首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 959 毫秒
1.
2.
3.
4.
5.
6.
7.
The Perilla (Perilla frutescens L. cv. Okdong) oleosin gene, PfOle19, produces a 19-kDa protein that is highly expressed only in seeds. The activity of the −2,015 bp 5′-upstream promoter region of this gene was investigated in transgenic Arabidopsis plants using the fusion reporter constructs of enhanced green fluorescent protein (EGFP) and β-glucuronidase (GUS). The PfOle19 promoter directs Egfp expression in developing siliques, but not in leaves, stems or roots. In the transgenic Arabidopsis, EGFP fluorescence and histochemical GUS staining were restricted to early seedlings, indehiscent siliques and mature seeds. Progressive 5′-deletions up to the −963 bp position of the PfOle19 promoter increases the spatial control of the gene expression in seeds, but reduces its quantitative levels of expression. Moreover, the activity of the PfOle19 promoter in mature seeds is 4- and 5-fold greater than that of the cauliflower mosaic virus 35S promoter in terms of both EGFP intensity and fluorometric GUS activity, respectively.  相似文献   

8.
In our previous research, we showed that the cyclin-dependent kinase regulatory subunit (CKS2) in maize (Zea mays L.) was induced by water deficit and cold stress. To elucidate its expression patterns under adversity, we isolated and characterized its promoter (PZmCKS2). A series of PZmCKS2-deletion derivatives, P0–P3, from the translation start code (?1,455, ?999, ?367, and ?3 bp) was fused to the β-glucuronidase (GUS) reporter gene, and each deletion construct was analyzed by Agrobacterium-mediated steady transformation into Arabidopsis. Leaves were then subjected to dehydration, cold, abscisic acid (ABA), salicylic acid (SA), and methyl jasmonic acid (MeJA). Sequence analysis showed that several stress-related cis-acting elements (MBS, CE3, TGA element, and ABRE) were located within the promoter. Deletion analysis of the promoter, PZmCKS2, suggested that the ?999 bp promoter region was required for the highest basal expression of GUS, and the ?367 bp sequence was the minimal promoter for ZmCKS2 activation by low temperature, ABA, and MeJA. The cis-acting element ABRE was necessary for promoter activation by exogenous ABA.  相似文献   

9.
10.
11.
12.
A 1.3-kb fragment from the 5'-flanking region of the RGS-38gene, which encodes the plastidic glutamine synthetase in Oryzasativa L., was fused to a ß-glucuronidase (GUS) reportergene and introduced into Nicotiana tabacum by Agrobacterium-mediatedtransformation. The promoter directed GUS expression, both inleaves and in roots, and the expression of GUS was regulatedby light. The GUS activity was high in the mature leaves ofthe transgenic tobacco plants, in marked contrast to the activityof the GS1 promoter. The GS2 promoter also responded to externallyapplied ammonia, as is the case for the GS1 promoter. Theseresults suggest that the cis-acting regulatory elements thatcontrol the response to ammonia, a substrate for glutamine synthetase,are located within a 1.3-kb region of the promoter. (Received October 1, 1991; Accepted January 20, 1992)  相似文献   

13.
The first rate-limiting enzyme of the mevalonate pathway during isoprenoid biosynthesis is 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR). In this study, the expression pattern of the MdHMGR2 gene in Malus domestica suggests that MdHMGR2 was expressed in a tissue-specific manner and was significantly induced by ethephon (ETH), indoleacetic acid (IAA), methyl jasmonate (MeJA), and salicylic acid (SA). The MdHMGR2 promoter was isolated, sequenced, and analyzed through bioinformatics tools, and the results suggest the presence of various putative cis-acting elements responsive to different hormones. Activity of β-glucuronidase (GUS) driven by the full length MdHMGR2 promoter and its 5′deletion fragments was detected in transgenic Arabidopsis thaliana. A strong GUS activity was observed in seedlings, roots, newly growing true leaves, anthers, and stigmas in transgenic Arabidopsis containing the full MdHMGR2 promoter. The results indicate that a region from -1050 to -827 was crucial for promoter activity. In addition, the MdHMGR2 promoter was induced in response to ETH, IAA, MeJA, and SA. The analysis suggests that an ethylene-responsive element in the region from -1050 to -1005 was required for the ethylene inducibility.  相似文献   

14.
15.
为研究玉米(Zeamays L.)19kD醇溶贮藏蛋白(zein)基因启动子种子特异性表达的控制区段,将全长694bp的启动子进行5’端缺失,共得到6个缺失突变体,长度分别为488bp、378bp、302bp、152bp、124bp和85bp。将6个片段分别与报告基因gus连接构建成表达载体pDGB系列,经土壤农杆菌(Agrobacterium)介导转化,引入烟草。GUS活性检测证明,488bp启动子片段能促使gus基因在种子中特异表达。378bp、302bp、152bp和124bp片段启动子引导的gus基因在烟草根、叶柄、种子中均可表达。  相似文献   

16.
17.
A deletion works of a maize 19 kD zein gene promoter in the 5'end was performed and six promoter fragments of different length were obtained. A series of expression vectors was constructed and then transferred into tobacco ( Nicotiarta tabacum L. ) plants. GUS activity assays indicated that the expression of 488 bp promoter was tissue-specific, for which GUS was active only in transgenic tobacco seeds. The other four fragments containing 378 bp,302 bp,152 bp and 124 bp also have the activity of promoter. They could drive gus gene expressed not only in seeds but also in roots and petioles.  相似文献   

18.
19.
20.
LEA1 gene from Glycine max can be expressed in late-embryo stage of plants, and respond to salinity and dehydration stress. To elucidate the mechanism for stress tolerance and high expression in seeds, we isolated and characterized the promoter of LEA1 gene (EQ, 1997 bp) starting the 5′LEA1 coding region. A deletion mutant of EQ promoter (ED) and the full length promoter (EQ) were fused to GUS reporter gene and transformed into the tobacco leaf discs. The results indicated that expression of the reporter gene (GUS) could be regulated by EQ promoter, and was stronger than the mutant under the stress conditions. Also, the expression level of GUS gene driven by EQ promoter in transgenic tobacco seeds was significantly higher than that by the mutant promoter, which meant that it had a better tissue-specificity. Therefore, the active domain for the promoter was located between ?1997 and ?1000 bp. Additionally, the activity of EQ promoter was 2.1-, 3.3- and 0.4- times stronger than the activity of promoter CaMV35S under salt (24 h), drought (10 h) or ABA (24 h), respectively. Meanwhile, the GUS activity of EQ promoter in seeds was 1.8-fold stronger compared to the promoter CaMV35S. In summary, the new promoter (EQ) is bi-functional, stress-inducible and seed-specific. These findings provide a further understanding for the regulation of LEA1gene expression, and suggest a new way for improving seed quality under saline and alkaline land.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号