首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The relation between active transepithelial Na transport across rabbit ileum and 42K exchange from the serosal solution across the basolateral membranes has been explored. Although 42K influx across the basolateral membranes is inhibited by ouabain and by complete depletion of cell Na, it is not affected when transepithelial Na transport is abolished (i.e. in the presence of an Na-free mucosal solution) or stimulated (i.e. when glucose or alanine is added to the mucosal solution). We are unable to detect any relation between the ouabain-sensitive Na-K exchange mechanism responsible for the maintenance of intracellular Na and K concentrations and active transcellular Na transport. In addition, the maintenance of cell volume (water content) does not appear to be dependent upon transepithelial Na transport or the ouabain- sensitive Na-K exchange pump. Although the results of these studies cannot be considered conclusive, they raise serious questions regarding the role of the Na-K exchange pump, located at the basolateral membranes, in active transepithelial Na transport and the maintenance of cell volume.  相似文献   

2.
Stimulated erythropoiesis and reticulocytosis can be induced by daily bleeding, or by phenylhydrazine (PHZ) treatment. We compared the in vivo effects of PHZ and bleeding treatment on haematological, energy and redox status parameters in red blood cells (RBC) of rats. The results showed that all followed haematological parameters were significantly lower in bleeding, compared to PHZ-treated rats. PHZ induced even 2.58-fold higher reticulocytosis as compared to bleeding treatment. Although PHZ induced higher reticulocytosis, respiration intensity and energy production was lower than in bleeding-induced reticulocytes. These alterations were the consequence of increased superoxide anion and peroxynitrite concentrations in PHZ-treated rats. Bleeding treatment resulted in increased activity of an antioxidative enzyme, superoxide dismutase. In conclusion, differences in these two experimental models for reticulocytosis may be used as tools for appropriate pharmacological testing of redox-active substances considering energy and redox processes, as well as apoptosis pathways.  相似文献   

3.
Cation transport and cell volume changes in maturing rat reticulocytes   总被引:2,自引:0,他引:2  
During maturation, reticulocytes lose membrane material,including transporters, and this is accompanied by a loss of cell waterand volume. Here we determined a possible role of ion transport inadjusting cell volume during maturation. Reticulocytes and red bloodcells of different ages were prepared from erythropoietin-treated ratsby density gradient fractionation. Cell volume and ion transport weremeasured in freshly prepared cells and in reticulocytes during in vitromaturation. Reticulocytes had an increased K content and cell volume,whereas intracellular Na was decreased. All parameters approached wholeblood values after 2 days in culture. Na-K pump was elevated inreticulocytes and decreased during maturation. Na-K-2Cl cotransport(NKCC) activity was lower in reticulocytes and was activated 8- and20-fold by shrinkage and okadaic acid, respectively, whereasstimulation was barely detectable in high-buoyant density red bloodcells. The ouabain- and bumetanide-insensitive Na flux in reticulocytesdecreased on maturation. Most of it was inhibited by amiloride,indicating the presence of Na/proton exchange. Our results show that,although the Na-K-pump activity in reticulocytes is very muchincreased, the enhanced capacity of NKCC is essentially cryptic untilstimulated. Both types of capacities (activities) decrease duringmaturation, indicating a possible loss of transport protein. Thedecrease was constrained to the period of reticulocyte maturation. Lossof transport capacity appears to exceed the loss of membrane surfacearea. Reticulocyte age-related changes in the net electrochemicaldriving force indicate that the increasing NKCC activity mightcontribute to the reduction in cell water.

  相似文献   

4.
The growth of an epithelial canine kidney line (MDCK) was reversibly arrested by gradually lowering the serum concentration in the medium over a 3-day period. The cells were demonstrably quiescent by autoradiography after an additional 24 hours in serum-free media. Addition of fresh serum produced DNA synthesis after an 18-hour lag period. The quiescent cells then grew to confluency retaining their transport capacities as seen by the formation of “domes”. This system allows for measurement of monovalent ion fluxes and its relationship to growth regulation. The addition of fresh serum to quiescent MDCK cells increased the uptake of 86Rb, a measure of Na-K pump activity. This stimulation was mediated by increased uptake of Na into the cells. Serum-stimulated DNA synthesis was blocked by the addition of ouabain in concentrations that inhibit the Na-K pump. Serum appears to stimulate growth in epithelial cells by increasing the amount of intracellular Na available to the Na-K pump. Monovalent ion transport may play a role in the regulation of epithelial cell proliferation.  相似文献   

5.
The effect of subpressor doses of angiotensin II (ANG II) on vascular Na-K pump activity and Na-H exchange, two transmembrane signals of trophic stimulation of vascular muscle, was investigated. Male Sprague-Dawley rats (350-400 g) were given subpressor doses of ANG II by osmotic minipump intraperitoneally for 24 hr or 7-10 days. Control rats received sham procedure/vehicle infusion. Na-K pump activity (86Rb uptake), total and intracellular (Li exchange at 4 degrees C) Na content, and amiloride-sensitive and -insensitive Na uptake of aortas were measured ex vivo. Ouabain-sensitive 86Rb uptake of aortas of rats receiving 80-100, 160-180, and 240-260 ng/kg.min-1 of ANG II for 24 hr was 26.6 +/- 3.5, 28.8 +/- 3.4, and 29.1 +/- 2.6 nmol/mg dry wt.15 min-1 (mean +/- SD, n = 7-12), respectively, compared with 25.2 +/- 3.8 in controls (n = 23, P less than 0.01). These increases were maintained at 7-10 days. After 24 hr and 7-10 days of ANG II treatment, the total Na content of aortas was increased by 9.2% (P less than 0.01) and 7.6% (P less than 0.02), respectively, without a change in intracellular Na content, indicating accumulation of excess extracellular Na. Total and amiloride-sensitive Na uptake of the aorta was unchanged after 24 hr or 7-10 days of ANG II administration. The dry weight of anatomically defined segments of the aorta was 40 +/- 3.8 mg/kg body wt (n = 25) after 24 hr and 42 +/- 4.4 (n = 20) after 7-10 days of ANG II administration, compared with 37 +/- 4.8 (n = 15, P less than 0.05) and 37 +/- 4.9 (n = 17, P less than 0.01) in appropriate controls. Increased Na-K pump activity may signal the onset of trophic stimulation of vascular muscle by ANG II.  相似文献   

6.
The importance of delta mu H+ for transport of K+ via K(+)-ionophore and H(+)-K(+)-pump was studied. It was shown that the operation of the pump was decelerated by oxidant ferrycyanide, whereas sulfhydryl reagent dithiothreitol (DTT) drastically accelerated ATP driven ion exchange. Introduction of protonophore CCCP into the medium completely blocked the pump operation. However, the addition of DTT after CCCP restored the high level activity of the pump. At the same time DTT was unable to restore K+ accumulation after CCCP in aerobically grown bacteria for which the K+ uptake was performed across the electrical field gradient. Thus it was established that delta mu H+ was necessary for ATP driven ionic systems as a regulator of the membrane redox state.  相似文献   

7.
Intracellular sodium content ([Nai]), ouabain-sensitive ('Na-K ATPase') and ouabain-insensitive ('passive permeability') sodium efflux, Na-K cotransport and Na-Li ('Na-Na') countertransport were estimated in erythrocytes in 39 control subjects, 20 patients with essential hypertension, 14 patients with hypokalemia of renal or unknown etiology, 13 hyperthyroid patients and 19 pregnant women. In normokalemic essential hypertension there was only a moderate, but significant elevation of the activity of the Na-Li countertransport system. In the group of patients with hypokalemia, there was a significant increase of [Nai], ouabain-insensitive sodium efflux and Na-Li countertransport. In hyperthyroidism, a marked decrease of Na-Li countertransport was associated with a marked elevation of [Nai], in pregnancy an elevation of the Na-Li countertransport with a [Nai] 43% lower than the control values. The ouabain-sensitive sodium efflux was elevated in hyperthyroidism and hypokalemia, in which [Nai] was increased. In the control subjects there was a positive linear correlation between ouabain-sensitive sodium efflux and [Nai]. The sodium component of the Na-K cotransport was decreased to about one third of the unchanged furosemide-sensitive potassium component during pregnancy. Conclusions: The changes of cellular sodium metabolism in essential hypertension are of minor degree as compared to those in the other conditions studied. Cellular sodium metabolism in blood cells is influenced by thyroid hormones and metabolic disorders. Na-Li countertransport, i.e. Na-Na countertransport, seems to be involved in the regulation of [Nai]: an increase of its activity diminishes [Nai] (pregnancy); a decrease elevates [Nai] (hyperthyroidism). Ouabain-sensitive sodium efflux, i.e. 'Na-K ATPase', is mainly regulated by its substrate, [Nai].  相似文献   

8.
We have found that cation transport in red cells from chick embryos is stimulated by the hormone epinephrine and that this response develops as the embryonic definitive cells mature. Sodium efflux and potassium influx are significantly stimulated (50%) by epinephrine in red cells from embryos incubated ten days or longer, whereas cation fluxes in erythroid cells from 8- or 9-day embryos are stimulated little or not at all. The effect of epinephrine may be mediated by cyclic AMP as adenylate cyclase activity in membranes isolated from embryonic red cells is only slightly stimulated at nine days, but the response increases as the cells mature to a maximum of about 180%. Also the stimulation of cation transport by epinephrine is blocked by propranolol, but not by phentolamine. Although the younger cells respond poorly to epinephrine, cyclic AMP significantly stimulates transport. The enhancement of cation fluxes by epinephrine or cyclic AMP occurs even in the presence of ouabain. Since both K influx and Na efflux are enhanced by these agents, their action is most likely on some form of the “Na-K” pump which is not ouabain sensitive resulting in a significant increase in the maximum velocity of the pump. We suggest the hypothesis that there are two classes of “Na-K” pump in these embryonic cells. One pump is similar to that found in many erythrocytes including mammalian cells in that it selectively pumps potassium in and sodium out, is ouabain-sensitive, and is primarily involved in maintaining intracellular cation concentrations. The second pump is enhanced by epinephrine via cyclic AMP, is not inhibited by ouabain, and may have lower ion selectivity. This hormone sensitive pump activity is lost as the cells mature, a process which is completed when the animal is fully grown and no longer has significant numbers of embryonic cells in its circulation.  相似文献   

9.
Elevation of red cell sodium-lithium countertransport in hyperlipidemias   总被引:1,自引:0,他引:1  
Red cell Na-Li countertransport was measured in 78 normal subjects, 64 patients with essential hypertension, and 67 patients with hyperlipidemias. Both hypertensive and hyperlipidemic patients had elevated Na-Li countertransport compared to normal controls (p less than 0.001). Subjects with hyperlipidemia and hypertension had higher countertransport (p less than 0.02) than patients with only hyperlipidemia. Normotensive hyperlipidemic subjects had higher countertransport than normotensive and normolipidemic controls (p less than 0.02). This suggest that hypertension and high plasma lipids can influence independently the Na-Li countertransport. In another group of 52 normotensive subjects, Na-Li countertransport was positively correlated with serum total and free (unesterified) cholesterol, phospholipids and triglycerides. No correlations were found with HDL-cholesterol or HDL-phospholipids. A very high positive correlation was found between Na-Li countertransport and plasma acetylcholinesterase (p less than 0.005). These findings suggest that plasma lipids, probably through membrane lipids, can affect the maximal rate of the Na-Li exchange in red cells. The relationship between plasma or membrane lipids and cation transport should be further studied in erythrocytes and other cells.  相似文献   

10.
Na-Ca exchange activity in bovine cardiac sarcolemmal vesicles was stimulated up to 10-fold by preincubating the vesicles with 1 microM FeSO4 plus 1 mM dithiothreitol (DTT) in a NaCl medium. The increase in activity was not reversed upon removing the Fe and DTT. Stimulation of exchange activity under these conditions was completely blocked by 0.1 mM EDTA or o-phenanthroline; this suggests that the production of reduced oxygen species (H2O2, O2-.,.OH) during Fecatalyzed DTT oxidation might be involved in stimulating exchange activity. In agreement with this hypothesis, the increase in exchange activity in the presence of Fe-DTT was inhibited 80% by anaerobiosis and 60% by catalase. H2O2 (0.1 mM) potentiated the stimulation of Na-Ca exchange by Fe-DTT under both aerobic and anaerobic conditions; H2O2 also produced an increase in activity in the presence of either FeSO4 (1 microM) or DTT (1 mM), but it had no effect on activity by itself. Superoxide dismutase did not block the effects of Fe-DTT on exchange activity; however, the generation of O2-. by xanthine oxidase in the presence of an oxidizable substrate stimulated activity more than 2-fold. Hydroxyl radical scavenging agents (mannitol, sodium formate, sodium benzoate) did not attenuate the stimulation of activity observed with Fe-H2O2. Exchange activity was also stimulated by the simultaneous presence of glutathione (GSH; 1-2 mM) and glutathione disulfide (GSSG; 1-2 mM). Neither GSH nor GSSG was effective by itself and either 0.1 mM EDTA or o-phenanthroline blocked the effects on transport activity of the combination of GSH + GSSG. Treatment of the GSH and GSSG solutions with Chelex ion-exchange resin to remove contaminating transition metal ions reduced (by 40%) the degree of stimulation observed with GSH + GSSG. Full stimulating activity was restored to the Chelex-treated GSH and GSSG solutions by the addition of 1 microM Fe2+; Cu2+ was less effective than Fe2+ whereas Co2+ and Mn2+ were without effect. In the presence of 1 microM Fe2+, GSH alone produced a slight increase in transport activity, but this was markedly enhanced by the addition of Chelex-treated GSSG. The results indicate that stimulation of exchange activity requires the presence of both a reducing agent (DTT, GSH, O-.2, or Fe2+) and an oxidizing agent (H2O2, GSSG, and perhaps O2) and that the effects of these agents are mediated by metal ions (e.g. Fe2+).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
The passive K influx in low K(LK) red blood cells of sheep saturates with increasing external K concentration, indicating that this mode of transport is mediated by membrane-associated sites. The passive K influx, iMLK, is inhibited by external Na. Isoimmune anti-L serum, known to stimulate active K transport in LK sheep red cells, inhibits iMLK about twofold. iMLK is affected by changes in intracellular K concentration, [K]i, in a complex fashion: increasing [K]i from near zero stimulates iMLK, while further increases in [K]i, above 3 mmol/liter cells, inhibit iMLK. The passive K influx is not mediated by K-K exchange diffusion. The effects of anti-L antibody and [K]i on passive cation transport are specific for K: neither factor affects passive Na transport. The common characteristics of passive and active K influx suggest that iMLK is mediated by inactive Na-K pump sites, and that the inability to translocate Na characterizes the inactive pumps. Anti-L antibody stimulates the K pump in reticulocytes of LK sheep. However, anti-L has no effect on iMLK in these cells, apparently because reticulocytes do not have the inactive pump sites which, in mature LK cells, are a consequence of the process of maturation of circulating LK cells. The results also indicate that anti-L alters the maximum velocity of both active and passive K fluxes by converting pumps sites from a form mediating passive K influx to an actively transporting form.  相似文献   

12.
A biochemical model of active Na-K transport in cardiac cells was studied in conjunction with a representation of the passive membrane currents and ion concentration changes. The active transport model is based on the thermodynamic and kinetic properties of a six-step reaction scheme for the Na,K-ATPase. It has a fixed Na:K stoechiometry of 3:2, and its activation is governed by three parameters: membrane potential intracellular Na+ concentration, and interstitial K+ concentration. The Na-K pump current is directly proportional to the density of Na,K-ATPase molecules. The passive membrane currents and ion concentration changes involve only Na+ and K+ ions, and no attempt was made to provide a precise representation of Ca2+ currents or Ca2+ concentration changes. The surface-to-volume ratio of the interstitial compartment is 55 times larger than that of the intracellular compartment. The flux balance conditions are such that the original equilibrium concentration values are re-established at each stimulation cycle. The underlying assumptions of the model were checked against experimental measurements on Na-K pump activity in a variety of preparations. In addition, the qualitative validation of the model was carried out by comparing its behavior following sudden frequency shifts to corresponding experimental observations. The overall behavior of the model is quite satisfactory and it is used to provide the following indications: (1) when the intracellular and interstitial volumes are relatively large, the ion concentration transients are small and the pumping rate depends essentially on average concentration levels. (2) An increase in internal Na+ concentration potentiates the response of the Na-K pump to rapid membrane depolarizations. (3) When the internal Na+ concentration is large enough, the Na-K pump current transient plays an important role in shaping the plateau and repolarization phase of the action potential. (4) A rapid increase in external K+ concentration during voltage clamp in multicellular preparations could saturate the Na-K pump response and lead to a fairly linear dependence of the pump activity on the internal Na+ concentration.  相似文献   

13.
Erythrocyte cation transport, plasma prorenin and renin and sexual hormones were sequentially evaluated in 12 normal volunteers over the menstrual cycle. Na-K cotransport and Na-Li countertransport raised in 6 out of 12 subjects in synchronization with the ovulatory phase. When the maximal % variation (ovulatory phase) versus baseline (follicular phase) of the Na-K cotransport was plotted versus the maximal % increment of oestrogens. A direct, highly significant inverse correlation was observed (r = 0.904, p less than 0.001). Moreover, a highly significant inverse correlation between plasma prorenin and intraerythrocyte Na (r = -0.857, p less than 0.001) in the follicular phase was found. Our data suggest that erythrocyte cation transport can be influenced by sexual hormones in human.  相似文献   

14.
Cyclic AMP stimulation of Na-K pump activity in quiescent swiss 3T3 cells   总被引:3,自引:0,他引:3  
Recently, we have found that an increase in the intracellular level of cAMP acts as a mitogenic signal for Swiss 3T3 cells (Rozengurt et al., Proc. Natl. Acad, Sci. USA, 78:4392, 1981). The results presented in this paper demonstrate that addition of cAMP-elevating agents to confluent and quiescent cultures of Swiss 3T# causes a marked increase in the rate of 86Rb+ uptake but has no effect on the rate of cation efflux. The stimulation of ion uptake is mediated by the Na-K pump as shown by the ouabain sensitivity of the 86Rb+ fluxes. The increase in Na-K pump activity occurs whether cAMP is generated endogenously by stimulation of adenylate cyclase activity by cholera toxin, adenosine agonists, or PGE1 or added exogenously as 8BrcAMP. The stimulatory effect of these compounds on 86Rb+ uptake is potentiated by inhibitors of cyclic nucleotide phosphodiesterase activity. Cholera toxin stimulates the Na-K pump in a dose-dependent manner; half-maximal effect is achieved at 0.7 ng/ml. The stimulation of ouabain-sensitive 86Rb+ uptake by cAMP-elevating agents reaches a maximum after 2-3 h of incubation. This contrasts with the rapid (within minutes) stimulation of the Na-K pump caused by serum and other mitogenic agents. Further, cAMP-elevating agents fail to increase Na+ influx into 3T3 cells whereas serum causes a marked increase in Na+ influx, under identical experimental conditions. These findings suggest that the stimulation of Na-K pump activity caused by increased cAMP levels contrasts mechanistically with the rapid control of pump activity by serum which is primarily mediated by increased Na+ entry into the cells.  相似文献   

15.
The Na-K pump in cardiac Purkinje strands has been carefully studied with voltage clamp and Na+-selective microelectrodes. In three of these studies both the rate of change of intracellular Na+ activity, a(Nai), after pump blockade, and the time constant of reduction of a(Nai) after an Na+ load were measured. These two parameters can be employed with a formalism relating pump activity to a(Nai) in order to predict the a(Nai) in the steady state. Several formalisms were tested: (a) a first-order dependence on a(Nai); (b) a model based on the assumption of a single, saturable, Na+-binding site that must be occupied for transport to occur; (c) a model based on n equivalent, saturable, Na+ binding sites per pump molecule all of which must be occupied for transport to occur. The first two models predicted an a(Nai) that is far below the value of about 6 mM that is experimentally obtained. The third model would work for n greater than or equal to 4. These results suggest that either the cardiac Na-K pump is not well described by available Na-K pump models for n less than 4 or that the measured Na+ influx rate, extrusion rate or a(Nai) are in error.  相似文献   

16.
Amphiuma red cells were incubated for several hours in hypotonic or hypertonic media. They regulate their volume in both media by using ouabain-insensitive salt transport mechanisms. After initially enlarging osmotically, cells in hypotonic media return toward their original size by losing K, Cl, and H2O. During this volume-regulatory decrease (VRD) response, K loss results from a greater than 10-fold increase in K efflux. Cells in hypertonic media initially shrink osmotically, but then return toward their original volume by gaining Na, Cl, and H2O. The volume-regulatory increase (VRI) response involves a large (greater than 100-fold) increase in Na uptake that is entirely blocked by the diuretic amiloride (10(-3) M). Na transport in the VRI response shares many of the characteristics of amiloride-sensitive transport in epithelia: (a) amiloride inhibition is reversible; (b) removal of amiloride from cells pretreated with amiloride enhances Na uptake relative to untreated controls; (c) amiloride appears to act as a competitive inhibitor (Ki = 1-3 microM) of Na uptake; (d) Na uptake is a saturable function of external Na (Km approximately 29 mM); (e) Li can substitute for Na but K cannot. Anomalous Na/K pump behavior is observed in both the VRD and the VRI responses. In the VRD response, pump activity increases 3-fold despite a decrease in intracellular Na concentration, while in the VRI response, a 10-fold increase in pump activity is observed when only a doubling is predicted from increases in intracellular Na.  相似文献   

17.
1. The acute effects of veratridine on membrane potential (Em) and Na-K pump activity in cultured skeletal muscle were examined. 2. At a concentration of 10(-4) M, veratridine caused depolarization of Em and a decrease in Na-K pump activity. At concentrations of 10(-5) and 10(-6) M, veratridine caused oscillations of Em and an increase in Na-K pump activity compared to untreated, control cells. The oscillations consisted of depolarization to about -40 mV followed by hyperpolarization to about -90 mV; the level of hyperpolarization was higher at 37 than at 23 degrees C. 3. Veratridine-induced oscillations could be prevented by pretreatment with tetrodotoxin (10(-6) M) and blocked or prevented by ouabain, which depolarizes Em of cultured myotubes. In contrast, depolarization of Em to -60 mV by excess K+ did not alter the amplitude or frequency of the oscillations. 4. The results demonstrate that veratridine-induced increase in Na influx both depolarizes cultured myotubes and increases the activity of the Na-K pump, which repolarizes Em to levels higher than control. This sequence accounts for veratridine-induced oscillations in Em. High concentrations of veratridine cause only depolarization of Em and inhibition of Na-K pump activity.  相似文献   

18.
Vanadate is known to have an insulin-like action which stimulates sugar transport in some systems like adipocytes and muscle cells, but in other systems it inhibits sugar transport by decreasing the activity of (Na+ +K+)-ATPase. To evaluate whether these two opposing actions may influence sugar transport across the intestine, we studied the effects of acute and chronic vanadate administration on the uptake of glucose, galactose, and 3-O-methylglucose in isolated rat intestinal cells. The sugar uptake measurements were also coupled by determinations of rubidium-86 uptake as a measure of the activity of the Na-K pump. Both acute and chronic vanadate administration reduced rubidium uptake by the cells but the reduction did not uniformly influence the uptake of the three sugars in question which were stimulated by the acute exposure of the cells to vanadate. Glucose uptake was also stimulated by chronic vanadate administration, but the uptakes of galactose and 3-O-methylglucose were respectively unaffected or inhibited by chronic vanadate. The findings suggest that the effect of vanadate on sugar transport is dependent on the net difference between two actions of vanadate: (i) stimulation of a receptor site (possibly an insulin receptor site) in the intestinal cell membrane and (ii) inhibition of the Na-K pump. During acute vanadate exposure, the stimulation of the receptor site was very likely a dominant feature which overwhelms the inhibition of the pump. Chronic exposure to vanadate led, on the other hand, to only a limited degree of stimulation of the receptor site and the inhibition of the Na-K pump became evident in the uptake measurements of galactose and 3-O-methyl-glucose. Glucose uptake, however, was stimulated by chronic vanadate ingestion due, very likely, to an increase in the metabolism of this sugar which occurred only with prolonged exposure of the rat intestine to vanadate.  相似文献   

19.
V Duthinh  S R Houser 《Life sciences》1983,32(16):1885-1896
Recent studies have shown that numerous cellular alterations exist in hypertrophied-failing (HF) cardiac muscle. Of particular interest is the finding of an altered ability of the Na-K pump to regulate membrane potential in this tissue during periods of transient stimulation. The present study was designed to determine if this altered Na-K pump function is in any way related to the ability of this tissue to develop force. Along these lines the rate of stimulation (6/min) of normal and hypertrophied-failing right ventricular papillary muscles from cats was increased to 60/min for 90 sec. This procedure was repeated in solutions with low Na+, low Na+ and Ca++, and Ouabain. These solutions were utilized to vary the ionic load on the Na-K pump and the Na-Ca exchanger. The results demonstrate that the pattern of changes in tension in HF papillary muscles seen following periods of rapid stimulation are significantly different from those of normal muscles. The pattern of changes in mechanical performance were found to be similar to the membrane potential changes described in previous studies. In addition, lowering the Na+ load presented to HF muscles returned the characteristic pattern of changes in tension, following drive, toward normal. Ouabain was found to inhibit the changes in tension development following increased rates of stimulation that are thought to be produced by activation of the Na-K pump. The results suggest that the ability of the Na-K pump to maintain normal transmembrane ionic gradients may be altered in HF muscles. This alteration appears to be capable of affecting cellular Ca++ possibly through the Na-Ca exchange system.  相似文献   

20.
Mitogenesis of human blood lymphocytes in culture is inhibited by concentrations of ouabain that are approximately one order of magnitude lower than those that block Na and K transport. For example, the 50% inhibition (ID50) of Na-K transport, 280 nM, is seven-fold greater than the ID50 for RNA synthesis, DNA synthesis, or blastogenesis, ?40 nM. Yet, inhibition of transport and consequent reduction in cell K is considered responsible for the effects of ouabain on mitogenesis. Since synthetic processes are assessed at least 24 hours after lymphocyte stimulation, this discrepancy could be explained by either 1) a progressive increase in K leak, or 2) a progressive inhibition of Na-K transport by ouabain during 24 hours of PHA treatment. We found that the lymphocyte membrane leak rate of K increased immediately after PHA treatment but did not increase further from 4 to 24 hours. In contrast, the ouabain sensitivity of 42K uptake was markedly increased with time: ID50 for 42K uptake of 35 nM at 24 hours as compared to 280 nM at 30 minutes. Measurement of ouabain binding revealed a seven-fold increase in the lymphocyte-associated ouabain after 24 hours compared to binding at 1 hour. These data indicate that the dose response of ouabain inhibition of active K transport and lymphocyte proliferation are closely correlated if one considers the slow membrane binding of ouabain at low concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号