首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
2.
Comparison of both the DNA and protein sequences of catabolite gene activator protein (CAP) with the sequences of lac and gal repressors shows significant homologies between a sequence that forms a two alpha-helix motif in CAP and sequences near the amino terminus of both repressors. This two-helix motif is thought to be involved in specific DNA sequence recognition by CAP. The region in lac repressor to which CAP is homologous contains many i-d mutations that are defective in DNA binding. Less significant sequence homologies between CAP and phage repressors and activators are also shown. The amino acid residues that are critical to the formation of the two-helix motif are conserved, while those residues expected to interact with DNA are variable. These observations suggest the lac and gal repressors also have a two alpha-helix structural motif which is involved in DNA binding and that this two helix motif may be generally found in many bacterial and phage repressors. We conclude that one major mechanism by which proteins can recognize specific base sequences in double stranded DNA is via the amino acid side chains of alpha-helices fitting into the major groove of B-DNA.  相似文献   

3.
Three components involved in catabolite repression (CR) of gene expression in Bacillus have been identified. The cis-acting catabolite responsive element (CRE), which is present in many genes encoding carbon catabolic enzymes in various species of the Gram-positive bacteria, mediates CR of several genes in Bacillus subtilis, Bacillus megaterium, and Staphylococcus xylosus. CR of most genes regulated via CRE is also affected by the trans-acting factors CcpA and HPr. Similarities between CcpA and Lac and Gal repressors suggest binding of CcpA to CRE. HPr, a component of the phosphoenol pyruvate:sugar phosphotransferase system, undergoes regulatory phosphorylation at a serine residue by a fcuctose-1,6-diphosphate-activated kinase. A mutant of HPr, which is not phosphorylatable at this position because of an exchange of serine to alanine, lacks CR of several catabolic activities. This mutant phenotype is similar to the one exhibited by a ccpA mutant. Direct protein-protein interaction between CcpA and HPr(Ser-P) was recently demonstrated and constitutes a link between metabolic activity and CR.  相似文献   

4.
5.
The normal hut (histidine utilization) operons, as well as those with mutations affecting the regulation of their expression, of Salmonella typhimurium were introduced on an F' episome into cells of S. typhimurium and Klebsiella aerogenes whose chromosomal hut genes had been deleted and into cells of Escherichia coli, whose chromosome does not carry hut genes. The episomal hut operons respond in a manner very similar to induction and catabolite repression in all three organisms. The small differences found reflect both different abilities to take up inducers from the medium and different degrees of catabolite repression exerted by glucose.  相似文献   

6.
7.
Low concentrations of urea inhibit specifically the expression of operons sensitive to catabolite repression. This inhibition is not relieved by cyclic AMP. It is suggested that the promoter of catabolite sensitive operons may be the target of the urea effect.  相似文献   

8.
The regulation of alpha-amylase biosynthesis was studied in Bacillus diastaticus mutants with different levels of the enzyme synthesis (by two orders of magnitude). The enzyme biosynthesis was shown to be regulated by induction and catabolite repression. Maltose, starch and methyl-alpha,D-glucoside (which cannot be metabolised) induced the synthesis while glucose and fructose acted as catabolite repressors.  相似文献   

9.
Sixty-two spontaneous mutations have been characterized which reduce the level of expression of catabolite-sensitive operons. These mutations appear to affect either the crp (catabolite gene activator protein) or cya (adenyl cyclase) loci. No new loci have been discovered. Deletions of the cya gene do not remove an essential function. phi80 transducing phage for the cya gene have been used to do recombination and complementation studies on cya mutants.  相似文献   

10.
Nalidixic acid (Nal), a drug which affects deoxyribonucleic acid gyrase activity, inhibits the expression of catabolite-sensitive genes: the three maltose operons, the lactose and galactose operons, and the tryptophanase gene. A correlation between the degree of sensitivity to Nal and that to catabolite repression has been observed. The expression of the threonine and tryptophan operons, insensitive to catabolite repression, is insensitive to Nal. The expression of the lacZ gene under the control of the IQ promoter is activated by Nal. Strains carrying a mutation in the nalA locus are resistant to these effects. Novobiocin, which inhibits the negative supercoiling activity of deoxyribonucleic acid gyrase, affects expression of the operons similarly to Nal. The involvement of promoters in Nal and novobiocin action, as well as a possible role of in vivo negative supercoiling in the selectivity of gene expression, are discussed.  相似文献   

11.
12.
13.
B. G. Hall  P. W. Betts    J. C. Wootton 《Genetics》1989,123(4):635-648
The ebg system has been used as a model to study the artificial selection of new catalytic functions of enzymes and of inducer specificities of repressors. A series of mutant enzymes with altered catalytic specificities were previously characterized biochemically as were the changes in inducer specificities of mutant, but fully functional, repressors. The wild type ebg operon has been sequenced, and the sequence differences of the mutant enzymes and repressors have been determined. We now report that, contrary to our previous understanding, ebg enzyme contains 180-kD alpha-subunits and 20-kD beta-subunits, both of which are required for full activity. Mutations that dramatically affect substrate specificity and catalytic efficiency lie in two distinct regions, both well outside of the active site region. Mutations that affect inducer specificity of the ebg repressor lie within predicted sugar binding domains. Comparisons of the ebg beta-galactosidase and repressor with homologous proteins of the Escherichia coli and Klebsiella pneumoniae lac operons, and with the galactose operon repressor, suggest that the ebg and lac operons diverged prior to the divergence of E. coli from Klebsiella. One case of a triple substitution as the consequence of a single event is reported, and the implications of that observation for mechanisms of spontaneous mutagenesis are discussed.  相似文献   

14.
15.
As with other inducible enzymes, the induced synthesis of l-arabinose isomerase (l-arabinose ketol isomerase, EC 5.3.1.4) in Salmonella typhimurium is subject to catabolite repression. Of the three catabolite repressors tested, glucose produces maximum repression. Analogues of catabolite repressors like 2-deoxy-d-glucose and d-fucose also inhibit the synthesis of the enzyme. The catabolite repression is completely reversed in the presence of 1.5 x 10(-3)m cyclic 3',5'-adenosine monophosphate (AMP). The maximum repression is produced in glucose-grown cells in glucose-containing induction medium. Cyclic 3',5-AMP reverses this repression provided that the cells are treated with ethylenediaminetetraacetic acid (EDTA). In normal cells, cyclic 3',5'-AMP has no effect on the induction but in EDTA-treated cells the cyclic nucleotide enhances synthesis of the enzyme. The inhibition produced by d-fucose cannot be reversed by cyclic 3',5'-AMP. d-Fucose competes with the inducer l-arabinose in some step(s) involved in the process of induction.  相似文献   

16.
Pentitol metabolism in Klebsiella aerogenes is encoded by continuous ribitol (rbt) and D-arabitol (dal) operons transcribed in bipolar fashion and sandwiched between long stretches of homologous DNA. The operons are separated by a central control region (2.2 kb) which encodes both the repressors and all the control sequences. The rbt repressor (270 amino acids) shows homology to the Escherichia coli lac repressor and other DNA-binding proteins. It is transcribed from the strand opposite the rbt operon and the intervening control region (254-bp) contains features which reflect the complex regulation. A rbt-constitutive mutant strain used in previous studies of experimental enzyme evolution encodes a truncated rbt-peptide of 133 residues due to a frameshift mutation.  相似文献   

17.
18.
Galactose appears to be the physiological inducer of the chromosomal lac operon in Klebsiella aerogenes. Both lactose and galactose are poor inducers in strains having a functional galactose catabolism (gal) operon, but both are excellent inducers in gal mutants. Thus the slow growth of K. aerogenes on lactose reflects the rapid degradation of the inducer. Several pts mutations were characterized and shown to affect both inducer exclusion and permanent catabolite repression. The beta-galactosidase of pts mutants cannot be induced at all by lactose, and pts mutants appear to have a permanent and constitutive inducer exclusion phenotype. In addition, pts mutants show a reduced rate of glucose metabolism, leading to slower growth on glucose and a reduced degree of glucose-mediated permanent catabolite repression. The crr-type pseudorevertants of pts mutations relieve the constitutive inducer exclusion for lac but do not restore the full level of glucose-mediated permanent catabolite repression and only slightly weaken the glucose-mediated inducer exclusion. Except for weakening the glucose-mediated permanent catabolite repression, pts and crr mutations have no effect on expression of the histidine utilization (hut) operons.  相似文献   

19.
Carbon catabolite repression of several catabolic operons in Bacillus subtilis is mediated by the repressor CcpA. An inactivation of the ccpA gene has two distinct phenotypes: (i) catabolite repression of catabolic operons is lost and (ii) the growth of bacteria on minimal medium is severely impaired. We have analyzed the physiological properties of a ccpA mutant strain and show that the ccpA mutation does not affect sugar transport. We have isolated extragenic suppressors of ccpA that suppress the growth defect (sgd mutants). Catabolite repression of beta-xylosidase synthesis was, however, not restored suggesting that the suppressor mutations allow differentiation between the phenotypes of the ccpA mutant. A close inspection of the growth requirements of the ccpA mutant revealed the inability of the mutant to utilize inorganic ammonium as a single source of nitrogen. An intact ccpA gene was found to be required for expression of the gltAB operon encoding glutamate synthase. This enzyme is necessary for the assimilation of ammonium. In a sgd mutant, gltAB operon expression was no longer dependent on ccpA, suggesting that the poor expression of the gltAB operon is involved in the growth defect of the ccpA mutant.  相似文献   

20.
The chromosomal ccpA gene from Lactobacillus casei ATCC 393 has been cloned and sequenced. It encodes the CcpA protein, a central catabolite regulator belonging to the LacI-GalR family of bacterial repressors, and shows 54% identity with CcpA proteins from Bacillus subtilis and Bacillus megaterium. The L. casei ccpA gene was able to complement a B. subtilis ccpA mutant. An L. casei ccpA mutant showed increased doubling times and a relief of the catabolite repression of some enzymatic activities, such as N-acetylglucosaminidase and phospho-beta-galactosidase. Detailed analysis of CcpA activity was performed by using the promoter region of the L. casei chromosomal lacTEGF operon which is subject to catabolite repression and contains a catabolite responsive element (cre) consensus sequence. Deletion of this cre site or the presence of the ccpA mutation abolished the catabolite repression of a lacp::gusA fusion. These data support the role of CcpA as a common regulatory element mediating catabolite repression in low-GC-content gram-positive bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号