首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Histochemical studies of the opercularis muscle of the bullfrog (Rana catesbeiana) and the tiger salamander (Ambystoma tigrinum) provide evidence that the opercularis muscle of anurans is a specialized, tonic portion of the levator scapulae superior muscle. Staining results for myosin adenosine triphosphatase (ATPase) and succinate dehydrogenase (SDH), combined with measurements of muscle fiber diameters, demonstrate that the opercularis/levator scapulae superior muscle mass of both the tiger salamander and bullfrog consists of an anterior tonic portion, a middle fast oxidative-glycolytic (FOG) twitch portion, and a posterior fast-glycolytic (FG) twitch portion. In R. catesbeiana the tonic fibers represent 57.3% of the fiber total and (because they have relatively narrow diameters) about 29% of the cross-sectional area of the muscle mass, and form that part of the muscle (=opercularis muscle) that inserts on the operculum. In Ambystoma the tonic fibers represent only 8.8% of the fiber total and represent about 4% of the cross-sectional area. In the tiger salamander, the entire levator scapulae superior muscle inserts on the operculum and therefore represents the opercularis muscle. The bullfrog differs from the tiger salamander, therefore, in that the anterior tonic part of the opercularis/levator scapulae superior complex is greatly enlarged and the insertion on the operculum is limited to these tonic fibers. No evidence of a columellar muscle was found in R. catesbeiana. Previous reports of one in this species and in other anurans may be based on the tripartite nature of the opercularis/levator scapulae superior muscle mass. The middle FOG portion of the muscle may have been considered a muscle distinct from the anterior tonic portion (=opercularis muscle) and the posterior FG portion.  相似文献   

2.
After 7 weeks of hypobaric-hypoxia adaptation, horseradish peroxidase was injected into the soleus muscle to label motoneurons of the spinal cord in rats. Fiber type distribution in the soleus muscle and oxidative enzyme activity of motoneurons innervating the soleus muscle were examined. Fiber type was converted from slow-twitch-oxidative (SO) to fast-twitch-oxidative-glycolytic (FOG). Oxidative enzyme activity of motoneurons (25-45 micron soma diameter) was increased. However, oxidative capacity of larger motoneurons (greater than or equal to 45 micron soma diameter) was not changed. These data suggest that the lack of increase in oxidative capacity of larger motoneurons (innervating SO units) by hypoxia secondarily causes fiber type shift from SO to FOG.  相似文献   

3.
Lizard skeletal muscle fiber types were investigated in the iliofibularis (IF) muscle of the desert iguana (Dipsosaurus dorsalis). Three fiber types were identified based on histochemical staining for myosin ATPase (mATPase), succinic dehydrogenase (SDH), and alphaglycerophosphate dehydrogenase (alphaGPDH) activity. The pale region of the IF contains exclusively fast-twitch-glycolytic (FG) fibers, which stain dark for mATPase and alphaGPDH, light SDH. The red region of the IF contains fast-twitch-oxidative-glycolytic (FOG) fibers, which stain dark for all three enzymes, and tonic fibers, which stain light for mATPase, dark for SDH, and moderate for alphaGPDH. Enzymatic activities of myofibrillar ATPase, citrate synthase, and alphaGPDH confirm these histochemical interpretations. Lizard FG and FOG fibers possess twitch contraction times and resistance to fatigue comparable to analogous fibers in mammals, but are one-half as oxidative and several times as glycolytic as analogous fibers in rats. Lizard tonic fibers demonstrate the acetylcholine sensitivity common to other vertebrate tonic fibers.  相似文献   

4.
The size, distribution, and content of catalase-reactive microperoxisomes were studied cytochemically in slow-twitch oxidative (SO), fast-twitch oxidative glycolytic (FOG), and fast-twitch glycolytic (FG) fibers of soleus and extensor digitorum longus (EDL) rat muscles. Fiber types were classified on the basis of mitochondrial content and distribution, Z-band widths, and myofibril size and shape. Microperoxisomes were generally located between myofibrils at the I-bands. The absence of crystalloid inclusions prevented positive identification of microperoxisomes in nonreacted and aminotriazole-inhibited muscles. EDL and soleus SO fibers possessed the largest microperoxisomes, whereas FOG and FG fibers of the EDL contained small- to medium-sized microperoxisomes. Comparing either microperoxisome number per muscle fiber area or microperoxisome area per fiber area revealed significant differences between fiber types with this ranking: soleus SO greater than EDL SO greater than EDL FOG greater than EDL FG. The present observations demonstrate that the content of catalase-positive microperoxisomes is greatest in the oxidative muscle fiber types. These cytochemical findings account for the higher catalase activity in homogenates of soleus muscles as compared to that of EDL muscles, because the soleus contains more oxidative fibers than EDL.  相似文献   

5.
We studied neuronal pathways from low-threshold muscle (group I, II) and cutaneous afferents (group A(alpha)beta) innervating the tail to motoneurons innervating trunk muscles (m. iliocostalis lumborum and m. obliquus externus abdominus) in 18 spinalized cats. Stimulation of group I muscle afferents produced excitatory postsynaptic potentials or excitatory postsynaptic potentials followed by inhibitory postsynaptic potentials in all motoneurons innervating the m. iliocostalis lumborum which showed effects (32%), and predominantly inhibitory postsynaptic potentials in motoneurons innervating the m. obliquus externus abdominus (47%). Stimulation of group I+II afferents produced significant increases of the incidence of motoneurons showing postsynaptic potentials (the notoneurons innervating the m. iliocostalis lumborum, 87%; the motoneurons innervating the m. obliquus externus abdominus, 82%). The effects of low threshold cutaneous afferents were bilateral, predominantly producing inhibitory postsynaptic potentials in motoneurons innervating both muscles. These results suggest that neuronal pathways from muscle afferents to back muscle motoneurons mainly increase the stiffness of the trunk to maintain its stability, while those to abdominal muscles help to extend the dorsal column by decreasing their activities. The results also indicate that neuronal pathways from cutaneous afferents to trunk motoneurons functionallY disconnect the tail from the trunk.  相似文献   

6.
Histochemical analysis of five muscles from the water monitor, Varanus salvator, identified three major classes of fibers based on histochemical activities of the enzymes myosin ATPase (mATPase), succinic dehydrogenase (SDH), and alpha-glycerophosphate dehydrogenase (alpha GPDH). Fast-twitch, glycolytic (FG) fibers were the most abundant fiber type and exhibited the following reaction product intensities: mATPase, dark; SDH, light; alpha GPDH, moderate to dark. Fast-twitch, oxidative, glycolytic (FOG) fibers were characteristically mATPase, dark; SDH, light; alpha GPDH, moderate to dark. The third class of fibers had the following histochemical characteristics: mATPase, light; SDH, moderate to dark; alpha GPDH, light. These fibers were considered to be either slow twitch, or tonic, and oxidative (S/O). Pyruvate kinase (PK), alpha GPDH, and citrate synthase (CS) activities were measured in homogenates of the same muscles studied histochemically. There was a positive relationship between both PK and alpha GPDH activities and the percentage of glycolytic fiber types within a muscle. Likewise, CS activities were greater in muscles high in FOG and S/O content. Based on CS activities, Varanus S/O fibers were eight-fold more oxidative than FG fibers within the same muscle. PK/CS ratios suggested that FG fibers possess high anaerobic capacity, similar to the iguanid lizard Dipsosaurus. The fiber type composition of the gastrocnemius muscle, relative to that of other lizard species, suggests that varanid lizards may possess a greater proportion of FOG and S/O fibers than other lizards.  相似文献   

7.
The effect of growth on the capillarity and fiber type composition of the diaphragm, soleus and extensor digitorum longus (EDL) muscles of rats weighing between 55 and 330 g have been studied. Muscle samples obtained from the anesthetized rat were rapidly frozen and sliced transversely in a cryostat. The sections were stained histochemically by the SDH method and the myosin ATPase method after preincubation at pH 4.3 to typify fibers (FG, FOG and SO fibers). To visualize capillaries, the myosin ATPase method after preincubation at pH 4.0 was used. The percentage of FOG fibers decreased in all muscles with growth. While the FG and SO fibers increased in the diaphragm, SO fibers increased in the soleus, and FG fibers increased in the EDL. The capillary density showed a hyperbolic decrease with growth in all muscles, while the number of capillaries around each fiber increased in all muscles with growth. It is concluded that growth causes the changing properties of the motoneurons and the new capillary formation in the diaphragm muscle, as well as the soleus and EDL muscles.  相似文献   

8.
The M. pectoralis (pars thoracicus) of pigeons (Columba livia) is comprised of short muscle fibres that do not extend from muscle origin to insertion but overlap ''in-series''. Individual pectoralis motor units are limited in territory to a portion of muscle length and are comprised of either fast twitch, oxidative and glycolytic fibres (FOG) or fast twitch and glycolytic fibres (FG). FOG fibres make up 88 to 90% of the total muscle population and have a mean diameter one-half of that of the relatively large FG fibres. Here we report on the organization of individual fibres identified in six muscle units depleted of glycogen, three comprised of FOG fibres and three comprised of FG fibres. For each motor unit, fibre counts revealed unequal numbers of depleted fibres in different unit cross-sections. We traced individual fibres in one unit comprised of FOG fibres and a second comprised of FG fibres. Six fibres from a FOG unit (total length 15.45 mm) ranged from 10.11 to 11.82 mm in length and averaged (± s.d.) 10.74 ± 0.79 mm. All originated bluntly (en mass) from a fascicle near the proximal end of the muscle unit and all terminated intramuscularly. Five of these ended in a taper and one ended bluntly. Fibres coursed on average for 70% of the muscle unit length. Six fibres from a FG unit (total length 34.76 mm) ranged from 8.97 to 18.38 mm in length and averaged 15.32 ± 3.75 mm. All originated bluntly and terminated intramuscularly; one of these ended in a taper and five ended bluntly. Fibres coursed on average for 44% of the muscle unit length. Because fibres of individual muscle units do not extend the whole muscle unit territory, the effective cross-sectional area changes along the motor unit length. These non-uniformities in the distribution of fibres within a muscle unit emphasize that the functional interactions within and between motor units are complex.  相似文献   

9.
The effects were investigated of high intensity short duration exercise and anabolic steroid treatment on the medial gastrocnemius muscle of female rats. Twelve rats were divided equally into four groups, exercise with and without steroid administration and sedentary with and without steroid administration. Animals were made to swim for 5 weeks, 6 days.week-1. Muscle fibres were classified as slow-twitch (ST), fast-twitch oxidative glycolytic (FOG) and fast-twitch glycolytic (FG). Muscle fibre size was measured as the equivalent circle diameter. Exercise (P less than 0.001) and steroid (P less than 0.05) treatments alone, significantly elevated FOG and decreased FG fibre proportions. Overall proportions of fast-twitch and ST muscle fibres did not vary with any of the treatments. Significant differences in the proportion of muscle fibres were found to exist between different areas within the gastrocnemius muscle (P less than 0.05). Exercise and steroid treatments alone did not alter muscle fibre diameters. Combined exercise and steroid treatments did significantly increase ST fibre diameters (P less than 0.05). Exercise only treatment resulted in significant increases in the number of capillaries surrounding ST fibre (P less than 0.05) and FOG fibre (P less than 0.01) types. In conclusion the main finding of this study indicated that anabolic steroids in conjunction with high intensity swimming instigated ST fibre hypertrophy. Exercise and steroid only treatments significantly elevated FOG fibre proportions while FG fibre proportions diminished. Exercise only treatment resulted in significant increases in the number of capillaries surrounding both ST and FOG fibre types.  相似文献   

10.
A histochemical survey was done on the fiber composition of 12 different locomotory muscles in the lizard Dipsosaurus dorsalis. Three types of fibers were found in all muscles: (1) fast-twitch-glycolytic (FG); (2) fast-twitch-oxidative-glycolytic (FOG); and (3) tonic fibers. Virtually all locomotory muscles contain some tonic fibers. Most muscles have bulk white regions (containing mostly FG fibers) and distinct red, oxidative regions (with FOG and tonic fibers). These red regions are predominantly located around the joints in the hind limb muscles, and probably serve a postural and joint-stabilizing function. The predominance of FG fibers in the bulk white regions is well-correlated with the rapid, anaerobically supported predator escape behavior of D. dosalis.  相似文献   

11.
The central portion of the medial head of the gastrocnemius of control (normoxic and normothermic), hypoxia-, cold-, and cold plus hypoxia-acclimated guinea pigs was analyzed for capillary supply and fiber composition to elucidate changes in capillarity induced by environmental stresses. The muscle was cut at midbelly, frozen, sectioned, and stained for myosin ATPase. Fiber cross-sectional areas; percentages of slow-twitch oxidative (SO), fast-twitch oxidative-glycolytic (FOG), and fast-twitch glycolytic (FG) fibers; and numbers of capillaries around each fiber type were measured. Growth rates of all four guinea pig groups were similar. Capillarity was not affected by acclimation to hypoxia. Cold and cold plus hypoxia acclimation led to increased numbers of capillaries around the fiber in all three fiber types. In addition, significant increases in the percentage of FOG fibers and concomitant decreases in the percentage of FG fibers compared to controls were found in cold and in cold plus hypoxia indicating that a transformation of fiber type from FG to FOG had occurred. The increase in FOGs at the expense of the FGs did not occur in the guinea pigs grown in a hypoxic environment. The increased total capillarity in those muscles studied was the result of more capillaries around all fiber types and was not due to simple transformation of fibers.  相似文献   

12.
We used acid digestion and glycogen depletion to determine fascicle organization, fiber morphology, and physiological and anatomical features of individual motor units of an in-series muscle, the pectoralis (pars thoracicus) of the pigeon (Columba livia). Most fascicles are attached at one end to connective tissue. Average fiber length in the four regions examined range from 42% to 66% of average fascicle length. More than 65% of fibers are blunt at one end of a fascicle and taper intrafascicularly. Fibers with blunt–blunt endings range from 13% to 31% of the population in different regions; taper–taper fibers range from 2% to 17%. Pigeon pectoralis fibers are distinguished histochemically into fast-twitch glycolytic (FG) and fast-twitch oxidative-glycolytic (FOG) populations. Three units composed of FG fibers (FG units) contract more quickly than three units composed of FOG fibers (FOG units) (range 31–37 vs 47–62 msec), produce more tetanic force (0.11–0.32 vs 0.02–0.05 N) and are more fatigable (<18% initial force vs >50% after repeated stimulation). Most motor units are confined to one of the four muscle regions. Territory of two FOG units is <30% of parent fascicle length. Territories of other units spanned parent fascicles; most fibers in these units do not extend the full fascicle length. Compared to FG units, FOG units have lower maximum innervation ratios and density indices (ratio of depleted/total FOG fibers in territory 8–14% vs 58–76% for FG units). These differences support the hypothesis that FG units are organized to produce substantial force and power for takeoff, landing and other ballistic movements whereas FOG units are suited for sustained flight when power requirements are reduced. Implications of findings for understanding the control of in-series muscles and the use of connective tissue elastic elements during wing movements are discussed. J.Morphol. 236:179–208, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

13.
Investigations of the structure and function of the flexor carpi radialis muscle (FCR) in the cat have led to the hypothesis that the compartmentalized (nonuniform) distribution of fiber types within the muscle relate to the complex motor skills of the cat. To test this hypothesis a study was undertaken to compare the FCR in four mammalian species of similar body size but with different forelimb motor tasks. The species chosen were: dog, opossum, armadillo, and cat. Comparisons were made among species with regard to general muscle morphology, fiber types and sizes, fiber proportions, and fiber distriburtions. The FCR of all species was morphologically similar and contained three muscle fiber types (SO, FOG, and FG). The mean area of muscle fibers was largest in opossum, while the FCR fibers of dogs were smallest. The percentage of SO fibers in the dog FCR was greater than in the other species studied. The opossum FCR also contained a high percentage of SO fibers. The armadillo FCR consisted of a high percentage of FG fibers. In the cat FCR the percentages of all three fiber types were similar. For each species, individual fiber proportions were in agreement with the results for fiber percentages. Compartmentalized distribution of fiber types existed in each species with the dog having the most compartmentalized fiber type distribution and the cat the least compartmentalized distribution. Therefore it seems that the compartmentalized organization of the FCR is not related to any specialized motor task, but may be a generalized pattern associated with motor patterns shared among all species studied.  相似文献   

14.
Retrograde cobalt labeling was performed by incubating the rootlets of cranial nerves IX, X and XI, or the central stumps of the same nerves, in a cobaltic lysine complex solution, and the distribution of efferent neurons sending their axons into these nerves was investigated in serial sections of the medulla and the cervical spinal cord in young rats. The following neuron groups were identified. The inferior salivatory nucleus lies in the dorsal part of the tegmentum at the rostral part of facial nucleus. It consists of a group of medium-sized and a group of small neurons. Their axons make a hair-pin loop at the midline and join the glossopharyngeal nerve. The dorsal motor nucleus of the vagus situates in the dorsomedial part of the tegmentum. Its rostral tip coincides with the first appearance of sensory fibres of the glossopharyngeal nerve, the caudal end extends into the pyramidal decussation. The constituting cells have globular or fusiform perikarya and they are the smallest known efferent neurons. The ambiguous nucleus is in the ventrolateral part of the tegmentum. The rostral tip lies dorsal to the facial nucleus, and the caudal tip extends to the level of the pyramidal decussation. The rostral one third of the ambiguous nucleus is composed of tightly-packed medium sized neurons, while larger neurons are arranged more diffusely in the caudal two thirds. The long dendrites are predominantly oriented in the dorsoventral direction. The dorsally-oriented axons take a ventral bend anywhere between the ambiguous nucleus and dorsal motor nucleus of the vagus. The motoneurons of the accessorius nerve are arranged in a medial, a lateral and a weak ventral cell column. The medial column begins at the caudal aspect of the pyramidal decussation and terminates in C2 spinal cord segment. The lateral and ventral columns begin in C2 segment and extend into C6 segment. The neurons have large polygonal perikarya and characteristic cross-shaped dendritic arborizations. The axons follow a dorsally-arched pathway between the ventral and dorsal horns. The accessorius motoneurons have no positional relation to any of the vagal efferent neurons. It is concluded that the topography and neuronal morphology of accessorius motoneurons do not warrant the designation of a bulbar accessorius nucleus and a bulbar accessorius nerve.  相似文献   

15.
Summary The ultrastructure of fast-twitch-oxidative-glycolytic (FOG), fasttwitch-glycolytic (FG) and slow-twitch-oxidative (SO) fibers in plantaris and soleus muscles of normal and streptozotocin-diabetic rats was studied. In the diabetic animals, the mitochondria of FOG and SO fibers showed a loss of cristae and an increase in electron-dense granules. There was also an increased number of lipid droplets in close proximity to the mitochondria and the nuclei, and a separation of individual muscle nuclei to form satellite cells. Higher incidences of surface projections and sarcoplasmic splittings at the nuclear region were noticed in SO fibers. The FG fibers showed some disorientation of the T-tubular system. It is concluded that streptozotocin-diabetes has differential effects on the fine structure of the three fiber types of rat skeletal muscle.Supported by USPHS Grant AM 18280-04, Boston University Grant GRS-405-BI, and a grant-in-aid award from Sigma Xi Society  相似文献   

16.
The primary divisions of the spinal nerve in the brown caiman characteristically show the following features: (1) the medial ramus was lies in the thoraco-lumbar and caudal regions, and (2) the first cervical and hypoglossal nerves form a single nerve complex from which the ventral and dorsal rami extend. Intramuscular injections of horseradish peroxidase (HRP) established the positions of motoneurons whose axons followed the primary rami. In the ventral horn of the thoracic and caudal spinal cord, the motoneurons of the medial ramus lie ventrally. These motoneurons lie between the epaxial and hypaxial motoneurons. At the spinomedullary junction, the pools of motoneurons innervating the infrahyoid, lingual, and dorsal muscles have a somatotopic organization similar to that observed in the thoraco-lumbar and caudal regions. Thus clear somatotopic organization of the motoneurons that innervate the axial musculature exists at all spinal levels. © 1994 Wiley-Liss, Inc.  相似文献   

17.
The present study examined the fiber-type proportions of 22 muscles spanning the shoulder and/or elbow joints of three Macaca mulatta. Fibers were classified as one of three types: fast-glycolytic (FG), fast-oxidative-glycolytic (FOG), or slow-oxidative (SO). In most muscles, the FG fibers predominated, but proportions ranged from 25-67% in different muscles. SO fibers were less abundant except in a few deep, small muscles where they comprised as much as 56% of the fibers. Cross-sectional area (CSA) of the three fiber types was measured in six different muscles. FG fibers tended to be the largest, whereas SO fibers were the smallest. While fiber-type size was not always consistent between muscles, the relative size of FG fibers was generally larger than FOG and SO fibers within the same muscle. When fiber CSA was taken into consideration, FG fibers were found to comprise over 50% of the muscle's CSA in almost all muscles.  相似文献   

18.
Adult pigeons received dantrolene sodium, a skeletal muscle relaxant which blocks the release of calcium during excitation-contraction coupling, for 12 to 16 weeks. The pectoralis muscles of these birds were analyzed for changes occurring in the various fiber types of the muscle. Both histochemistry (ATPase and SDH activity) and electron microscopy (mitochondrial and lipid volume percentages) differentiated two fiber types. The two fiber-types consisted of fast-twitch glycolytic fibers (FG) and fast-twitch oxidative-glycolytic (FOG) fibers. After dantrolene treatment some FG fibers showed little or no ATPase activity. Dantrolene treatment also produced a disappearance of thick filaments in some FG fibers. We infer that the fibers without thick filaments are the ones lacking ATPase activity. The FOG fibers were nearly normal. Since drug-fed birds lose weight, a few birds were starved to determine whether the filament loss was related solely to the bird's loss in weight. No fibers in starved birds showed reduced ATPase activity or loss of thick filaments. In fibers that showed thick filament disappearance, the I-bands remained organized and intact, suggesting that the I-band maintains its integrity without interaction with the thick filaments. Changes in activity patterns may cause loss of thick filaments by inhibiting either their synthesis or assembly.  相似文献   

19.
Calcitonin gene-related peptide (CGRP) is present in some spinal cord motoneurons and at neuromuscular junctions in skeletal muscle. We previously reported increased numbers of CGRP-positive (CGRP+) motoneurons supplying hindlimb extensors after downhill exercise (Homonko DA and Theriault E, Inter J Sport Med 18: 1-7, 1997). The present study identifies the responding population with respect to muscle and motoneuron pool and correlates changes in CGRP with muscle fiber type-identified end plates. Twenty seven rats were divided into the following groups: control and 72 h and 2 wk postexercise. FluoroGold was injected into the soleus, lateral gastrocnemius, and the proximal (mixed fiber type) or distal (fast-twitch glycolytic) regions of the medial gastrocnemius (MG). Untrained animals ran downhill on a treadmill for 30 min. The number of FluoroGold/CGRP+ motoneurons within proximal and distal MG increased by 72 h postexercise (P<0.05). No significant changes were observed in soleus or lateral gastrocnemius motoneurons postexercise. The number of alpha-bungarotoxin/CGRP+ motor end plates in the MG increased exclusively at fast-twitch glycolytic muscle fibers 72 h and 2 wk postexercise (P<0.05). One interpretation of these results is that unaccustomed exercise preferentially activates fast-twitch glycolytic muscle fibers in the MG.  相似文献   

20.
Skeletal muscles can be classified as flexors or extensors according to their function, and as dorsal or ventral according to their position. The latter classification evokes their embryological origin from muscle masses initially divided during limb development, and muscles sharing a given position do not necessarily perform the same function. Here, we compare the relative proportions of different fiber types among six limb muscles in the lizard Tropidurus psammonastes. Individual fibers were classified as slow oxidative (SO), fast glycolytic (FG) or fast oxidative-glycolytic (FOG) based on mitochondrial content; muscles were classified according to position and function. Mixed linear models considering one or both effects were compared using likelihood ratio tests. Variation in the proportion of FG and FOG fibers is mainly explained by function (flexor muscles have on average lower proportions of FG and higher proportions of FOG fibers), while variation in SO fibers is better explained by position (they are less abundant in ventral muscles than in those developed from a dorsal muscle mass). Our results clarify the roles of position and function in determining the relative proportions of the various muscle fibers and provide evidence that these factors may differentially affect distinct fiber types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号