首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 662 毫秒
1.
2.
The phosphoenolpyruvate: carbohydrate phosphotransferase system (PTS) catalyzes transport of carbohydrates by coupling carbohydrate translocation and phosphorylation. Enzyme I and HPr, encoded in ptsI and ptsH, respectively, are cytoplasmic proteins commonly used for transport of variety of PTS sugars. In this study, we investigated the role of SugR on the expression of the ptsI and ptsH which increases in the presence of PTS sugars in Corynebacterium glutamicum. Disruption of sugR resulted in the increased expression of ptsI and ptsH in the absence of PTS sugar. Introduction of a plasmid containing sugR gene complemented the effect of sugR disruption. SugR was purified and binding to the promoter regions of ptsI and ptsH was indicated by EMSA. DNase I footprinting analysis indicated the binding sites of SugR on the promoter region of divergently transcribed ptsI gene and fructose-pts operon. The binding sites contain a possible SugR binding motif which is conserved in the promoter regions of general and sugar-specific pts genes. Mutations in this motif resulted in the decrease of SugR binding to the ptsI promoter. These results suggest that SugR represses ptsI and ptsH in the absence of PTS sugar and derepression is the mechanism for the induction of the general components of PTS.  相似文献   

3.
Mutants of bacteria belonging the genus Erwinia (Erwinia chrysanthemi and Erwinia carotovora) with pleiotropic disturbances in the utilization of many substrates were obtained through chemical and transposon mutagenesis. Genetic studies revealed that these mutants had defective ptsI or ptsH genes responsible for the synthesis of common components of the phosphoenolpyruvate-dependent phosphotransferase system, enzyme I and the HPr protein, respectively. The ptsI+ allele in both Erwinia species was cloned in vivo. Mapping of obtained mutations indicated that the ptsI and ptsH genes of E. chrysanthemi do not constitute a linkage group. The ptsI gene is located at 100 min of the chromosomal map, whereas the ptsH gene is located at 175 min. Sequencing of a portion of the E. chrysanthemi ptsI gene showed that a product of the cloned DNA region had up to 68% homology with the N terminus of Escherichia coli enzyme I.  相似文献   

4.
Intracellular polygalacturonic acidtrans-eliminase (PATE) was purified and characterized fromKlebsiella oxytoca andYersinia enterocolitica, enterobacteria unable to macerate plant tissue. The well-studied PATE from a strain ofErwinia chrysanthemi, a phytopathogen able to macerate plant tissue and cause soft-rot disease, was included for comparison. PATE from all strains displayed endo-splitting activity with pH optima between pH 8.5 and 9.0E. chrysanthemi had three isozymes (pls at pH 9.4, 9.0, and 7.8),K. oxytoca had two isozymes (pIs at pH 5.9 and 5.3), andY. enterocolitica had one isozyme (pI at pH 5.8). Molecular weights for theKlebsiella andYersinia PATEs were 71,000 and 55,000, respectively, compared with 33,000 for theErwinia PATE. Unlike theErwinia enzyme, theKlebsiella andYersinia PATEs did not require divalent cations for activity and could not macerate plant tissue without addition of pectinmethylesterase. The polygalacturonic acid-degrading enzymes found inK. oxytoca andY. enterocolitica appear to represent a separate type of PATE enzyme. It is unlikely that these organisms are phytopathogens; however, their ability to degrade polygalacturonic acid is probably advantageous to their survival in environments containing decomposing plant residues.  相似文献   

5.
Biochemical consequences of mutational damage to common components of the Erwinia phosphoenolpyruvate-dependent phosphotransferase system (the HPr protein and enzyme I) were studied. The transport of glucose, mannose, fructose, and mannitol inErwinia was shown to require a preliminary induction of proteins of the phosphotransferase system. A drastic decrease in the rate of the transport of these carbohydrates was observed in ptsI and ptsH mutants. A disturbance in the common components suppresses the synthesis of inducible enzymes (-galactosidase, complexes of pectolate lyases and cellulases) and renders it resistant to catabolite repression by glucose, but mutants were shown to retain intracellular cAMP content. Erwinia mutants devoid of common components of the system lack phytopathogenic features. The appearance of an intact ptsI allele in the cell completely repaired pleiotropic disturbances in these mutants.  相似文献   

6.
Tachyplesin I is a 2.3 kDa antimicrobial peptide isolated from Southeast Asian horseshoe crabs. Bacterial suspensions containing 1×106 colony-forming units/ml of six isolates of pectolytic Erwinia spp., the causal pathogens of potato soft rot and blackleg, were killed in vitro by 1.4 to 11.1 g/ml of tachyplesin I. In an attempt to enhance resistance to Erwinia spp., each of the potato cultivars Bintje, Karnico and Kondor were transformed with two gene constructs encoding different precursor tachyplesin I proteins under the control of a cauliflower mosaic virus 35S promotor. Northern and western blot analysis showed that the tachyplesin I gene was expressed in transgenic plants. Small tubers of 17 transgenic clones were screened twice for soft rot resistance to Erwinia carotovora ssp. atroseptica. Under aerobic or anaerobic conditions, transgenic clones showed slightly less rot than control tubers.Abbreviations AP acidic carboxyl terminal polypeptide - Eca Erwinia carotovora ssp. atroseptica - Ecc E. carotovora ssp. carotovora - Ech E. chrysanthemi - IF intercellular fluid - SP signal peptide - TPNI (tpnI) tachyplesin I  相似文献   

7.
The type II or Sec-dependent secretion system is used by diverse Gram-negative bacteria for secretion of extracellular proteins. Of the 12–15 proteins involved in secretion, the requirement for many has not been demonstrated and little is known about their functions in the secretion process. The plant pathogens Erwinia chrysanthemi and Erwinia carotovora secrete extracellular pectate lyases (Pels) using the type II or Out pathway. However, these two bacteria cannot secrete Pels encoded by heterologously expressed genes from the other species, suggesting the presence of species-specific recognition factors in the Out systems of the two Erwinia species. We previously reported the isolation of a cosmid clone, pCPP2006, from E. chrysanthemi EC16, which enables Escherichia coli to secrete heterologously expressed E. chrysanthemi Pels. Sequencing in a region required for secretion revealed the presence of 12 genes, outC-M and outO. We report here the construction of functionally non-polar mutations in each gene in the outC-M operon and outS and outB using a polAts strain of E. coli to facilitate homologous recombination between out genes carrying deletions and their wild-type copies on pCPP2006. By testing for complementation of each deletion with wild-type out genes from E. chrysanthemi EC16 and E. carotovora SCRI193 we have demonstrated that: (i) each out gene is required for secretion of E. chrysanthemi PelE from E. coli with the exception of outH; (ii) each mutation can be complemented by its homologue from E. carotovora, except for outC and outD; (iii) outC and outD from E. carotovora do not confer secretion of Pel1 on the E. chrysanthemi Out system; and (iv) Pel1 secretion can be conferred on the E. chrysanthemi Out system by the presence of outC-M, S and B from E. carotovora. The data suggest that OutC and OutD are gatekeepers of the Out system involved in recognition of Pels targeted for secretion but that OutC and OutD from E. carotovora cannot be successfully assembled into the E. chrysanthemi Out system.  相似文献   

8.
A mutant that cannot utilize pectin substances of plant cell walls was obtained via insertion of mini-Tn5xylE transposon into the chromosome of phytopathogenic bacteria Erwinia carotovora subsp. atroseptica. the inability of mutant cells to utilize these substrates was caused by a failure to accomplish the catabolism of unsaturated digalacturonic acid (UDA). Study of enzymatic activities has established that mutant bacteria lost the ability to produce 2,5-diketo-3-deoxygluconate dehydrogenase, an enzyme of intracellular UDA utilization. Molecular cloning of the mutant gene was conducted, and its nucleotide sequence was determined. It was shown that the nucleotide sequence of this gene had an 82% homology with the sequence of Erwinia chrysanthemi EC3937 kduD gene encoding 2,5-diketo-3-deoxygluconate dehydrogenase. The intergene kduI–kduD region in bacteria Erwinia carotovora subsp. atroseptica is shorter in length by 98 nucleotides than the corresponding region of Erwinia chrysanthemi and does not contain promoter sequences. The kduD gene was located at 126.8 min of the Erwinia carotovora subsp. atroseptica genetic map.  相似文献   

9.
A cellulase-producing clone was isolated from a genomic library of the Erwinia rhapontici (Millard) Burkholder strain NCPPB2989. The corresponding gene, named celA, encodes an endoglucanase (EC 3.2.1.4) with the extremely low pH optimum of 3.4 and a temperature optimum between 40 and 50 °C. A single ORF of 999 nt was found to be responsible for the Cel activity. The corresponding protein, named CelA, showed 67% identity to the endoglucanase Y of E. chrysanthemi and 51.5% identity to the endoglucanase of Cellulomonas uda, and thus belongs to the glycosyl hydrolase family 8. The celA gene, or its homologue, was found to be present in all E. rhapontici isolates analysed, in E. chrysanthemi, and in E. amylovora. The presence of plant cell wall-degrading enzymes in the amylovora group of Erwinia spp. had not previously been established. Furthermore, the DNA of both E. rhapontici and E. amylovora was found to exhibit homology to genes encoding the type II (GSP) secretion pathway, which is known to be responsible for extracellular targeting of cellulases and pectinases in Erwinia spp. that cause soft rotting, such as E. carotovora and E. chrysanthemi. Secretion of the CelA protein by E. rhapontici could not be verified. However, the CelA protein itself was found to include the information necessary for heterologous secretion by E. chrysanthemi. Received: 4 November 1999 / Accepted: 14 April 2000  相似文献   

10.
Our research group is studying the phosphotransferase system (PTS) of Streptomyces coelicolor, which, in other bacteria, is centrally involved in carbon source uptake and regulation. We have surveyed the public available S. coelicolor genome sequence produced by the ongoing genome sequencing project for pts gene homologues (http://www.sanger.ac.uk/Projects/S_coelicolor/). Three genes encoding homologues of the general PTS components enzyme I (ptsI), HPr (ptsH), and enzyme IIACrr (crr; IIAGlc-homologue) and six genes encoding homologues of sugar-specific PTS components were identified. The deduced primary sequences of the sugar-specific components shared significant similarities to PTS permeases of the mannitol/fructose family and of the glucose/sucrose family. A model is presented, in which possible functions of the novel described PTS homologues are discussed.  相似文献   

11.
A cellulase-producing clone was isolated from a genomic library of the Erwinia rhapontici (Millard) Burkholder strain NCPPB2989. The corresponding gene, named celA, encodes an endoglucanase (EC?3.2.1.4) with the extremely low pH optimum of 3.4 and a temperature optimum between 40 and 50?°C. A single ORF of 999?nt was found to be responsible for the Cel activity. The corresponding protein, named CelA, showed 67% identity to the endoglucanase Y of E. chrysanthemi and 51.5% identity to the endoglucanase of Cellulomonas uda, and thus belongs to the glycosyl hydrolase family?8. The celA gene, or its homologue, was found to be present in all E. rhapontici isolates analysed, in E. chrysanthemi, and in E. amylovora. The presence of plant cell wall-degrading enzymes in the amylovora group of Erwinia spp. had not previously been established. Furthermore, the DNA of both E. rhapontici and E. amylovora was found to exhibit homology to genes encoding the type?II (GSP) secretion pathway, which is known to be responsible for extracellular targeting of cellulases and pectinases in Erwinia spp. that cause soft rotting, such as E. carotovora and E. chrysanthemi. Secretion of the CelA protein by E. rhapontici could not be verified. However, the CelA protein itself was found to include the information necessary for heterologous secretion by E. chrysanthemi.  相似文献   

12.
【目的】D-泛酸(D-pantothenic acid,DPA)是一种重要的功能化合物,被广泛应用于医疗保健、化妆品、动物食品和饲料等领域,具有良好的市场前景及应用。本研究以实验室保藏的大肠杆菌菌株DPAP10为底盘菌株,利用CRISPR干扰(clustered regularly interspaced palindromic repeats interference,CRISPRi)技术,筛选影响工程菌株DPA生物合成的内源性基因靶点。【方法】构建了p Target和pd Cas9的双质粒CRISPRi系统,可以实现对基因单个或组合表达抑制,摇瓶发酵检测基因抑制对DPA合成的影响;通过实时荧光定量聚合酶链式反应(real-time fluorescence quantitative polymerase chain reaction,RT-q PCR)检测了基因抑制后的转录水平;通过高效液相色谱(high performance liquid chromatography,HPLC)检测了中间代谢物分析代谢通路变化。【结果】成功从126个靶基因中筛选得到5个显著影响DPA合成的关键...  相似文献   

13.
14.
Tip-over disease has become a serious threat to banana plantations in the past decade. The disease is reported to be caused by Erwinia carotovorasubsp. carotovora and Erwinia chrysanthemi. We compared nine Erwinia strains of diseased banana plants from different agroclimatic zones of Karnataka and Andhra Pradesh, Southern India by conventional means. On the basis of morphological, cultural, physiological and biochemical characteristics and pathogenicity tests, the seven isolates I1 to I6 and I8 showed similarities to Erwinia carotovorasubsp. carotovora. Isolate I9 from Andhra Pradesh expressed characteristics similar to that of Erwinia chrysanthemi and was identified as Erwinia chrysanthemi. The isolate I7 which showed wider variation, neither confirmed to the characteristics of Erwinia carotovorasubsp. carotovora nor with that of Erwinia chrysanthemi, and possessed characteristics in between the two species. Further we studied the host range of the bacterium causing tip-over disease of banana.  相似文献   

15.
A β-glucosidase/xylosidase gene from Erwinia chrysanthemi strain D1 was cloned and sequenced. This gene, named bgxA, encodes a ca. 71 kDa protein product which, following removal of the leader peptide, resulted in a ca. 69 kDa mature protein that accumulated in the periplasmic space of E. chrysanthemi strain D1 and Escherichia coli cells expressing the cloned gene. The protein exhibited both β-glucosidase and β-xylosidase activities but gave no detectable activity on xylan or carboxymethyl cellulose. The enzyme was classified as a type 3 glycosyl hydrolase, but was unusual in having a truncated B region at the carboxyl-terminus. Several E. chrysanthemi strains isolated from corn produced the glucosidase/xylosidase activity but not those isolated from dicot plants. However, bgxA marker exchange mutants of strain D1 were not detectably altered in virulence on corn leaves.  相似文献   

16.
17.
A -glucosidase/xylosidase gene from Erwinia chrysanthemi strain D1 was cloned and sequenced. This gene, named bgxA, encodes a ca. 71 kDa protein product which, following removal of the leader peptide, resulted in a ca. 69 kDa mature protein that accumulated in the periplasmic space of E. chrysanthemi strain D1 and Escherichia coli cells expressing the cloned gene. The protein exhibited both -glucosidase and -xylosidase activities but gave no detectable activity on xylan or carboxymethyl cellulose. The enzyme was classified as a type 3 glycosyl hydrolase, but was unusual in having a truncated B region at the carboxyl-terminus. Several E. chrysanthemi strains isolated from corn produced the glucosidase/xylosidase activity but not those isolated from dicot plants. However, bgxA marker exchange mutants of strain D1 were not detectably altered in virulence on corn leaves.  相似文献   

18.
Production of a blue pigment, indigoidine, is a variable trait among wild-type strains ofErwinia chrysanthemi; it is also influenced by the composition of the growth medium. Starting with a nonpigmented wild-type strain (ICPB EC183) ofE. chrysanthemi, we obtained by nitrosoguanidine mutagenesis a pigmented (idg +) mutant strain (AC6055), which simultaneously was Arg. Linkage betweenarg andidg was established in two-factor transductional and conjugational crosses. Coinheritance ofidg withhis +,ilv +,leu +,ser +,thr +, orura + transductants was not observed. Spontaneous Arg+ revertants of AC6055 were invariably Idg+. The pigments produced by AC6055, Idg+ recombinants, and wild-type Idg+ strains were identical, judged by absorption spectra (max = 615 nm) of the dimethylsulfoxide extracts of whole cells. We concluded that nitrosoguanidine caused comutation in thearg andidg loci that are linked on theE. chrysanthemi chromosome.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号