SP-immunoreactive fibers were distributed similarly to CGRP-immunoreactive fibers. The density of NPY and SOM immunoreactive varicose fibers was low. No immunoreactivity of enkephalins was observed in the labyrinth. The intensities of these peptides were varied from species to species. No glomus cells showed immunoreactivity for any of the 7 peptides studied. These results suggest that the vascular regulatory function, which is one of the possible functions of the carotid labyrinth, is controlled by the peptidergic mechanisms in addition to regulation through intimate apposition of glomus and smooth muscle cells (g-s connection).  相似文献   

20.
Adult dentate neurogenesis is important for certain types of hippocampal-dependent learning and also appears to be important for the maintenance of normal mood and the behavioural effects of antidepressants. Neuropeptide Y (NPY), a peptide neurotransmitter released by interneurons in the dentate gyrus, has important effects on mood, anxiety-related behaviour and learning and memory. We report that adult NPY receptor knock-out mice have significantly reduced cell proliferation and significantly fewer immature doublecortin-positive neurons in the dentate gyrus. We also show that the neuroproliferative effect of NPY is dentate specific, is Y1-receptor mediated and involves extracellular signal-regulated kinase (ERK)1/2 activation. NPY did not exhibit any effect on cell survival in vitro but constitutive loss of the Y1 receptor in vivo resulted in greater survival of newly generated neurons and an unchanged total number of dentate granule cells. These results show that NPY stimulates neuronal precursor proliferation in the dentate gyrus and suggest that NPY-releasing interneurons may modulate dentate neurogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号