首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Villin is an actin-binding protein localized to intestinal and kidney brush borders. In vitro, villin has been demonstrated to bundle and sever F-actin in a calcium-dependent manner. Although villin is not necessary for the bundling of F-actin in vivo, it is important for the reorganization of the actin cytoskeleton elicited by stress during both physiological and pathological conditions (Ferrary et al., 1999). These data suggest that villin may be involved in actin cytoskeleton remodeling necessary for many processes requiring cellular plasticity. Here, we study the role of villin in hepatocyte growth factor (HGF)-induced epithelial cell motility and morphogenesis. For this purpose, we used primary cultures of enterocytes derived from wild-type and villin knock-out mice and Madin-Darby canine kidney cells, expressing villin in an inducible manner. In vitro, we show that epithelial cell lysates from villin-expressing cells induced dramatic, calcium-dependent severing of actin filaments. In cell culture, we found that villin-expressing cells exhibit enhanced cell motility and morphogenesis upon HGF stimulation. In addition, we show that the ability of villin to potentiate HGF-induced actin reorganization occurs through the HGF-activated phospholipase Cgamma signaling pathway. Collectively, these data demonstrate that villin acts as a regulator of HGF-induced actin dynamics.  相似文献   

3.
We prepared methyl 2,5-dihydroxycinnamate as a stable analogue of erbstatin, a tyrosine kinase inhibitor. This analogue was about 4 times more stable than erbstatin in calf serum. It inhibited epidermal growth factor receptor-associated tyrosine kinase in vitro with an IC50 of 0.15 μg/ml. It also inhibited in situ autophosphorylation of epidermal growth factor receptor in A431 cells. Methyl 2,5-dihydroxycinnamate was shown to delay the S-phase induction by epidermal growth factor in quiescent normal rat kidney cells, without affecting the total amount ofDNA synthesis. The effect of erbstatin on S-phase induction was smaller, possibly because of its shorter life time.  相似文献   

4.
5.
6.
7.
Estrogen synthesis in human colon cancer epithelial cells   总被引:7,自引:0,他引:7  
Epidemiological and experimental data suggest an involvement of estrogen in the development and progression of colorectal cancer. In order to determine whether local synthesis of estrogen occurred in human colonic cancer cells, two colorectal cancer cell lines, HCT8 and HCT116, were evaluated for gene expression and enzyme activity of cytochrome P450 aromatase. In addition, the effect on aromatase expression of charcoal-stripped fetal calf serum, of quercetin and genistein and of tamoxifen and raloxifene was investigated in both cell lines. RT-PCR analysis revealed that colorectal adenocarcinoma cell lines contain aromatase as a major component. The conversion of [3H]-androstenedione to estrone and labeled water was dose-dependently inhibited by 4-hydroxyandrostenedione and obeyed Michaelis–Menten kinetic with apparent Km values of 20 nM and Vmax values of approx. 200 and 500 fmol/mg protein/h for HCT8 and HCT116 cells, respectively. After 24 h incubation, genistein (1 μM) significantly increased aromatase activity in HCT8 cells, with no effect on HCT116 cells. In accord with previous observation in reproductive tissues, quercetin (1 μM) significantly inhibited the enzyme activity in both cell lines. Also tamoxifen (100 nM) acted as inhibitor, while raloxifene (10 nM) decreased the enzyme activity only in HCT116 cells. The aromatase gene expression modulation by these effective agents was consistent with their effects on enzyme activity. These findings demonstrate for the first time that colorectal adenocarcinoma cell lines express aromatase. Interestingly, the enzyme activity was inhibited by quercetin, one major dietary flavonoid, by tamoxifen, a hormonal therapeutic agent for breast cancer, and by raloxifene, used in the prevention of postmenopausal osteoporosis.  相似文献   

8.
The effects of epidermal growth factor (EGF) on the growth and morphology of mouse embryo epithelial cells (MMC-E) were studied in culture. Growing cultures of epithelial cells were incubated in the media containing EGF or certain other mitogenic peptides. It was found that nanogram (ng) quantities of EGF stimulated growth in these cells and caused reversible phenotypic changes in these cells. These changes were not observed in cultures treated with the other mitogens. The compact growing islands of MMC-E cells were surrounded by elongated border cells [12]. EGF induced the elongated border cells to flatten and spread. The change of the elongated border cells into polygonal, flattened cells was dependent on the dose of EGF. After treatment with higher concentrations of EGF all cells appeared more flattened and their cytoplasm was more granular than that of the controls. Scanning electron microscopic studies (SEM) showed that the elongated border cells in the control cultures were distinctly higher than the cells inside the islands, while after exposure to EGF they flattened and had fewer surface microvilli than control cells. When EGF was removed and the cells were further cultivated in media without EGF, the border cells became smaller and elongated, eventually resembling those in the control cultures. These results show that EGF may act as a regulatory factor in the control of the proliferation and differentiation of mouse epithelial cells.  相似文献   

9.
The epidermal growth factor-induced calcium signal in A431 cells   总被引:24,自引:0,他引:24  
Addition of epidermal growth factor (EGF) to human A431 cells causes a 2-4-fold increase in cytoplasmic free Ca2+ concentration ([Ca2+]i) as measured by quin-2 fluorescence. The EGF effect is rapid but transient: [Ca2+]i reaches a maximum within 30-60 s and then returns to its resting value (182 +/- 3 nM) over a 5-8-min period. The EGF-induced [Ca2+]i rise is completely dependent on extracellular Ca2+, is abolished by La3+ and Mn2+, and is not accompanied by changes in membrane potential (mean values of -64 mV). Serum also elicits a transient [Ca2+]i rise in A431 cells, but this response is not dependent on the presence of extracellular Ca2+. The tumor promoter 12-O-tetradecanoylphorbol 13-acetate completely inhibits the EGF- and serum-induced increases in [Ca2+]i without affecting basal [Ca2+]i levels. Our results, together with previous 45Ca2+ uptake data (Sawyer, S. T., and Cohen, S. (1981) Biochemistry 20, 6280-6286), suggest that while serum factors trigger the release of Ca2+ from internal stores, EGF acts by opening a voltage-independent Ca2+ channel in the plasma membrane. The data further suggest a role for protein kinase C in attenuating the Ca2+-mobilizing mechanisms of EGF and serum.  相似文献   

10.
11.
The number of distinct signaling pathways that can transactivate the epidermal growth factor receptor (EGFR) in a single cell type is unclear. Using a single strain of human mammary epithelial cells, we found that a wide variety of agonists, such as lysophosphatidic acid (LPA), uridine triphosphate, growth hormone, vascular endothelial growth factor, insulin-like growth factor-1 (IGF-1), and tumor necrosis factor-alpha, require EGFR activity to induce ERK phosphorylation. In contrast, hepatocyte growth factor can stimulate ERK phosphorylation independent of the EGFR. EGFR transactivation also correlated with an increase in cell proliferation and could be inhibited with metalloprotease inhibitors. However, there were significant differences with respect to transactivation kinetics and sensitivity to different inhibitors. In particular, IGF-1 displayed relatively slow transactivation kinetics and was resistant to inhibition by the selective ADAM-17 inhibitor WAY-022 compared with LPA-induced transactivation. Studies using anti-ligand antibodies showed that IGF-1 transactivation required amphiregulin production, whereas LPA was dependent on multiple ligands. Direct measurement of ligand shedding confirmed that LPA treatment stimulated shedding of multiple EGFR ligands, but paradoxically, IGF-1 had little effect on the shedding rate of any ligand, including amphiregulin. Instead, IGF-1 appeared to work by enhancing EGFR activation of Ras in response to constitutively produced amphiregulin. This enhancement of EGFR signaling was independent of both receptor phosphorylation and PI-3-kinase activity, suggestive of a novel mechanism. Our studies demonstrate that within a single cell type, the EGFR autocrine system can couple multiple signaling pathways to ERK activation and that this modulation of EGFR autocrine signaling can be accomplished at multiple regulatory steps.  相似文献   

12.
13.
The molecular basis of tumour promotion is still largely unknown. In in vitro model of tumour promotion, the promotion-sensitive cells are induced to grow under anchorage-independent conditions in the presence of promoting agent. The customary way of providing such conditions is to immobilize these cells in soft agar, but such cells cannot be readily recovered to study the induced biochemical and molecular events. In the present report, we analysed these events using JB6 mouse epidermal cells maintained in suspension in liquid medium over agarose. 12-O-Tetradecanoylphorbol-13-acetate (TPA) induced anchorage-independent synthesis of DNA in promotion-sensitive P+ (but not in promotion-resistant P?) JB6 cells and this TPA-induced synthesis of DNA positively correlated with TPA-induced formation of colonies in soft agar. The TPA-induced synthesis of DNA began on or shortly before 24 h after the introduction of TPA, peaked at about 48 h and then declined to the control levels over the next several days. All trans-retinoic acid and dexamethasone inhibited and calcitriol (1α,25-dihydroxyvitamin D3) synergistically stimulated this TPA-induced DNA synthesis. Western immunoblot analysis of cyclins (A, B1, D1 and E) and p27Kip1, a cyclin-dependent kinase inhibitor, indicated that TPA induced cyclin A and cyclin B1 expression in P+ (but not in P?) JB6 cells and this induction coincided in time with TPA-induced synthesis of DNA. TPA also strongly induced cyclin D1 expression in P+ (but not in P?) JB6 cells, but this induction started prior to the expression of cyclin A and cyclin B1. TPA did not affect the expression of either cyclin E or p27Kip1 to any significant extent. We also found that NMU38 rat mammary epithelial cells were operationally equivalent to the promotion-sensitive P+ JB6 cells, but in these cells 17β-oestradiol exerted a strong synergistic effect on TPA-induced synthesis of DNA. Based on these observations, we tentatively propose a sequence of molecular events which possibly lead to the anchorage-independent synthesis of DNA in these cells.  相似文献   

14.
15.
Plasma membranes derived from NR-6 cells, a variant line of Swiss mouse 3T3 cells that does not have cell surface receptors for epidermal growth factor (EGF), inhibited EGF-induced stimulation of DNA synthesis by 50% in serum-starved, subconfluent 3T3 cells. Membranes derived from SV3T3 cells were much less effective in inhibiting EGF-induced DNA synthesis. This inhibition on DNA synthesis by NR-6 membranes was not a direct effect of membranes on EGF, nor could it be overcome by high concentrations of EGF. NR-6 membranes were most effective when added 3 h before EGF addition and had little effect when added 2 h or more after EGF. NR-6 membranes also reduced the stimulation of DNA synthesis induced by platelet-derived growth factor or fibroblast growth factor in serum-starved 3T3 cells. These findings indicate that membrane- membrane interactions between nontransformed cells may diminish their ability to proliferate in response to serum polypeptide growth factors.  相似文献   

16.
17.
18.
A mouse mammary epithelial cell line, NMuMG, exhibits a low capacity to grow in semisolid medium as colonies and it is not tumorigenic in nude mice. In contrast, NMuMG cells which have been transformed by an activated c-Harvey ras proto-oncogene, NMuMG/rasH, or by the polyoma middle T-transforming gene, NMuMG/pyt, are able to grow in soft agar and, when injected into nude mice, produce undifferentiated carcinomas. Human epidermal growth factor (EGF) or human alpha-transforming growth factor (alpha TGF) can stimulate, in a dose-dependent fashion, the anchorage-independent growth of NMuMG and NMuMG/pyt cells in soft agar but fail to enhance the anchorage-independent growth of the NMuMGrasH cells. Likewise, human EGF or human alpha TGF is also able to stimulate the anchorage-dependent growth of normal NMuMG cells and NMuMG/pyt cells in a serum-free medium supplemented with insulin, transferrin, fetuin, and laminin, or in medium containing low concentrations of serum, whereas these same growth factors under comparable culture conditions have little or no effect upon the anchorage-dependent growth of the ras-transformed NMuMG-rasH cells. The biological refractoriness of the NMuMG/rasH cells to human EGF or human alpha TGF is reflected by a reduction in the total number of cell surface receptors for EGF and by an absence of a high-affinity population of binding sites for mouse [125l]EGF on these cells as compared to the NMuMG or NMuMG/pyt cells. In addition, concentrated conditioned medium (CM) obtained from NMuMG/rasH and NMuMG/pyt cells contains a relatively higher amount of biologically active TGFs than CM obtained from comparably treated NMuMG cells as measured by the ability to induce the anchorage-independent growth of normal rat kidney cells in soft agar. The higher levels of biologically active TGFs found in the CM from the transformed cells relative to the NMuMG cells is paralleled by a corresponding increase in the CM from these cells in the amount of immunoreactive alpha TGF, by an increase in the amount of EGF receptor-competing activity, and by an increase in the levels of alpha TGF mRNA in the NMuMG/rasH cells. These results demonstrate that mammary epithelial cells which have been transformed by an activated ras proto-oncogene, but not by the polyoma middle T-transforming gene, become unresponsive to exogenous EGF or alpha TGF.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Linoleic acid, arachidonic acid, prostaglandin E1, and prostaglandin E2 stimulated the proliferation of mammary epithelial cells in serum-free primary cultures only in the presence of epidermal growth factor. Linoleate-stimulated growth was manifest later in culture when proliferation, initiated by epidermal growth factor only, reached a plateau while linoleate-supplemented epidermal growth factor cultures continued to proliferate. The cultures in the plateau phase of growth could be restimulated to grow by adding either linoleic acid or prostaglandin E2 to the media. While the linoleate response could be abolished by the cyclooxygenase inhibitor, indomethacin, prostaglandin E2-stimulated growth remained unaffected. Linoleic acid was metabolized to arachidonic acid and prostaglandin E2, both in the growing and resting cultures. Proliferating cells metabolized linoleate and prostaglandin E2 extensively so that neither the fatty acid nor prostaglandin E2 accumulated in large quantities in the proliferating cultures. The concentrations of prostaglandin E2 in growing cultures supplemented with linoleic acid were much higher than in cultures without it. These results suggest that the metabolism of linoleic acid leading to prostaglandin production, not its contribution to membrane polyunsaturation, is necessary for sustained growth of mammary epithelial cells in the presence of epidermal growth factor.  相似文献   

20.
We have characterized the expression of transforming growth factor alpha (TGF alpha) and its receptor, the epidermal growth factor receptor (EGF-R), in normal and malignantly transformed human mammary epithelial cells. Human mammary epithelial cells were derived from a reduction mammoplasty (184), immortalized by benzo-a-pyrene (184A 1N4), and further transformed by the oncogenes simian virus 40 T (SV40 T), v-Ha-ras, and v-mos alone or in combination using retroviral vectors. 184 and 184A 1N4 cells require EGF for anchorage-dependent clonal growth. In mass culture, they secrete TGF alpha at high concentrations and exhibit an attenuated requirement for exogenous EGF/TGF alpha. SV40 T transformed cells have 4-fold increased EGF-R, have acquired the ability to clone in soft agar with EGF/TGF alpha supplementation, but are not tumorigenic. Cells transformed by v-mos or v-Ha-ras are weakly tumorigenic and capable of both anchorage dependent and independent growth in the absence of EGF/TGF alpha. Cells transformed by both SV40 T and v-Ha-ras are highly tumorigenic, are refractory to EGF/TGF alpha, and clone with high efficiency in soft agar. The expression of v-Ha-ras is associated with a loss of the high (but not low) affinity binding component of the EGF-R. Malignant transformation and loss of TGF alpha/EGF responsiveness did not correlate with an increase in TGF alpha production. Thus, TGF alpha production does not appear to be a tumor specific marker for human mammary epithelial cells. Differential growth responses to EGF/TGF alpha, rather than enhanced production of TGF alpha, may determine the transition from normal to malignant human breast epithelium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号