首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
酶法细胞破碎技术不仅能提高胞内产物的提取效率、降低能耗,还能减少化学试剂的用量,更有利于环保。主要介绍酶法破碎细菌、真菌、微藻、原生菌类等微生物细胞的研究进展、工业化情况以及应用展望。  相似文献   

3.
海藻糖微生物酶法合成机制的研究   总被引:5,自引:0,他引:5  
来源于嗜酸热古菌芝田硫化叶菌(Sulfolobus shibatae)B12的麦芽寡糖基海藻糖合酶(MTSase)和麦芽寡糖基海藻糖海藻糖水解酶(MTHase)基因在大肠杆菌中获得表达。将获得纯化的两个酶,分别以麦芽寡糖和淀粉为转化底物,在pH5.5,60℃条件下合成海藻糖。从反应产物分析结果可知,两个酶合成海藻糖时能利用的最小底物是麦芽四糖,海藻糖产率与麦芽寡糖链长正相关。同时还发现两个酶都具有轻微的α-1,4-葡萄糖苷酶活性,能在麦芽寡糖还原末端水解α-1,4糖苷键,生成葡萄糖分子,其反应最小底物分别是麦芽三糖和四糖。推测海藻糖合成酶可能有两个不同的催化活性中心。  相似文献   

4.
微生物酶法转化生产L-肉碱的研究进展   总被引:1,自引:0,他引:1  
L -肉碱作为一种新型的营养强化剂和临床药物 ,广泛应用于医疗、保健、食品等领域。L- 肉碱的生产方法有化学合成、微生物发酵、微生物酶法转化等 ,其中微生物酶法转化被认为是一种最经济且最有前途的方法。就 3种酶法转化 (DL -肉碱衍生物的酶法拆分、巴豆甜菜碱的酶法转化、D- 肉碱的酶法转化 )的微生物产酶菌株、产酶条件和酶法转化的最适条件作一概述。  相似文献   

5.
木酮糖是生物体内的代谢中间产物,是多种稀有糖合成的前体物质,因其独特的生物活性在膳食、保健、医药等领域发挥着重要作用。本研究旨在从最基本有机原料之一的甲醛出发,利用生物酶法催化甲醛合成木酮糖。通过来源于恶臭假单胞菌Pseudomonas putida的苯甲酸脱羧酶(Benzoylformate decarboxylase)突变体BFD-M3催化甲醛聚合生成羟基乙醛和1,3-二羟基丙酮(DHA)。通过来源于大肠杆菌的转醛醇酶(Transaldolase)突变体Tal B-F178Y进一步催化羟基乙醛和DHA聚合生成木酮糖,最终实现甲醛到木酮糖的酶法转化,转化率为0.4%。此外,经过优化甲醛底物浓度,木酮糖转化率达到4.6%,比优化前提高了11.5倍。为了进一步提高木酮糖的转化率,采用Scaffold多酶组装技术固定BFD-M3、Tal B-F178Y蛋白,使木酮糖转化率达到14.02%,较未用Scaffold技术前提高3倍,为生物法合成稀有糖提供了一种新方案。  相似文献   

6.
笔者的团队正通过自己的筛选程序来开发新的酶反应.并利用定向进化技术来改善它们.以便用于不破坏环境的化学反应。  相似文献   

7.
靛蓝及其同类色素的微生物生产与转化   总被引:2,自引:0,他引:2  
靛蓝类色素广泛应用于印染、食品和医药工业, 其环境友好的合成或生产途径越来越受到人们的关注, 特别是微生物生物合成。已经鉴定和分离了能够合成靛蓝类色素的多种微生物, 并且明确了起催化作用的主要是单加氧酶和双加氧酶。已经克隆和利用了一些加氧酶的基因, 构建了工程菌, 优化了其发酵过程。同时, 微生物合成靛蓝的生物转化也已经起步。这些进展将带来环境友好的靛蓝类色素的合成与生产。  相似文献   

8.
靛蓝及其同类色素的微生物生产与转化   总被引:2,自引:0,他引:2  
靛蓝类色素广泛应用于印染、食品和医药工业, 其环境友好的合成或生产途径越来越受到人们的关注, 特别是微生物生物合成。已经鉴定和分离了能够合成靛蓝类色素的多种微生物, 并且明确了起催化作用的主要是单加氧酶和双加氧酶。已经克隆和利用了一些加氧酶的基因, 构建了工程菌, 优化了其发酵过程。同时, 微生物合成靛蓝的生物转化也已经起步。这些进展将带来环境友好的靛蓝类色素的合成与生产。  相似文献   

9.
假单胞菌酶法转化DL-ATC合成L-半胱氨酸   总被引:2,自引:0,他引:2  
采用微生物酶转化法制备L-半胱氨酸具有周期短、成本低、区域和立体选择性强、反应条件容易控制、环境友好等特点,与传统的毛发水解以及化学合成工艺相比显示出明显的优越性。本文从假单胞菌产酶条件和酶学性质、DL-ATC生物转化途径、固定化细胞转化工艺、基因工程菌的研究、以及L-半胱氨酸脱巯基酶的研究等5个方面介绍了国内外关于生物转化DL-2-氨基-Δ2-噻唑啉-4-羧酸(DL-ATC)合成L-半胱氨酸的研究进展。  相似文献   

10.
笔者的团队正通过自己的筛选程序来开发新的酶反应.并利用定向进化技术来改善它们.以便用于不破坏环境的化学反应。  相似文献   

11.
低聚半乳糖(GOS)是目前国际上已开发的功能性低聚糖之一,其商业化产品是应用微生物β-半乳糖苷酶以乳糖为原料进行转糖基反应获得,不同来源的酶合成GOS的结构不同,转糖基效率也存在差异.天然酶合成GOS的产量一般为20%~45%,分子改造获得的人工酶能将90%的乳糖底物转化为GOS;采用两相体系或反相胶束可以在一定程度上提高GOS产量.应用填充床反应器、活塞流反应器、膜反应器可规模化合成GOS;采用色谱柱法、酶法、纳滤膜法和微生物发酵法可纯化GOS产品,去除单糖及乳糖组分,扩大其应用范围.  相似文献   

12.
甾类化合物具有重要的生理医药作用,市场需求巨大。甾类化合物及其关键甾类药物通过微生物转化制备工艺较化学合成法具有区域立体选择性、减少合成步骤、缩短生产周期、提高收率以及生态友好等优点逐步被应用,然而甾类物质微生物分解代谢机制还有待进一步深入探索研究并确定。本文从甾类化合物结构种类与主要来源、生理功能、微生物转化与分解代谢机制的研究等方面进行了归纳,着重解析甾类化合物分解代谢过程关键酶系及其分子作用机制,为甾药化合物生产菌种改造与工程菌构建,以及微生物转化工业化生产工艺的开发提供参考。  相似文献   

13.
糖基化作用是真核生物蛋白翻译后修饰的重要环节,糖链对于蛋白质的结构和功能有重要影响。目前,合成带有均一糖链的糖蛋白和糖肽的策略主要有:(1)利用糖基化的氨基酸进行固相或液相合成。(2)将氨基化的寡糖链直接与预先合成的带有糖基化位点的多肽相结合。(3)利用糖基转移酶和糖苷酶的化学酶法合成策略。以上三种方法,都有各自的优点和不足。相对而言,利用微生物来源的β-N-乙酰氨基葡萄糖苷内切酶(ENGase)合成策略是目前发展较快且更具实践意义的方法。糖苷内切酶法合成策略的研究进展包括:(1)ENGase催化机制的研究。(2)糖基供体的研究。(3)ENGase突变体的研究。(4)糖苷内切酶法的应用。  相似文献   

14.
赵一全  张慧  张晓昱  谢尚县 《微生物学报》2020,60(12):2717-2733
木质纤维素是地球上最丰富的可再生资源。我国每年产生约9亿吨农业秸秆,因得不到有效利用,不仅造成资源浪费,也产生了诸多严峻的环境问题。缺少木质素的高效降解和资源化利用技术是限制木质纤维素产业化的主要瓶颈之一。虽然木质素的降解与转化多年来一直都受到关注,但是由于木质素结构的复杂性及异质性,使其高效利用受限。近年来,微生物具有的“生物漏斗”式转化特性为木质素的高值转化和利用提供了新方向。本文就生物质利用研究以来,微生物在木质素解聚与转化方面的研究历程与最新进展进行了简要的回顾与总结,并初步讨论了目前木质素高值转化面临的机遇与挑战。  相似文献   

15.
L-半胱氨酸(Cys)侧链巯基是构成蛋白质活性基团的重要氨基酸,在生物化学、医药、食品、饲料、化妆品等行业具有广泛的用途,国内外的需求量逐年增长.然而,Cys难以通过单纯的微生物发酵来进行生产;由于化学合成的步骤繁多,也很难进行化学合成.传统生产方法沿用毛发酸解制取L-半胱氨酸,收率低,能耗高,水解过程产生难闻气体及大量废酸,环境污染严重.  相似文献   

16.
中医药的广泛使用,导致随之产生的中药渣也日益增多.由于成本和技术等多因素的制约,现有中药渣处理方式一般较为简单粗放,造成了严重的环境污染和巨大的资源浪费.微生物作为自然界的"清道夫",在中药渣的绿色转化和利用方面拥有独特的优势,近年来通过微生物转化提升中药渣的再利用价值已备受关注,为中药产业的健康可持续发展提供了新思路...  相似文献   

17.
以大米淀粉为原料,多酶复配制备海藻糖。确定了实验室条件下多酶复配生产海藻糖的最佳条件:以15%(m/V)大米淀粉为底物,催化温度45℃、pH 6. 0、DE值16、α/β-CGTase加量为1. 4U/ml、催化28h后糖化处理12h,海藻糖转化率由双酶法催化的50%提高至73%。在底物浓度为25%(m/V)时,海藻糖产量最高达到182. 5g/L,随后对高浓度海藻糖进行分离提取,分别考察了活性炭脱色、离交分离、浓缩结晶等对海藻糖提取效率的响。  相似文献   

18.
合成塑料已广泛应用于国民经济各领域,是国民经济的支柱产业。然而,不规范生产、使用塑料制品以及处置塑料废弃物等问题,造成塑料在环境中长期累积,导致了严重的环境污染和碳资源浪费。生物降解是实现废塑料污染治理与资源化的新途径,已成为国内外废弃塑料处置研究的热点。近年来,在塑料降解微生物/酶资源的分离、筛选、鉴定以及对其进行工程化改造等方面取得了重要突破,为环境中微塑料的治理、废塑料的闭环循环再生提供了新的思路和方案。另一方面,利用微生物(纯菌或菌群)将塑料降解产生的单体进一步转化为生物可降解塑料及其他具有高附加值的化合物,对于解决废塑料的生态环境污染、推动塑料循环经济发展以及减少塑料在生命周期中的碳排放等方面具有重要意义。《生物工程学报》特组织出版“塑料的生物降解与转化”专刊,邀请了国内外塑料生物降解与转化领域的相关专家学者介绍了塑料生物降解资源的发掘、塑料解聚酶的设计与改造、塑料降解物的生物高值转化等领域最新进展和研究成果,收录了包括评论、综述、研究论文等类型的相关文章16篇,为塑料生物降解与转化的进一步研究提供借鉴和指导。  相似文献   

19.
菊糖作为益生元和膳食纤维,具有许多重要的生理功能,广泛应用于食品、医药等领域.微生物菊糖蔗糖酶可以以蔗糖为底物合成较植物菊糖具有更高分子量的菊糖.文中通过基因数据库筛选获得一段拟表达菊糖蔗糖酶的基因.通过N-端和C-端截断的方式,保留中间催化域,构建重组质粒.将重组质粒在大肠杆菌表达系统中表达,粗酶液经Ni2+亲和层析...  相似文献   

20.
利用重组大肠杆菌表达丝氨酸羟甲基转移酶(SHMT)和色氨酸酶(TPase),并利用双酶法合成L-色氨酸。采用PCR从大肠杆菌K12基因组中扩增上述两种酶的基因,利用pET-28a载体,构建单表达重组质粒pET-SHMT、pET-TPase和共表达重组质粒pET-ST。将上述3种重组质粒转入大肠杆菌BL21(DE3)进行表达。SDS-PAGE结果表明,单表达基因工程菌BL21(DE3)/pET-SHMT和BL21(DE3)/pET-TPase分别在47kDa(SHMT)和50kDa(TPase)处有蛋白表达带;共表达基因工程菌BL21(DE3)/pET-ST在上述两处均有蛋白表达带。与宿主菌相比,单表达SHMT基因工程菌产酶活性提高了6.4倍;单表达TPase基因工程菌产酶活性提高了8.4倍;共表达SHMT和TPase基因工程菌产酶活性分别提高了6.1和6.9倍。利用工程菌所产酶进行双菌双酶法和单菌双酶法合成L-色氨酸。两菌双酶合成L-色氨酸的累积量达到41.5g/L,甘氨酸转化率为83.3%,吲哚转化率为92.5%;单菌双酶合成L-色氨酸的累积量达到28.9g/L,甘氨酸转化率为82.7%,吲哚转化率为82.9%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号