首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MOTIVATION: The power of multi-sequence comparison for biological discovery is well established. The need for new capabilities to visualize and compare cross-species alignment data is intensified by the growing number of genomic sequence datasets being generated for an ever-increasing number of organisms. To be efficient these visualization algorithms must support the ability to accommodate consistently a wide range of evolutionary distances in a comparison framework based upon phylogenetic relationships. RESULTS: We have developed Phylo-VISTA, an interactive tool for analyzing multiple alignments by visualizing a similarity measure for multiple DNA sequences. The complexity of visual presentation is effectively organized using a framework based upon interspecies phylogenetic relationships. The phylogenetic organization supports rapid, user-guided interspecies comparison. To aid in navigation through large sequence datasets, Phylo-VISTA leverages concepts from VISTA that provide a user with the ability to select and view data at varying resolutions. The combination of multiresolution data visualization and analysis, combined with the phylogenetic framework for interspecies comparison, produces a highly flexible and powerful tool for visual data analysis of multiple sequence alignments. AVAILABILITY: Phylo-VISTA is available at http://www-gsd.lbl.gov/phylovista. It requires an Internet browser with Java Plug-in 1.4.2 and it is integrated into the global alignment program LAGAN at http://lagan.stanford.edu  相似文献   

2.
SUMMARY: We present a web server that computes alignments of protein secondary structures. The server supports both performing pairwise alignments and searching a secondary structure against a library of domain folds. It can calculate global and local secondary structure element alignments. A combination of local and global alignment steps can be used to search for domains inside the query sequence or help in the discrimination of novel folds. Both the SCOP and PDB fold libraries, clustered at 95 and 40% sequence identity, are available for alignment. AVAILABILITY: The web server interface is freely accessible to academic users at http://protein.cribi.unipd.it/ssea/. The executable version and benchmarking data are available from the same web page.  相似文献   

3.
SUMMARY: With the continuous growth of the RCSB Protein Data Bank (PDB), providing an up-to-date systematic structure comparison of all protein structures poses an ever growing challenge. Here, we present a comparison tool for calculating both 1D protein sequence and 3D protein structure alignments. This tool supports various applications at the RCSB PDB website. First, a structure alignment web service calculates pairwise alignments. Second, a stand-alone application runs alignments locally and visualizes the results. Third, pre-calculated 3D structure comparisons for the whole PDB are provided and updated on a weekly basis. These three applications allow users to discover novel relationships between proteins available either at the RCSB PDB or provided by the user. Availability and Implementation: A web user interface is available at http://www.rcsb.org/pdb/workbench/workbench.do. The source code is available under the LGPL license from http://www.biojava.org. A source bundle, prepared for local execution, is available from http://source.rcsb.org CONTACT: andreas@sdsc.edu; pbourne@ucsd.edu.  相似文献   

4.
State-of-the-art methods for topology of α-helical membrane proteins are based on the use of time-consuming multiple sequence alignments obtained from PSI-BLAST or other sources. Here, we examine if it is possible to use the consensus of topology prediction methods that are based on single sequences to obtain a similar accuracy as the more accurate multiple sequence-based methods. Here, we show that TOPCONS-single performs better than any of the other topology prediction methods tested here, but ~6% worse than the best method that is utilizing multiple sequence alignments. AVAILABILITY AND IMPLEMENTATION: TOPCONS-single is available as a web server from http://single.topcons.net/ and is also included for local installation from the web site. In addition, consensus-based topology predictions for the entire international protein index (IPI) is available from the web server and will be updated at regular intervals.  相似文献   

5.
MOTIVATION: We present a structural alignment database that is specifically targeted for use in derivation and optimization of sequence-structure alignment algorithms for homology modeling. We have paid attention to ensure that fold-space is properly sampled, that the structures involved in alignments are of significant resolution (better than 2.5 A) and the alignments are accurate and reliable. RESULTS: Alignments have been taken from the HOMSTRAD, BAliBASE and SCOP-based Gerstein databases along with alignments generated by a global structural alignment method described here. In order to discriminate between equivalent alignments from these different sources, we have developed a novel scoring function, Contact Alignment Quality score, which evaluates trial alignments by their statistical significance combined with their ability to reproduce conserved three-dimensional residue contacts. The resulting non-redundant, unbiased database contains 1927 alignments from across fold-space with high-resolution structures and a wide range of sequence identities. AVAILABILITY: The database can be interactively queried either over the web at http://abagyan.scripps.edu/lab/web/sad/show.cgi or by using MySQL, and is also available to download over the web.  相似文献   

6.
DNATagger is a web-based tool for coloring and editing DNA, RNA and protein sequences and alignments. It is dedicated to the visualization of protein coding sequences and also protein sequence alignments to facilitate the comprehension of evolutionary processes in sequence analysis. The distinctive feature of DNATagger is the use of codons as informative units for coloring DNA and RNA sequences. The codons are colored according to their corresponding amino acids. It is the first program that colors codons in DNA sequences without being affected by "out-of-frame" gaps of alignments. It can handle single gaps and gaps inside the triplets. The program also provides the possibility to edit the alignments and change color patterns and translation tables. DNATagger is a JavaScript application, following the W3C guidelines, designed to work on standards-compliant web browsers. It therefore requires no installation and is platform independent. The web-based DNATagger is available as free and open source software at http://www.inf.ufrgs.br/~dmbasso/dnatagger/.  相似文献   

7.
ABSTRACT: BACKGROUND: Multiple structure alignments have received increasing attention in recent years as an alternative to multiple sequence alignments. Although multiple structure alignment algorithms can potentially be applied to a number of problems, they have primarily been used for protein core identification. A method that is capable of solving a variety of problems using structure comparison is still absent. Here we introduce a program msTALI for aligning multiple protein structures. Our algorithm uses several informative features to guide its alignments: torsion angles, backbone Calpha atom positions, secondary structure, residue type, surface accessibility, and properties of nearby atoms. The algorithm allows the user to weight the types of information used to generate the alignment, which expands its utility to a wide variety of problems. RESULTS: msTALI exhibits competitive results on 824 families from the Homstrad and SABmark databases when compared to Matt and Mustang. We also demonstrate success at building a database of protein cores using 341 randomly selected CATH domains and highlight the contribution of msTALI compared to the CATH classifications. Finally, we present an example applying msTALI to the problem of detecting hinges in a protein undergoing rigid-body motion. CONCLUSIONS: msTALI is an effective algorithm for multiple structure alignment. In addition to its performance on standard comparison databases, it utilizes clear, informative features, allowing further customization for domain-specific applications. The C++ source code for msTALI is available for Linux on the web at http://ifestos.cse.sc.edu/mstali.  相似文献   

8.
GOAnno: GO annotation based on multiple alignment   总被引:2,自引:0,他引:2  
SUMMARY: GOAnno is a web tool that automatically annotates proteins according to the Gene Ontology (GO) using evolutionary information available in hierarchized multiple alignments. GO terms present in the aligned functional subfamily can be cross-validated and propagated to obtain highly reliable predicted GO annotation based on the GOAnno algorithm. AVAILABILITY: The web tool and a reduced version for local installation are freely available at http://igbmc.u-strasbg.fr/GOAnno/GOAnno.html SUPPLEMENTARY INFORMATION: The website supplies a detailed explanation and illustration of the algorithm at http://igbmc.u-strasbg.fr/GOAnno/GOAnnoHelp.html.  相似文献   

9.
10.
NCBI's LocusLink and RefSeq   总被引:1,自引:0,他引:1       下载免费PDF全文
  相似文献   

11.
Rigorous assessments of protein structure prediction have demonstrated that fold recognition methods can identify remote similarities between proteins when standard sequence search methods fail. It has been shown that the accuracy of predictions is improved when refined multiple sequence alignments are used instead of single sequences and if different methods are combined to generate a consensus model. There are several meta-servers available that integrate protein structure predictions performed by various methods, but they do not allow for submission of user-defined multiple sequence alignments and they seldom offer confidentiality of the results. We developed a novel WWW gateway for protein structure prediction, which combines the useful features of other meta-servers available, but with much greater flexibility of the input. The user may submit an amino acid sequence or a multiple sequence alignment to a set of methods for primary, secondary and tertiary structure prediction. Fold-recognition results (target-template alignments) are converted into full-atom 3D models and the quality of these models is uniformly assessed. A consensus between different FR methods is also inferred. The results are conveniently presented on-line on a single web page over a secure, password-protected connection. The GeneSilico protein structure prediction meta-server is freely available for academic users at http://genesilico.pl/meta.  相似文献   

12.
The Conserved Domain Database (CDD) is now indexed as a separate database within the Entrez system and linked to other Entrez databases such as MEDLINE(R). This allows users to search for domain types by name, for example, or to view the domain architecture of any protein in Entrez's sequence database. CDD can be accessed on the WorldWideWeb at http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=cdd. Users may also employ the CD-Search service to identify conserved domains in new sequences, at http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi. CD-Search results, and pre-computed links from Entrez's protein database, are calculated using the RPS-BLAST algorithm and Position Specific Score Matrices (PSSMs) derived from CDD alignments. CD-Searches are also run by default for protein-protein queries submitted to BLAST(R) at http://www.ncbi.nlm.nih.gov/BLAST. CDD mirrors the publicly available domain alignment collections SMART and PFAM, and now also contains alignment models curated at NCBI. Structure information is used to identify the core substructure likely to be present in all family members, and to produce sequence alignments consistent with structure conservation. This alignment model allows NCBI curators to annotate 'columns' corresponding to functional sites conserved among family members.  相似文献   

13.
BioParser     
The widely used programs BLAST (in this article, 'BLAST' includes both the National Center for Biotechnology Information [NCBI] BLAST and the Washington University version WU BLAST) and FASTA for similarity searches in nucleotide and protein databases usually result in copious output. However, when large query sets are used, human inspection rapidly becomes impractical. BioParser is a Perl program for parsing BLAST and FASTA reports. Making extensive use of the BioPerl toolkit, the program filters, stores and returns components of these reports in either ASCII or HTML format. BioParser is also capable of automatically feeding a local MySQL database with the parsed information, allowing subsequent filtering of hits and/or alignments with specific attributes. For this reason, BioParser is a valuable tool for large-scale similarity analyses by improving the access to the information present in BLAST or FASTA reports, facilitating extraction of useful information of large sets of sequence alignments, and allowing for easy handling and processing of the data. AVAILABILITY: BioParser is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 2.0 license terms (http://creativecommons.org/licenses/by-nc-nd/2.0/) and is available upon request. Additional information can be found at the BioParser website (http://www.dbbm.fiocruz.br/BioParser.html).  相似文献   

14.

Background

Protein sequence alignment is essential for a variety of tasks such as homology modeling and active site prediction. Alignment errors remain the main cause of low-quality structure models. A bioinformatics tool to refine alignments is needed to make protein alignments more accurate.

Results

We developed the SFESA web server to refine pairwise protein sequence alignments. Compared to the previous version of SFESA, which required a set of 3D coordinates for a protein, the new server will search a sequence database for the closest homolog with an available 3D structure to be used as a template. For each alignment block defined by secondary structure elements in the template, SFESA evaluates alignment variants generated by local shifts and selects the best-scoring alignment variant. A scoring function that combines the sequence score of profile-profile comparison and the structure score of template-derived contact energy is used for evaluation of alignments. PROMALS pairwise alignments refined by SFESA are more accurate than those produced by current advanced alignment methods such as HHpred and CNFpred. In addition, SFESA also improves alignments generated by other software.

Conclusions

SFESA is a web-based tool for alignment refinement, designed for researchers to compute, refine, and evaluate pairwise alignments with a combined sequence and structure scoring of alignment blocks. To our knowledge, the SFESA web server is the only tool that refines alignments by evaluating local shifts of secondary structure elements. The SFESA web server is available at http://prodata.swmed.edu/sfesa.  相似文献   

15.
The simple fact that proteins are built from 20 amino acids while DNA only contains four different bases, means that the 'signal-to-noise ratio' in protein sequence alignments is much better than in alignments of DNA. Besides this information-theoretical advantage, protein alignments also benefit from the information that is implicit in empirical substitution matrices such as BLOSUM-62. Taken together with the generally higher rate of synonymous mutations over non-synonymous ones, this means that the phylogenetic signal disappears much more rapidly from DNA sequences than from the encoded proteins. It is therefore preferable to align coding DNA at the amino acid level and it is for this purpose we have constructed the program RevTrans. RevTrans constructs a multiple DNA alignment by: (i) translating the DNA; (ii) aligning the resulting peptide sequences; and (iii) building a multiple DNA alignment by 'reverse translation' of the aligned protein sequences. In the resulting DNA alignment, gaps occur in groups of three corresponding to entire codons, and analogous codon positions are therefore always lined up. These features are useful when constructing multiple DNA alignments for phylogenetic analysis. RevTrans also accepts user-provided protein alignments for greater control of the alignment process. The RevTrans web server is freely available at http://www.cbs.dtu.dk/services/RevTrans/.  相似文献   

16.
Histone and histone fold sequences and structures: a database.   总被引:4,自引:3,他引:1       下载免费PDF全文
A database of aligned histone protein sequences has been constructed based on the results of homology searches of the major public sequence databases. In addition, sequences of proteins identified as containing the histone fold motif and structures of all known histone and histone fold proteins have been included in the current release. Database resources include information on conflicts between similar sequence entries in different source databases, multiple sequence alignments, and links to the Entrez integrated information retrieval system at the National Center for Biotechnology Information (NCBI). The database currently contains over 1000 protein sequences. All sequences and alignments in this database are available through the World Wide Web at: http: //www.ncbi.nlm.nih.gov/Baxevani/HISTONES/ .  相似文献   

17.
MODELER4SIMCOAL2 (M4S2) is an extensible graphical tool to model linked loci and population demographies. M4S2 is easy to use, allowing for the modeling of complicated scenarios, making coalescent simulation modeling accessible to biologists with limited computer skills. The software includes an extension system allowing for new models to be created, published and downloaded from the Internet. Availability: M4S2 is available from http://popgen.eu/soft/m4s2 under a GPL license. The web site also contains guides, screen shots and tutorials.  相似文献   

18.
SUMMARY: Genalyzer is a software tool designed for the interactive visualization of sequence matches between DNA or protein sequences. It provides visualizations on different levels of granularity, from complete overviews via zoomed regions to alignments of particular matching substrings. Genalyzer can efficiently handle very large datasets, allowing to display tens of thousands of matches between sequences of tens of millions of bases. AVAILABILITY: Genalyzer is available free of charge for non-commercial research institutions. For more details, see http://www.genalyzer.de  相似文献   

19.
A structure-based method for protein sequence alignment   总被引:1,自引:0,他引:1  
MOTIVATION: With the continuing rapid growth of protein sequence data, protein sequence comparison methods have become the most widely used tools of bioinformatics. Among these methods are those that use position-specific scoring matrices (PSSMs) to describe protein families. PSSMs can capture information about conserved patterns within families, which can be used to increase the sensitivity of searches for related sequences. Certain types of structural information, however, are not generally captured by PSSM search methods. Here we introduce a program, Structure-based ALignment TOol (SALTO), that aligns protein query sequences to PSSMs using rules for placing and scoring gaps that are consistent with the conserved regions of domain alignments from NCBI's Conserved Domain Database. RESULTS: In most cases, the alignment scores obtained using the local alignment version follow an extreme value distribution. SALTO's performance in finding related sequences and producing accurate alignments is similar to or better than that of IMPALA; one advantage of SALTO is that it imposes an explicit gapping model on each protein family. AVAILABILITY: A stand-alone version of the program that can generate global or local alignments is available by ftp distribution (ftp://ftp.ncbi.nih.gov/pub/SALTO/), and has been incorporated to Cn3D structure/alignment viewer. CONTACT: bryant@ncbi.nlm.nih.gov.  相似文献   

20.
Zhu J  Weng Z 《Proteins》2005,58(3):618-627
We present a novel algorithm named FAST for aligning protein three-dimensional structures. FAST uses a directionality-based scoring scheme to compare the intra-molecular residue-residue relationships in two structures. It employs an elimination heuristic to promote sparseness in the residue-pair graph and facilitate the detection of the global optimum. In order to test the overall accuracy of FAST, we determined its sensitivity and specificity with the SCOP classification (version 1.61) as the gold standard. FAST achieved higher sensitivities than several existing methods (DaliLite, CE, and K2) at all specificity levels. We also tested FAST against 1033 manually curated alignments in the HOMSTRAD database. The overall agreement was 96%. Close inspection of examples from broad structural classes indicated the high quality of FAST alignments. Moreover, FAST is an order of magnitude faster than other algorithms that attempt to establish residue-residue correspondence. Typical pairwise alignments take FAST less than a second with a Pentium III 1.2GHz CPU. FAST software and a web server are available at http://biowulf.bu.edu/FAST/.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号