首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The modification of histidine residues of ovine pituitary lutropin by rose bengal sensitized photooxidation has been investigated. The destruction of an average of one histidine out of six lead to 90% loss of biological activity as examined by the invitro steroidogenic response in the rat Leydig cell essay. Further modification of an average 2 – 3 histidine residues reduced the biological activity to less than 1% of the native lutropin. The modified lutropin was incapable of inhibiting the native lutropin induced steroidogenesis. Gel filtration experiments and polyacrylamide disc gel electrophoresis patterns indicated that no dissociation of the molecule into subunits occurred. This is the first report on the essentiality of the histidine residue for the activity of lutropin.  相似文献   

2.
Photooxidation of botulinic neurotoxin A in the presence of methylene blue is associated with a decrease in toxicity down to complete detoxication. During neurotoxin photooxidation, when the toxicity makes up to 1 to 3% of the original one, the conformation of the neurotoxin molecule and its antigenic properties remain unchanged. Under these conditions, using diethylpyrocarbonate, a specific reagent for histidine, the photooxidized neurotoxin was found to contain 5-6 oxidized histidine residues per molecule of neurotoxin; this was accompanied by changes in the UV absorbance spectrum around 280 nm. It was assumed that the main decrease in neurotoxin toxicity during photooxidation is probably due to oxidation of tryptophane, since the differential UV spectra suggest that the higher the extremum around 280 nm, the greater the decrease of toxicity; chemical modification of histidine residues alone causes no noticeable detoxication.  相似文献   

3.
Dihydrodiol dehydrogenase from pig liver was inactivated by diethylpyrocarbonate (DEP) and by rose bengal-sensitized photooxidation. The DEP inactivation was reversed by hydroxylamine and the absorption spectrum of the inactivated enzyme indicated that both histidine and tyrosine residues were carbethoxylated. The rates of inactivation by DEP and by photooxidation were dependent on pH, showing the involvement of a group with a pKa of 6.4. The kinetics of inactivation and spectrophotometric quantification of the modified residues suggested that complete inactivation was caused by modification of one histidine residue per active site. The inactivation by the two modifications was partially prevented by either NADP(H) or the combination of NADP+ and substrate, and completely prevented in the presence of both NADP+ and a competitive inhibitor which binds to the enzyme-NADP+ binary complex. The DEP-modified enzyme caused the same blue shift and enhancement of NADPH fluorescence as did the native enzyme, suggesting that the modified histidine is not in the coenzyme-binding site of the enzyme. The results suggest the presence of essential histidine residues in the catalytic region of the active site of pig liver dihydrodiol dehydrogenase.  相似文献   

4.
Phosphoenolpyruvate carboxylase from the Crassulacean acid metabolism plant Crassula argentea was substantially desensitized to the effects of regulatory ligands by treatment with diethylpyrocarbonate, a reagent which selectively modifies histidyl residues. Desensitization of the enzyme to the inhibitor malate and the activator glucose 6-phosphate was accompanied by the appearance of a peak in the ultraviolet difference spectrum at 240 nanometers, indicating the formation of ethoxyformylhistidyl derivatives. Hydroxylamine reversed part of the spectral change under native conditions, and almost all of the change under denaturing conditions, but failed to restore sensitivity to effectors. The pH profiles of desensitization to malate and glucose 6-phosphate indicated the involvement of groups on the enzyme with pK, values of 6.8 and 6.4, respectively. Under denaturing conditions, a total of 15 histidine residues per subunit were modified by diethylpyrocarbonate, whereas for the native enzyme nine histidines were modified per subunit. Effector desensitization occurs after the modification of two to three histidyl residues per subunit. The presence of malate reduced the apparent rate constant for desensitization by 60%, suggesting that the modification occurred at the malate binding site. Diethylpyrocarbonate treatment also eliminated the kinetic lag caused by malate. Glucose 6-phosphate did not protect the enzyme against diethylpyrocarbonate-induced desensitization.  相似文献   

5.
Incubation of the red beet (Beta vulgaris L.) plasma membrane H+-ATPase with micromolar concentrations of diethylpyrocarbonate (DEPC) resulted in inhibition of both ATP hydrolytic and proton pumping activity. Enzyme activity was restored when DEPC-modified protein was incubated with hydroxylamine, suggesting specific modification of histidine residues. Kinetic analyses of DEPC inhibition performed on both membrane-bound and solubilized enzyme preparations suggested the presence of at least one essential histidine moiety per active site. Inclusion of either ATP (substrate) or ADP (product and competitive inhibitor) in the modification medium reduced the amount of inhibition observed in the presence of DEPC. However, protection was not entirely effective in returning activity to noninhibited control values. These results suggest that the modified histidine does not reside directly in the ATP binding region of the enzyme, but is more likely involved in enzyme regulation through subtle conformational effects.  相似文献   

6.
The variation with pH of kinetic parameters was examined for 3-ketosteroid-delta 1-dehydrogenase from Nocardia corallina. The Vmax/Km profile for 4-androstenedione indicates that activity is lost upon protonation of a cationic acid-type group with a pK value of 7.7. The enzyme was inactivated by diethylpyrocarbonate at pH 7.4 and the inactivation was substantially prevented by androstadienedione. Analyses of reactivation with neutral hydroxylamine, pH variation, and spectral changes of the inactivated enzyme revealed that the inactivation arises from modification of a histidine residue. Studies with [14C]diethylpyrocarbonate provided support for the idea that the 1-2 essential histidine residues are essential for the catalytic activity of the enzyme. Dye-sensitized photooxidation led to 50% inactivation of the enzyme with the decomposition of two histidine residues. This inactivation was also prevented by androstadienedione. Dancyl chloride caused a loss of the enzyme activity. Modifiers of glutamic acid, aspartic acid, cysteine, and lysine did not affect the enzyme activity. Butanedione and phenylglyoxal in the presence of borate rapidly inactivated the enzyme, indicating that arginine residues also have a crucial function in the active site. The data described support the previously proposed mechanism of beta-oxidation of 3-ketosteroid.  相似文献   

7.
Chloroperoxidase from Caldariomyces fumago is well documented as an extremely versatile catalyst, and studies are currently being conducted to delineate the fine structural features that allow the enzyme to possess chemical and physical similarities to the peroxidases, catalases, and P-450 cytochromes. Earlier investigations of ligand binding to the heme iron of chloroperoxidase, along with the presence of an invariant distal histidine residue in the active site of peroxidases and catalases, have led to the hypothesis that chloroperoxidase also possesses an essential histidine residue that may participate in catalysis. To address this in a more direct fashion, chemical modification studies were initiated with diethylpyrocarbonate. Incubation of chloroperoxidase with this reagent resulted in a time-dependent inactivation of enzyme. Kinetic analysis revealed that the inactivation was due to a simple bimolecular reaction. The rate of inactivation exhibited a pH dependence, indicating that modification of a titratable residue with a pKa value of 6.91 was responsible for inactivation; this data provided strong evidence for histidine derivatization by diethylpyrocarbonate. To further support these results, inactivation due to cysteine, tyrosine, or lysine modification was ruled out. The stoichiometry of histidine modification was estimated by the increase in absorption at 246 nm, and it was found that more than 1 histidine residue was derivatized when chloroperoxidase was inactivated with diethylpyrocarbonate. However, it was shown that the rates of modification and inactivation were not equivalent. This was interpreted to reflect that both essential and nonessential histidine residues were modified by diethylpyrocarbonate. Kinetic analysis indicated that modification of a single essential histidine residue was responsible for inactivation of the enzyme. Studies with [14C]diethylpyrocarbonate provided stoichiometric support that derivatization of a single histidine inactivated chloroperoxidase. Based on sequence homology with cytochrome c peroxidase, histidine 38 was identified as a likely candidate for the distal residue. Molecular modeling, based on secondary structure predictions, allows for the construction of an active site peptide, and implicates a number of other residues that may participate in catalysis.  相似文献   

8.
Modification of histidine residue(s) by diethylpyrocarbonate treatment of submitochondrial particles obtained by sonication results in inhibition of ATPase activity and stimulation of oligomycin-sensitive H+ conduction. The inhibition of the ATPase (EC 3.6.1.3) activity persisted in F1 isolated from diethylpyrocarbonate-treated submitochondrial particles, which exhibited the absorbance spectrum of modified histidine. Thus the inhibition of the ATPase activity results from histidine modification in F1 subunits. Removal of the natural inhibitor protein from submitochondrial particles resulted in stimulation of proton conduction. After removal of F1 inhibitor protein from the particles the stimulatory effect exerted by diethylpyrocarbonate treatment on proton conduction was lost. Reconstitution experiments showed that purified F1 inhibitor protein lost, after histidine modification, its capacity to inhibit the ATPase activity and proton conduction. These observations show that the stimulation of proton conduction by the ATPase complex effected by diethylpyrocarbonate treatment results from histidine modification in F1 inhibitor protein.  相似文献   

9.
The amino acid sequence of the 11.6 K dalton heme a subunit of bovine heart cytochrome oxidase has been completed and is presented here. The sequence investigation has established the positions in the protein of all the possible heme ligands, namely cysteine, methionine, histidine and lysine residues. However, the isolation conditions may have caused the heme a to migrate from its original site or the heme is caged by peptides as pointed out in Reference 6. The sequence of the heme a subunit and the β-chain of hemoglobin shows homology. It is possible that these two proteins have arisen from a common ancestor in the distant past.  相似文献   

10.
Modification of A. conoides beta-glucosidase by diethylpyrocarbonate caused rapid inactivation of the enzyme. The kinetic analyses showed that the inactivation by diethylpyrocarbonate resulted from the modification of an average of one histidine residue per mole of enzyme. The modified enzyme showed an increase in absorbance at 240 nm. Sulphydryl, lysine and tyrosine residues were not modified by diethylpyrocarbonate treatment. The substrate offered significant protection against diethylpyrocarbonates modification. The results indicate that diethylpyrocarbonate was interacting with the enzyme at or near the active site.  相似文献   

11.
Summary Holo and apoenzyme of aspartate aminotransferase from beef kidney are 80% inactivated by photoxidation in the presence of 2 × 10–6 m tetraiodofluroescein with the modification of two histidine residues per enzyme protomer. At a higher concentration (1 × 10–5 m) a tyrosine residue is also modified. The keto substrates, ketoglutarate and oxalacetate, protect the enzyme from photoxidation.Diethylpyrocarbonate modifies three histidine residues per enzyme protomer and reduces the activity only 10%. These results suggest that the two histidine residues photoxidized through the sensitizer, are located in the active site of the enzyme, at least one of these appears to be involved in ketosubstrate binding. The other three histidines modified by diethylpyrocarbonate are likely located on the enzyme surface and are not involved in the catalytic activity of the enzyme.This work is part of a program supported by a grant from the Consiglio Nazionale delle Ricerche.  相似文献   

12.
The rapid reaction of α-clostripain with tosyl-L-lysine chloromethyl ketone results in a complete loss of activity and in the disappearance of one titratable SH group whereas the number of histidine residues is not affected. Tosyl-L-phenylalanine chloromethyl ketone and phenylmethylsulfonyl fluoride have no effect on the catalytic activity. From the molar ratio and under the assumption of 1:1 molar interaction, the fully active enzyme has a specific activity of 650–700 unitsmg [twice the value proposed by Porter et al. (J. Biol. Chem. 246 (1971) 7675-7682)]. Partial oxidation makes it experimentally impossible to attain this maximal value.  相似文献   

13.
The data on the pH dependence of the Km for Mg-ATP and the Vm of the ATPase of pig heart mitochondrial F1 indicate the presence of two groups of different pK's which modify the enzyme activity. The first pK at pH 9.6 ± 0.2 may be related to the possible presence of arginine and/or tyrosine residues in the ATPase site; the second pK at pH 7.2 ± 0.2 could be due to the presence of a histidine residue in the ATPase site or to the involvement of amino groups in the ATPase site. The inhibition induced by photooxidation in the presence of Rose Bengal is not pH dependent in the pH range corresponding to the pK of histidine. The inhibition induced by diethylpyrocarbonate cannot be reversed by hydroxylamine and the characteristics of this inhibition rather correspond to the reaction of the inhibitor with amino groups. Pyridoxal phosphate also inhibits the ATPase activity of F1 by reaction with amino groups. The presence of ATP or phosphate partially protects against the inhibition induced by diethylpyrocarbonate or pyridoxal phosphate, which indicates that amino groups may be directly or indirectly involved in the binding of nucleotide and phosphate to F1. Glutaraldehyde also inhibits the enzyme by reacting with amino groups and inducing a crosslinking of the subunits. The disappearance of subunit C is well correlated with the decrease of ATPase activity, indicating that subunit C is essential in the ATPase activity.  相似文献   

14.
The effects of pyrazole administration on rat liver tryptophan oxygenase have been studied both under basal conditions and after induction by cortisol or activation by tryptophan.Pyrazole administration is followed by a decrease of the basal holoenzyme and total enzyme activities. It induces furthermore a considerable inhibition of the cortisol mediated tryptophan oxygenase induction. These effects are not mediated by a modification of a tryptophan oxygenase effector, as shown by mixed homogenate experiments. The tryptophan enhancement of total tryptophan oxygenase activity is not affected by pyrazole administration contrary to the holoenzyme activity. Pyrazole added in vitro inhibits liver tryptophan oxygenase activity only when used at concentrations which are considerably higher that those occuring in vivo after pyrazole administration.  相似文献   

15.
In order to investigate the nature of amino acid residues involved in the active in the active site of a ribonuclease from Aspergillus saitoi, the pH dependence of the rates of inactivation of RNase Ms by photooxidation and modification with diethylpyrocarbonate were studied. (1) RNase Ms was inactivated by illumination in the presence of methylene blue at various pH's. The pH dependence of the rate of photooxidative inactivation of RNase Ms indicated that at least one functional group having pKa 7.2 was involved in the active site. (2) Amino acid analyses of photooxidized RNase Ms at various stages of photooxidative inactivation at pH's 4.0 and 6.0 indicated that one histidine residue was related to the activity of RNase Ms, but that no tryptophan residue was involved in the active site. (3) 2',(3')-AMP prevented the photooxidative inactivation of RNase Ms. The results also indicated the presence of a histidine residue in the active site. (4) Modification of RNase Ms with diethylpyrocarbonate was studied at various pH's. The results indicated that a functional group having pKa 7.1 was involved in the active site of RNase Ms.  相似文献   

16.
The activity of elongation factor Tu (EF-Tu) from Escherichiacoli in eucaryotic protein synthesis systems was investigated. EF-Tu was found to inhibit polyphenylalanine synthesis when incubated with Artemia 80S ribosomes, purified rabbit reticulocyte elongation factor Tu (eEF-Tu) and partially purified reticulocyte translocase enzyme, eEF-G. The inhibition could be overcome by supplying the system with additional eEF-Tu. EF-Tu also inhibited protein synthesis in rabbit reticulocyte lysates. Data presented in this report indicate that inhibition by EF-Tu results from the accumulation of ternary complexes of the protein factor, GTP and aminoacyl-tRNA which do not interact with the ribosomal A-site of 80S ribosomes under physiological conditions.  相似文献   

17.
Summary Modification of liquefying -amylase by diethylpyrocarbonate or its photo-oxidation in the presence of rose bengal caused rapid loss of enzyme activity. The photo-oxidation followed pseudo-first-order kinetics giving maximal value at pH 8.0. The photo-oxidized enzyme showed a characteristic increase in absorbance at 250 nm which was directly proportional to the extent of inactivation. Diethylpyrocarbonate at low concentration at pH 6.0 and 30 ° C completely inactivated a-amylase. Inactivation followed pseudo-first-order kinetics. The reaction order with respect to inactivation by diethylpyrocarbonate was one, thus indicating modification of a single histidine per mole of the enzyme. Diethylpyrocarbonate-modified enzyme showed increased absorbance at 240 nm which was reversed completely upon treatment with NH2OH at 30 °C for 16 hr. Calculating the histidine residues being modified from the increase in absorbance at 240 nm showed that three residues were ethoxyformylated on treatment with diethylpyrocarbonate, of which only one was found at the active site. Substrate and competitive inhibitor protects the enzyme against both, photo-oxidation, and modification by diethylpyrocarbonate, confirming that histidine plays an essential role at the -amylase active site.  相似文献   

18.
Reaction of dihydrofolate reductase from amethopterin-resistant Lactobacilluscasei with phenylglyoxal results in a complete loss of enzyme activity. This inactivation is concomitant with the modification of five of a total of eight arginine residues per mole of enzyme. In the presence of the reduced coenzyme, NADPH, two of the five reactive arginines are protected from chemical modification with complete retention of enzyme activity. The results suggest the involvement of essential arginine residues at or near the coenzyme binding site and thus at or near the active center of the enzyme.  相似文献   

19.
The L-proline transport system of Saccharomyces cerevisiae is shown to be specifically inactivated upon incubation of intact yeast cells with the histidine modifier diethylpyrocarbonate. The extent of inactivation is half-maximum at 0.5 mM diethylpyrocarbonate for an incubation of 2 min at 30 degrees C and pH 6.0. Under the same conditions, the time dependence of inactivation is monophasic with the second-order rate constant of 5.5 M-1 X s-1 and the maximum rate Jmax of L-proline transport is lowered by about 50%, while the KT value remains unchanged. Moreover, L-proline afforded significant protection against diethylpyrocarbonate inactivation. The complete reactivation of a partially inactivated L-proline transport system by neutral hydroxylamine and the elimination of the possibility that the modification of other amino acid residues are responsible for the inactivation, suggested that the transport protein inactivation occurs solely by a modification of histidine residues.  相似文献   

20.
An intracellular N-terminal exopeptidase isolated from cell extracts of Streptococcus durans has been purified 470-fold to homogeneity (specific activity of 12.0 μmol/min per mg). In the absence of thiol compounds, the purified aminopeptidase undergoes a slow oxidation with a 70% loss of activity, which can be restored by the addition of 2 mM β-mercaptoethanol. The purified aminopeptidase (Mr 300 000) preferred L-peptide and arylamide substrates with small nonpolar or basic side chains. SDS electrophoresis yielded a single protein band corresponding to a molecular weight of 49 400, suggesting that the native enzyme is a hexameric protein. The enzyme-catalyzed hydrolysis of L-alanyl-p-nitroanilide exhibited a bell-shaped pH dependence for log Vmax/Km(pK1 = 6.35; pK2 = 8.50) while the log Vmax versus pH profile showed only an acid limb (pK = 6.35). Methylene blue-sensitized photooxidation of the enzyme resulted in the complete loss of activity, while L-leucine, a competitive inhibitor, partially protected against this inactivation. Amino acid analysis indicated that this photooxidative loss of activity corresponded to the modification of one histidine residue per enzyme monomer. N-Ethylmaleimide (100 mM) caused a 78% reduction in enzyme activity. Treatment of the enzyme with 1.0 mM hydrogen peroxide resulted in the oxidation of two cysteine residues per enzyme monomer and caused a 70% decrease in the catalytic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号