首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The present study was an attempt to identify the location of genioglossal respiratory and swallowing motoneuron cell bodies within the hypoglossal (XII) nucleus using both electrophysiological and morphological studies. The genioglossus muscle is innervated by the genioglossal branch of the medial XII nerve. At the entrance to the muscle, the genioglossal branch divides in the directions of the mandible and tongue. Five of five rats displayed both respiratory-related and swallowing-related bursts in the medial XII branch towards the mandible. All five rats also displayed swallowing-related bursts in the medial XII branch towards the tongue. In addition, horseradish peroxidase conjugated to wheatgerm agglutinin (HRP:WGA) was injected into the proximal cut ends of each branch. When HRP:WGA was injected into the branch in the direction of the mandible, HRP-labeled cells were detected in the lateral region of the ventromedial subnucleus in the XII nucleus, extending from 0.7 to 1.2 mm rostral to the obex. On the other hand, after injection into the branch in the direction of the mandible, HRP-labeled cells were detected in the ventromedial subnucleus of the XII nucleus, extending from 0.3 to 1.2 mm rostral to the obex. These results provide evidence that genioglossal respiration-related and swallowing-related motoneurons are located in different portions within the ventromedial subnucleus of the XII nucleus.  相似文献   

3.
The present study was an attempt to identify the location of genioglossal respiratory and swallowing motoneuron cell bodies within the hypoglossal (XII) nucleus using both electrophysiological and morphological studies. The genioglossus muscle is innervated by the genioglossal branch of the medial XII nerve. At the entrance to the muscle, the genioglossal branch divides in the directions of the mandible and tongue. Five of five rats displayed both respiratory-related and swallowing-related bursts in the medial XII branch towards the mandible. All five rats also displayed swallowing-related bursts in the medial XII branch towards the tongue. In addition, horseradish peroxidase conjugated to wheatgerm agglutinin (HRP:WGA) was injected into the proximal cut ends of each branch. When HRP:WGA was injected into the branch in the direction of the mandible, HRP-labeled cells were detected in the lateral region of the ventromedial subnucleus in the XII nucleus, extending from 0.7 to 1.2 mm rostral to the obex. On the other hand, after injection into the branch in the direction of the mandible, HRP-labeled cells were detected in the ventromedial subnucleus of the XII nucleus, extending from 0.3 to 1.2 mm rostral to the obex. These results provide evidence that genioglossal respiration-related and swallowing-related motoneurons are located in different portions within the ventromedial subnucleus of the XII nucleus.  相似文献   

4.
Contractile properties differ between skeletal, cardiac and smooth muscles as well as between various skeletal muscle fiber types. This functional diversity is thought to be mainly related to different speeds of myosin head pulling cycles, with the molecular mechanism of force generation being essentially the same. In this study, force-generating attachments of myosin heads were investigated by applying small perturbations of myosin head pulling cycles in stepwise stretch experiments on skeletal muscle fibers of different type. Slow fibers (frog tonic and rat slow-twitch) exhibited only a ‘slow-type’ of myosin head attachment over the entire activation range, while fast fibers (frog and rat fast-twitch) displayed a ‘slow-type’ of myosin head attachment at low levels of activation, and an up to 30-times faster type at high levels of activation. These observations indicate that there are qualitative differences between the mechanisms of myosin head attachment in slow and fast vertebrate skeletal muscle fibers.  相似文献   

5.
Summary Enzyme histochemical profiles of spinal motoneurons in the zebrafish were determined. Five enzymes of glucose metabolism were chosen: glucose-6-phosphate dehydrogenase (G6PDH), hexokinase (HK), phosphofructokinase (PFK), succinate dehydrogenase (SDH) and NADH tetrazolium reductase (NADH-TR). Motoneurons were traced with Fluorogold and classified as those that innervate white muscle fibres (W-MNs) and those that innervate red and intermediate muscle fibres (R/ I-MNs). The average enzyme activities per volume of tissue in the somata of both populations differed at most by 25%. Both the average soma volume and the average number of muscle fibres innervated are three times larger for the W-MNs than for the a/I-MNs. This suggests that the total amount of enzyme activity within a neuron soma matches target size.In the R/I-MNs, the activities of SDH and NADH-TR were closely correlated (correlation coefficient, r=0.99;p<0.05) and HK activity correlated well with G6PDH activity (r=0.94;p<0.05), butnot with PFK (r=0.64;p>0.05). In the W-MNs, there was no correlation between SDH and NADH-TR (r=–0.59;p>0.05) or between HK and G6PDH (r=0.50;p>0.05) and the correlation coefficient between HK and PFK activity was close to zero (r=0.04;p>0.05).It was concluded that in the R/I-MNs gwhich are continuously ctive, firing activity is fuelled by oxidative metabolsm. We suggest that in the W-MNs glucose is stored in the form of glycogen and that, despite high levels of NADH-TR present, the energy for intermittent firing activity is provided by glycolysis.  相似文献   

6.
1. The distribution and morphology of chromaffin cells in the para-aortic region and in the ganglia of the paravertebral sympathetic chain was studied with fluorescence histochemistry and electron microscopy. 2. Four types of chromaffin cell were distinguished largely on the basis of their vesicular content: Type I cells contain large, electron-dense vesicles (600-7000 A) and are comparable to noradrenaline-containing cells in the adrenal gland, Type II cells contain large, vesicles (600-7000 A) that are filled with a less electron-dense material than that in Type I cells and are comparable to adrenaline-containing cells in the adrenal gland, Type III cells contain smaller vesicles (1000-3000 A) that are incompletely filled with an electron-dense material and may represent cells that have been depleted of their catecholamines by stimulation, Type IV cells are clearly different from the other three cell types with respect to the size and appearance of the vesicles (1000-1500 A), nuclei and rough endoplasmic reticulum and may represent immature sympathetic neurons. 3. Nerve profiles, identified as cholinergic, were found in close apposition with all four cell types. No examples of a close association between processes of chromaffin cells and sympathetic neurons were found.  相似文献   

7.
We studied neuronal pathways from low-threshold muscle (group I, II) and cutaneous afferents (group A(alpha)beta) innervating the tail to motoneurons innervating trunk muscles (m. iliocostalis lumborum and m. obliquus externus abdominus) in 18 spinalized cats. Stimulation of group I muscle afferents produced excitatory postsynaptic potentials or excitatory postsynaptic potentials followed by inhibitory postsynaptic potentials in all motoneurons innervating the m. iliocostalis lumborum which showed effects (32%), and predominantly inhibitory postsynaptic potentials in motoneurons innervating the m. obliquus externus abdominus (47%). Stimulation of group I+II afferents produced significant increases of the incidence of motoneurons showing postsynaptic potentials (the notoneurons innervating the m. iliocostalis lumborum, 87%; the motoneurons innervating the m. obliquus externus abdominus, 82%). The effects of low threshold cutaneous afferents were bilateral, predominantly producing inhibitory postsynaptic potentials in motoneurons innervating both muscles. These results suggest that neuronal pathways from muscle afferents to back muscle motoneurons mainly increase the stiffness of the trunk to maintain its stability, while those to abdominal muscles help to extend the dorsal column by decreasing their activities. The results also indicate that neuronal pathways from cutaneous afferents to trunk motoneurons functionallY disconnect the tail from the trunk.  相似文献   

8.
9.
Soundmyogram (SMG) and electromyogram signals were recorded simultaneously from the relatively fast medial gastrocnemius (MG) and slow soleus (SOL) during voluntary and electrically induced contractions. Using a spike-triggered averaging technique, the averaged elementary sound and corresponding MU spikes were also obtained from about 35 different MUs identified. The rms-SMG of MG increased as a function of force (P < 0.01). On the contrary, these values for SOL increased up to 60% MVC (P < 0.01), but decreased at 80% MVC. The relationship between the peak to peak amplitude of SMG and MU spike indicated significant positive correlations (r = 0.631 to approximately 0.657, P < 0.01). During electrical stimulation at 5 Hz, the SMG power spectral peak frequency (PF) was matched with stimulation frequency in both muscles. At higher stimulation frequencies, e.g., > 15 Hz, only in the MG was SMG-PF synchronized with stimulation frequency; the slow SOL did not show such synchronization. Our data suggest that the SMG frequency components might reflect active motor unit firing rates, and that the SMG amplitude depends upon mechanical properties of contraction, muscle fiber composition, and firing rate during voluntary and electrically induced contractions.  相似文献   

10.
Blood flows to fast-twitch red (FTR), fast-twitch white (FTW), and slow-twitch red (STR) fiber sections of the gastrocnemius-soleus-plantaris muscle group of sedentary and trained rats were determined using radiolabeled microspheres during the 1st and 10th min of in situ contractions at frequencies ranging from 7.5 to 90 tetani/min. Treadmill training increased the cytochrome c content of both FTW (6.0 +/- 0.13 nmol/g to 12.2 +/- 0.27) and FTR (22.2 +/- 0.32 to 26.7 +/- 0.25) muscle. Loss of tension, evident at 15 tetani/min and above, was less (P less than 0.001) in trained animals. Although steady-state blood flows (10th min) to FTR and STR fibers were not altered by training, initial flows (1st min) to the trained FTR section were greater (P less than 0.025). Overall initial flows to both red fiber types were excessively high at the easier contraction conditions, but subsequently declined to values more reflective of the expected energy demands. This time-dependent relative hyperemia was not found in either sedentary or trained FTW muscle. However, training increased the maximal blood flow in the FTW sections [60 +/- 3.2 (n = 36) vs. 88 +/- 5.2 ml X min X 100 g-1 (n = 36)]. This 40-50% increase in FTW blood flow would produce only a modest 10% increase in blood flow to a whole mixed-fiber muscle, since the flow capacity of the FTW muscle is only one third to one fourth that of FTR muscle. This overall increase in blood flow, however, is similar to changes in VO2max found in trained rats.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
12.
Summary Rats were used in this study to determine the time course of conversion of muscle fiber types. The right or left gastrocnemius muscle was removed thereby causing an overload on the ipsilateral soleus and plantaris muscles. The contralateral limb served as a control. The type II to type I fiber conversion was followed histochemically in the soleus and plantaris muscles for one to six weeks following surgery. Muscle sections were stained for myofibrillar actomyosin ATPase and NADH tetrazolium reductase. The type I population in the soleus muscle was 99.3% six weeks after synergist removal. The plantaris muscle underwent a two fold increase in the percentage of type I fibers after six weeks. Transitional fibers were prominent in the plantaris muscle and reached their peak at 4% (P<0.05) of the total population, four weeks after surgery.This research was funded in part by grants from The Graduate School at Washington State University, and The Society of the Sigma Xi  相似文献   

13.
Summary Carbonic anhydrase (CA III) and myoglobin contents from isolated human muscle fibers were quantified using a sensitive time-resolved fluoroimmunoassay. Human psoas muscle specimens were freeze-dried, and single fibers were dissected out and classified into type I, IIA and IIB by myosin ATPase staining. Fiber typing was further confirmed by SDS-PAGE. CA III and myoglobin were found in all fiber types. Type I fibers contained higher concentrations of CA III and myoglobin than type IIA and IIB fibers. The relative concentrations of CA III in type IIA and IIB fibers were respectively 24% and 10% of that in type I fibers. The relative concentrations of myoglobin in type IIA and IIB fibers were 60% and 28% of that in type I fibers. Anti-CA III immunoblotting results from fiber-specific pooled samples agreed well with quantitative measurements. The results indicate that CA III is a more specific marker than myoglobin for type I fibers.  相似文献   

14.
As demonstrates estimation of myosin ATPase and SDG activity, the guinea pig is already born with differentiated muscle fibers (MF), and the first histochemical differences between them take place in the uterine 10 days before birth. Tonic oxidative fibers of the first type, arranging hexagonally, develop especially quickly at early stages of postnatal ontogenesis. Their relative contents up to the end of the observations (185 days) do not change, and area of their transversal section increases but slightly in comparison to the phasic fibers. The main age changes of the muscle tissue are connected with formation and rearrangement of the phasic fibers. The most intensive reconstructions of the phasic fibers coincide with the period of game activity and sex maturation. In mixed muscles the part of the glycolytic fibers increase during the postnatal ontogenesis. In the process of ontogenesis the soleus muscle fully consists of oxidative fibers. The definitive level of the MF development is established after the guinea pigs have reached their sex maturation. Comparing the results of the given investigation with the previous data on development of MF in rats, it is possible to conclude that term and premature animals have various rates in development of the muscle system, however, main stages of myogenesis coincide, though they are connected with various phases of ontogenesis.  相似文献   

15.
Summary The three-dimensional organization of the motor end plates in the red, white and intermediate striated muscle fibers of the rat intercostal muscle was observed under a field-emission type scanning electron microscope after removal of connective tissue components by HCl hydrolysis.The motor endplate of the white fiber had terminal branches (or axon terminals), which were large, long and thin, and small but numerous nerve swellings (or terminal boutons). The motor endplate of the red fiber had terminal branches, which were small, short and thick, and had large but fewer nerve swellings. The motor endplate of the intermediate fiber was intermediate in size and structure between these two. In detached nerve-ending preparations, primary synaptic grooves with slit-like openings of the junctional folds appeared on the surface of the muscle fibers. The primary synaptic grooves were more developed in the white fiber than in the red fiber, and they were intermediate in the intermediate fiber. The numerical ratio of slit-like openings was 11.83.5 in the red, intermediate and white fiber, respectively.The Schwann cells and their processes were observed on the surface of the motor endplate, with the processes covering the upper orifices of the primary synaptic grooves and sealing the terminal branches. The number of Schwann cells was usually three in the white fiber, two in the intermediate fiber and one in the red fiber.  相似文献   

16.
17.
The location of the stapedial motoneurons in Gallus gallus was investigated by means of the retrograde transport of HRP, injected into the stapedius muscle. The labeled neurons are located in both the ventral and dorsal divisions of the VII nerve nucleus, in a lateral and ventral position respectively, facing the superior olivary nucleus. The neurons are distributed in two size classes. The functional implications of these findings are discussed, in relation both to the absence of the acoustic stapedial reflex in birds and to the functional properties of the stapedius muscle.  相似文献   

18.
19.
Distinct isoenzyme patterns of the glycogenolytic enzymes exist in different fibre types. Fast twitch glycolytic and slow twitch oxidative fibres differ in the proportion of the two isoenzymes of cyclic AMP dependent protein kinase and in the type of phosphorylase kinase that is present. Slow twitch oxidative fibres and cardiac fibres resemble one another in these two respects, but differ in that the type I phosphorylase of cardiac muscle is absent in slow twitch oxidative fibres. In all examples, the functional differences between the isoenzymes seem to be related to the regulatory rather than the catalytic behavior of the molecules. In the case of cyclic AMP dependent protein kinase and phosphorylase kinase, it is a regulatory subunit that appears to be affected [16,23], while in the case of phosphorylase, the type I isoenzyme is known to have a five to eight-fold Ka for the allosteric activator 5' AMP [6]. However, the precise physiological significance of these differences remains to be elucidated.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号