首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It was found that the growth of Rhodococcus rhodochrous cells in modified Saton's medium strongly depends on the rate of culture agitation in the flask: an agitation at 250 rpm in flasks with baffles stops cell multiplication, whereas slight agitation leads to pronounced culture growth. The growth retardation phenomenon was reversible and did not manifest itself in exponential-phase cultures or when the cells were grown in a rich medium; furthermore, it was not connected with the degree of culture aeration. When agitated at a moderate rate, the bacterial cells formed aggregates in the lag phase, which broke up into single cells in the exponential phase. The inhibitory effect of vigorous agitation was removed by the addition to the medium of the supernatant (SN) of a log-phase culture grown in the same medium with moderate agitation. Vigorous agitation is thought to interfere with the cell contacts, whose establishment is necessary for the development of an R. rhodochrous culture in a poor medium, which occurs in the form of (micro) cryptic growth. When grown in modified Saton's medium, R. rhodochrous cells were capable of transition, in the prolonged stationary phase, to a resting and transiently nonculturable state. Such cells could be resuscitated by incubation in a liquid medium with the addition of the supernatant or the Rpf secreted protein. The formation of transiently nonculturable cells was only possible under the conditions of a considerable agitation rate (250-300 rpm), which prevented secondary (cryptic) growth of the culture. This circumstance indicates the importance of intercellular contacts not only for the initiation of growth but also for the transition of the bacteria to a dormant state.  相似文献   

2.
A highly proteolytic Gram-negative, rod-shaped bacterium was isolated from the gills of fresh plaice and the effect of culture conditions on the production of proteolytic enzymes was investigated. When the organism, strain SA 1, was grown in the presence of complex mixtures of proteins and amino acids, both endopeptidase and aminopeptidase activity was demonstrated in the cell-free culture medium. However, synthesis of these enzymes was not observed when the organism was grown in a mineral medium with lactate or succinate as the only carbon and energy source. Synthesis of both endopeptidase and aminopeptidase was induced by the presence of amino acids in the medium. Of the amino acids tested, l-phenylalanine was found to be the best single inducer for the production of endopeptidase. When in addition one or more different amino acids were added, endopeptidase production was found to increase with increasing complexity of the mixture, up to a maximum which was obtained with five different amino acids. Production of the aminopeptidase was optimal when l-glutamic acid was used as a single inducer. For this enzyme the amount of enzyme activity released in the medium decreased with increasing complexity of the amino acid mixture. Endopeptidase as well as aminopeptidase activity was found to accumulate in the medium at the end of the logarithmic growth phase, when the culture was no longer growing exponentially. When the stationary phase was reached, enzyme production stopped. Production of both enzymes was immediately halted upon addition of chloramphenicol and was found to be repressed by glucose and lactate. These results suggest that synthesis of proteolytic extracellular enzymes by the organism studied is controlled by an efficient regulatory mechanism, in which growth rate is an important parameter.  相似文献   

3.
Neuron-specific aminopeptidase (NAP) and the ubiquitous puromycin-sensitive aminopeptidase (PSA) were compared in the rat hippocampus during early development. Hippocampus contains the highest amount of NAP determined by a fast-protein liquid chromatography-aminopeptidase analyzer using Leu -naphthylamide as substrate. Both enzymes were found in the hippocampus in all ages. NAP was lower in immature rat; the 19th embryonic-day fetus contained the least. It increased steeply during the prenatal through the early postnatal period, 9-fold by the first month. The rate of increase diminished subsequently, increasing 20% in the second month and 13% in the third. The age-dependent increase in NAP activity was parallel to its protein expression as determined by Western blot. The specific molecular activity (hydrolytic activity/NAP antigenicity) in newborn, 15-day-old, and 30-day-old rats were 1.00, 0.88, and 1.00, respectively. The PSA developmental profile without linear increase in activity was distinct from NAP. PSA activity was higher than NAP in decreasing order, 100–4 times, during the same development span. Similarly, different growth profiles for NAP and PSA were also found in the primary culture of developing cerebellar granule cells. Puromycin (1–5 M) blocked neurite outgrowth and caused apoptosis by nonantibiotic effects. Our data suggest that the synaptosome-enriched NAP plays a role in neuron growth, differentiation, and information programming.  相似文献   

4.
The bacterial and tissue cells can grow in batch and continuous culture. In batch culture the cells have different physiological states during incubation. The generation time changes from time to time during growth, except in the exponential phase. In continuous culture the cell growth takes place under steady-state conditions. In different steady-states the generation times reached remain constant at a certain level. This paper presents evidence of how the generation time influences the cell size, the chain formation, the multiplication of viruses, the development of competence both in transformation and transfection and the quantitative changes of lytic factor. In the experiments it is necessary to give the values of the generation times. This parameter helps the experimenters to compare the results and to avoid some errors in their conclusions.  相似文献   

5.
The results of the evaluation of the multiplication dynamics of Listeria cells in milk and Bifidok, a lactic acid product, are presented. The samples were inoculated on thioglycol agar and studied at different exposure time after incubation at 37 degrees C, 20 degrees C and 4 degrees C. The study revealed the intensive multiplication of Listeria cells in milk, also during storage in a household refrigerator. The presence of bifidobacteria mixed with kefir-producing culture in dairy products was shown to essentially inhibit the growth of Listeria cells which were not detected by bacteriological techniques on day 7.  相似文献   

6.
Certain local alterations in functional and reproductive activity of chondrocytes were stated at the development of the cartilage skeleton. In epiphyses chondrocytes gradually pass into the phase of rest (G0) with subsequent multiplication during the process of skeletal development. In these structures biosynthesis of nonsulfated proteoglycans predominate, in time, while in other cartilage zones--that of sulfated ones. Proofs are furnished on gradual transition of epiphyseal chondrocytes into the state peculiar for cells of the proliferative zone accompanied by an intensified biosynthesis of sulfated proteoglycans and collagenous proteins. Owing to these peculiarities they can be compared with the cells of the reserve zone in the mammalian metaepiphyseal cartilage. It was stated that intensity of chondrogenesis and growth of bones are affected by several processes: intensity of chondrocyte multiplication, the rate of their repeated division in the proliferative zone, the velosity with which the cells transfer into the state of hypertrophy and the rate of the periostal bone formation at the border-line of metaphysis and diaphysis.  相似文献   

7.
The dynamics of changes in the content of four groups of phenolic substances was investigated during the growth cycle of the cell suspension culture ofNicotiana tábacum by means of fractionation. The relative contents of free phenolic acids, their esters, phenolic glycosides, and phenole acids non-extractable with methanol changed in dependence on the growth phase of the culture. A sharp increase, especially in the content of ester- and glycoside-bound phenolics and to a lesser extent also of phenolics belonging to the other two groups, occurred at the end of the lag phase. Then, after a temporary decrease at the early linear phase, the level of phenolics in the three fractions representing bound forms considerably increased again at the late linear and early stationary phases. The synthesized phenolic substances were partially released from the cells into the cultivation medium, which contained 15 to 30 % of the total content of the phenolics in the culture at different phases of the growth cycle. Likely causes of these changes are discussed.  相似文献   

8.
There is relatively little choice in cultivation methods for growing algae outdoors, either in open pond systems or closed photobioreactors—as batch, continuous, or semi-continuous culture. Algal batch culture grown in a nutrient replete environment with adequate sunlight will become self-shaded with sufficient cell density and enter a stage in the growth dynamic known as the “phase of linear growth.” It is during this phase of linear growth that primary production is at maximum and that the highest biomass is harvested. The inherent problem with batch culture is that the exponential (and possibly lag) phases necessary to achieve densities required prior to the phase of linear growth consume time and waste surface area, and thereby make this an inefficient method to grow algae. Semi-continuous culture can be forced into shade-limiting conditions by reducing growth rate from maximum through dilution, whereby phases of lag and exponential growth are skipped, and culture growth is put into a state similar to a perpetual phase of linear growth with an appropriate culture harvest/dilution cycle. Importantly, semi-continuous culture can increase net growth efficiency over batch culture when compared by shade-limited growth rate. However, scientific study and theory covering shade-limited algal growth under semi-continuous culture conditions are nearly non-existent, which currently makes its application to phycological technologies impractical through “hit and miss” strategies. This laboratory study compares shade-limited growth dynamics for batch and semi-continuous cultures of Thalassiosira pseudonana (small-sized, marine diatom). Theory for optimizing production of mass algal culture with semi-continuous culture technique through cycle period and harvest volume is developed, and guidelines to practical industrial applications are provided.  相似文献   

9.
Factors involved in the growth of adipose tissue were examined by testing interactions under cell culture conditions between cellular components of this tissue and plasma from overfed rats. The cellular factors were capillary fragments, endothelial cells during growth and after confluence, fibroblasts, adipocytes and adipose precursor cells before determination (adipoblasts) and after determination (preadipocytes). Multiplying adipose precursor cells stimulated markedly the multiplication of endothelial cells, while their own multiplication was inhibited. The stimulatory effect was partially transferred into the culture medium but not remaining in culture dishes conditioned by preceding cultures of adipose precursor cells, removed by Tris-EDTA buffer or mechanically. The activity was apparently not dependent on feeding conditions. Plasma from overfed rats did not affect endothelial or adipose precursor cell multiplication, but caused more rapid lipid filling of the latter. Endothelial cells facilitated lipid accumulation of preadipocytes. These results indicate that when adipose tissue is expanding by adipocyte multiplication capillarization is stimulated secondarily, being then capable of facilitating triglyceride accumulation in adipocytes.  相似文献   

10.
It was found that the growth of Rhodococcus rhodochrous cells in a modified Saton’s medium strongly depends on the rate of culture agitation in the flask: agitation at 250 rpm in flasks with baffles stops cell multiplication, whereas slight agitation leads to pronounced culture growth. The growth retardation phenomenon was reversible and did not manifest itself in exponential-phase cultures or when the cells were grown in a rich medium; furthermore, it was not connected with the degree of culture aeration. When agitated at a moderate rate, the bacterial cells formed aggregates in the lag phase, which broke up into single cells in the exponential phase. The inhibitory effect of vigorous agitation was removed by the addition, to the medium, of the supernatant (SN) of a log-phase culture grown in the same medium with moderate agitation. Vigorous agitation is thought to interfere with cell contact, whose establishment is necessary for the development of an R. rhodochrous culture in a poor medium, which occurs in the form of (micro) cryptic growth. When grown in a modified Saton’s medium, R. rhodochrous cells were capable of transition, in the prolonged stationary phase, to a resting and transiently nonculturable state. Such cells could be resuscitated by incubation in a liquid medium with the addition of the supernatant or the Rpf secreted protein. The formation of transiently nonculturable cells was only possible under the conditions of a considerable agitation rate (250–300 rpm), which prevented secondary (cryptic) growth of the culture. This circumstance indicates the importance of intercellular contacts not only for the initiation of growth but also for the transition of the bacteria to a dormant state.__________Translated from Mikrobiologiya, Vol. 74, No. 4, 2005, pp. 489–797.Original Russian Text Copyright © 2005 by Voloshin, Shleeva, Syroeshkin, Kaprelyants.  相似文献   

11.
Bacterial populations can display heterogeneity with respect to both the adaptive stress response and growth capacity of individual cells. The growth dynamics of Bacillus cereus ATCC 14579 during mild and severe salt stress exposure were investigated for the population as a whole in liquid culture. To quantitatively assess the population heterogeneity of the stress response and growth capacity at a single-cell level, a direct imaging method was applied to monitor cells from the initial inoculum to the microcolony stage. Highly porous Anopore strips were used as a support for the culturing and imaging of microcolonies at different time points. The growth kinetics of cells grown in liquid culture were comparable to those of microcolonies grown upon Anopore strips, even in the presence of mild and severe salt stress. Exposure to mild salt stress resulted in growth that was characterized by a remarkably low variability of microcolony sizes, and the distributions of the log(10)-transformed microcolony areas could be fitted by the normal distribution. Under severe salt stress conditions, the microcolony sizes were highly heterogeneous, and this was apparently caused by the presence of both a nongrowing and growing population. After discriminating these two subpopulations, it was shown that the variability of microcolony sizes of the growing population was comparable to that of non-salt-stressed and mildly salt-stressed populations. Quantification of population heterogeneity during stress exposure may contribute to an optimized application of preservation factors for controlling growth of spoilage and pathogenic bacteria to ensure the quality and safety of minimally processed foods.  相似文献   

12.
Unlike bacteria such as Escherichia coli and Bacillus subtilis, several species of freshwater cyanobacteria are known to contain multiple chromosomal copies per cell, at all stages of their cell cycle. We have characterized the replication of multi-copy chromosomes in the cyanobacterium Synechococcus elongatus PCC 7942 (hereafter Synechococcus 7942). In Synechococcus 7942, the replication of multi-copy chromosome is asynchronous, not only among cells but also among multi-copy chromosomes. This suggests that DNA replication is not tightly coupled to cell division in Synechococcus 7942. To address this hypothesis, we analysed the relationship between DNA replication and cell doubling at various growth phases of Synechococcus 7942 cell culture. Three distinct growth phases were characterised in Synechococcus 7942 batch culture: lag phase, exponential phase, and arithmetic (linear) phase. The chromosomal copy number was significantly higher during the lag phase than during the exponential and linear phases. Likewise, DNA replication activity was higher in the lag phase cells than in the exponential and linear phase cells, and the lag phase cells were more sensitive to nalidixic acid, a DNA gyrase inhibitor, than cells in other growth phases. To elucidate physiological differences in Synechococcus 7942 during the lag phase, we analysed the metabolome at each growth phase. In addition, we assessed the accumulation of central carbon metabolites, amino acids, and DNA precursors at each phase. The results of these analyses suggest that Synechococcus 7942 cells prepare for cell division during the lag phase by initiating intensive chromosomal DNA replication and accumulating metabolites necessary for the subsequent cell division and elongation steps that occur during the exponential growth and linear phases.  相似文献   

13.
Changes in the synthetic activities of nucleic acids and protein and in the amount of adenine nucleotides in Daucus carota cells have been examined during a period of rapid cell division and during the stationary phase. Cell growth and the syntheses of those macromolecules in the logarithmic phase were significantly enhanced by increasing the concentration of phosphate in the medium. In a phosphate-rich medium, RNA and protein rapidly degraded and the number of cells with denatured cytoplasm increased when the culture entered into a stationary phase because of exhaustion of glucose. On the other hand, when the growth ceased by exhaustions of phosphate and nitrogen, the cells slowly underwent physiological changes leading to cellular senescence. The value of adenylate energy charge during the growth period was about 0.8–0.9 irrespective of the growth rate. After cessation of growth the value declined to about 0.5.  相似文献   

14.
To determine the underlying processes to population growth in the rotifer Brachionus plicatilis, we conducted an experiment using 1.5 ml cultures for 70 days. All individuals were transferred daily to culture media containing algae, and the number of individuals, clutch sizes and number of deaths were counted. The population dynamics showed a typical sigmoid curve. The population density increased exponentially from 10 to 682 individuals during the first 7 days (exponential growth phase), and gradually up to about 1500 individuals during the next 30 days (post-exponential growth phase). The population density then remained at a constant level with small fluctuations during the rest of the experimental period (stationary phase). Mortalities appeared from the post-exponential growth phase and were almost constant at about 2% throughout the experimental period. The clutch size decreased from 5 to 1 during the first 5 days, and afterwards females laid only one egg each. The proportion of non-reproductive females increased from 30% (exponential growth phase) to 80% (post-exponential growth phase) to 90% (stationary phase). These results suggest that the exponential growth phase resulted from the imbalance between a high birth rate and a low death rate, while the stationary phase was maintained by the compensation between low birth and death rates.  相似文献   

15.
The principles of enzyme kinetic analysis were applied to quantitate the relationships among serum-derived growth factors, nutrients, and the rate of survival and multiplication of human fibroblasts in culture. The survival or multiplication rate of a population of cells plotted against an increasing concentration of a growth factor or nutrient in the medium exhibited a hyperbolic pattern that is characteristic of a dissociable, saturable interaction between cells and the ligands. Parameters equivalent to the Km and Vmax of enzyme kinetics were assigned to nutrients and growth factors. When all nutrient concentrations were optimized and in steady state, serum factors accelerated the rate of multiplication of a normal cell population. The same set of nutrients that supported a maximal rate of multiplication in the presence of serum factors supported the maintenance of non-proliferating cells in the absence of serum factors. Therefore, under this condition, serum factors are required for cell division and play a purely regulatory iole in multiplication of the cell population. The quantitative requirement for 18 nutrients of 29 that were examined was significantly higher (P < 0.001) for cell multiplication in the presence of serum factors than for cell maintenance in the absence of serum factors. This indicated specific nutrients that may be quantitatively important in cell division processes as well as in cell maintenance. The quantitative requirement for Ca2+, Mg2+, K+, Pi, and 2-oxocarboxylic acid for cell multiplication was modified by serum factors and other purified growth factors. The requirement for over 30 other nutrients could not clearly be related to the level of serum factors in the medium. Serum factors also determined the Ca2+, K+, and 2-oxocarboxylic acid requirement for maintenance of non-proliferating cells. Therefore, when either Ca2+, K+, or 2-oxocarboxylic acid concentration was limiting, factors in serum played a role as cell “survival or maintenance” factors in addition to their role in cell division as “growth regulatory” factors. However, with equivalent levels of serum factors in the medium, the requirement for Ca2+, K+, and 2-oxocarboxylic acids was still much higher for multiplication than for maintenance. Kinetic analysis revealed that the concentrations of individual nutrients modify the quantitative requirement for others for cell multiplication in a specific pattern. Thus, specific quantitative relationships among different nutrients in the medium are important in the control of the multiplication rate of the cell population. When all nutrient concentrations were optimal for multiplication of normal cells, the multiplication response of SV40-virus-transformed cells to serum factors was similar to that of normal cells. When serum factors were held constant, transformed cells required significantly less (P < 0.001) of 12 of the 26 nutrients examined. Therefore, the transformed cells only have a growth advantage when the external concentration of specific nutrients limits the multiplication rate of normal cells. Taken together, the results suggest that the control of cell multiplication is intimately related to external concentrations of nutrients. Specific growth regulatory factors may stimulate cell proliferation by modification of the response of normal cells to nutrients. Transforming agents may confer a selective growth advantage on cells by a constitutive alteration of their response to extracellular nutrients.  相似文献   

16.
Bacterial populations can display heterogeneity with respect to both the adaptive stress response and growth capacity of individual cells. The growth dynamics of Bacillus cereus ATCC 14579 during mild and severe salt stress exposure were investigated for the population as a whole in liquid culture. To quantitatively assess the population heterogeneity of the stress response and growth capacity at a single-cell level, a direct imaging method was applied to monitor cells from the initial inoculum to the microcolony stage. Highly porous Anopore strips were used as a support for the culturing and imaging of microcolonies at different time points. The growth kinetics of cells grown in liquid culture were comparable to those of microcolonies grown upon Anopore strips, even in the presence of mild and severe salt stress. Exposure to mild salt stress resulted in growth that was characterized by a remarkably low variability of microcolony sizes, and the distributions of the log10-transformed microcolony areas could be fitted by the normal distribution. Under severe salt stress conditions, the microcolony sizes were highly heterogeneous, and this was apparently caused by the presence of both a nongrowing and growing population. After discriminating these two subpopulations, it was shown that the variability of microcolony sizes of the growing population was comparable to that of non-salt-stressed and mildly salt-stressed populations. Quantification of population heterogeneity during stress exposure may contribute to an optimized application of preservation factors for controlling growth of spoilage and pathogenic bacteria to ensure the quality and safety of minimally processed foods.  相似文献   

17.
Controlling the light energy and major nutrients is important for high cell density culture of cyanobacterial cells. The growth phase of Anabaena variabilis can be divided into an exponential growth phase and a deceleration phase. In this study, the cell growth in the deceleration phase showed a linear growth pattern. Both the period of the exponential growth phase and the average cell growth rate in the deceleration phase increased by controlling the light intensity. To control the light intensity, the specific irradiation rate was maintained above 10 micromol/s/g dry cell by increasing the incident light intensity stepwise. The final cell density increased by controlling the nutrient supply. For the control of the nutrient supply, nitrate, phosphate, and sulfate were intermittently added based on the growth yield, along with the combined control of light intensity and nutrient concentration. Under these control conditions, both final cell concentration and cell productivity increased, to 8.2 g/l and 1.9 g/l/day, respectively.  相似文献   

18.
The flow-cytometric (FCM) analysis of bivariate DNA/lgG distributions has been conducted to study the cell cycle kinetics and monoclonal antibody (MAb) production during perfusion culture of hybridoma cells. Three different perfusion rates were employed to demonstrate the dependency of MAb synthesis and secretion on cell cycle and growth rate. The results showed that, during the rapid growth period of perfusion culture, the level of intracellular igG contents of hybridoma cells changed significantly at each perfusion rate, while the DNA histograms showing cell cycle phases were almost constant. Meanwhile, during the reduced growth period of perfusion culture, the fraction of cells in the S phase decreased, and the fraction cells in the G1/G0 phase increased with decreasing growth rate. The fraction of cells in the G2/M phase was relatively constant during the whole period of perfusion culture. Positive correlation was found between mean intracellular IgG contents and the specific MAb production rate, suggesting that the deletion of intracellular IgG contents by a flow cytometer could be used as a good indicator for the prediction of changes in specific MAb productivity following manipulation of the culture condition. (c) 1994 John Wiley & Sons, Inc.  相似文献   

19.
Growth of Saccharomyces cerevisiae on glucose in aerobic batch culture follows the well-documented diauxic pattern of completely fermenting glucose to ethanol during the first exponential growth phase, followed by an intermediate lag phase and a second exponential growth phase consuming ethanol. In continuous cultures over a range of intermediate dilution rates, the yeast bioreactor exhibits sustained oscillations in all the measured concentrations, such as cell mass, glucose, ethanol, and dissolved oxygen, the amounts of intracellular storage carbohydrates, such as glycogen and trehalose, the fraction of budded cells as well as the culture pH. We present here a structured, unsegregated model for the yeast growth dynamics developed from the 'cybernetic' modeling framework, to simulate the dynamic competition between all the available metabolic pathways. This cybernetic model accurately predicts all the key experimentally observed aspects: (i) in batch cultures, duration of the intermediate lag phase, sequential production and consumption of ethanol, and the dynamics of the gaseous exchange rates of oxygen and carbon dioxide; and (ii) in continuous cultures, the spontaneous generation of oscillations as well as the variations in period and amplitude of oscillations when the dilution rate or agitatin rate are changed.  相似文献   

20.
The objective was to reduce in vitro production costs while retaining or improving plant quality, in particular the suitability for pot plant production. Plants were grown at photosynthetic photon flux densities (PPFD) of 0–40 μmol m-2 s-1 and sucrose concentrations of 3–7% during the multiplication phase and the effects of sucrose, BA, and NAA during root formation were investigated. Ex vitro growth were tested in both experiments. A small reduction in the rhizome multiplication rate was found with increasing PPFD and sucrose concentration. Increasing sucrose concentration reduced the number of aerial shoots. Aerial shoots were etiolated when cultured in darkness and their number increased with increasing PPFD at 3% sucrose, whereas PPFD did not affect the number of aerial shoots at 5 or 7% sucrose. During the multiplication phase a synergistic promoting effect of PPFD and sucrose was observed on root formation. Root formation after transfer to rooting medium was affected by sucrose and PPFD during the multiplication phase. PPFD did not influence root formation after propagation on 7% sucrose, whereas on 3 or 5 % sucrose root formation was gradually inhibited when PPFD was decreased below 17 μmol m-2 s-1. The formation of thick roots was promoted by propagation in light, and not influenced by sucrose concentration. Ex vitro growth was not affected by in vitro conditions, except for 7% sucrose during the multiplication phase that reduced flowering. Root formation on rooting medium was reduced by BA and promoted both by NAA and high levels of sucrose. The root inhibiting effect of BA could not completely be overcome by simultaneous application of NAA and high sucrose concentrations. Thick roots were only produced in the presence of NAA, and not affected by sucrose treatment. Ex vitro flowering was negatively influenced by the presence of BA during root formation and by high levels of sucrose if BA was absent in the rooting medium. High sucrose levels and NAA could partially compensate for the negative effect of BA on flowering. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号