首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Generation of reactive oxygen species (ROS) by the mitochondrial electron transport chain (ETC), which is composed of four multiprotein complexes named complex I-IV, is believed to be important in the aging process and in the pathogenesis of neurodegenerative diseases such as Parkinson's disease. Previous studies have identified the ubiquinone of complex III and an unknown component of complex I as the major sites of ROS generation. Here we show that the physiologically relevant ROS generation supported by the complex II substrate succinate occurs at the flavin mononucleotide group (FMN) of complex I through reversed electron transfer, not at the ubiquinone of complex III as commonly believed. Indirect evidence indicates that the unknown ROS-generating site within complex I is also likely to be the FMN group. It is therefore suggested that the major physiologically and pathologically relevant ROS-generating site in mitochondria is limited to the FMN group of complex I. These new insights clarify an elusive target for intervening mitochondrial ROS-related processes or diseases.  相似文献   

2.
Mitochondrial metabolism of reactive oxygen species   总被引:22,自引:0,他引:22  
Oxidative stress is considered a major contributor to etiology of both normal senescence and severe pathologies with serious public health implications. Mitochondria generate reactive oxygen species (ROS) that are thought to augment intracellular oxidative stress. Mitochondria possess at least nine known sites that are capable of generating superoxide anion, a progenitor ROS. Mitochondria also possess numerous ROS defense systems that are much less studied. Studies of the last three decades shed light on many important mechanistic details of mitochondrial ROS production, but the bigger picture remains obscure. This review summarizes the current knowledge about major components involved in mitochondrial ROS metabolism and factors that regulate ROS generation and removal. An integrative, systemic approach is applied to analysis of mitochondrial ROS metabolism, which is now dissected into mitochondrial ROS production, mitochondrial ROS removal, and mitochondrial ROS emission. It is suggested that mitochondria augment intracellular oxidative stress due primarily to failure of their ROS removal systems, whereas the role of mitochondrial ROS emission is yet to be determined and a net increase in mitochondrial ROS production in situ remains to be demonstrated.Translated from Biokhimiya, Vol. 70, No. 2, 2005, pp. 246–264.Original Russian Text Copyright © 2005 by Andreyev, Kushnareva, Starkov.This revised version was published online in April 2005 with corrections to the post codes.  相似文献   

3.
Recent data indicate that plants, in a manner similar to the situation found in mammalian phagocytotic cells, produce reactive oxygen species (ROS) in response to pathogen infection. This reaction could be very quick when using pre-existing, usually exocellular, components and/or, when biochemical machinery of the cell is activated, relatively late and long-lasting. The oxidative burst is defined as a rapid, transient production of high levels of ROS in response to external stimuli. Two major models depicting the origin of ROS in the oxidative burst are described, namely: the NADPH oxidase system and the pH-dependent generation of hydrogen peroxide by exocellular peroxidases. Additionally, the participation of exocellular ROS-generating enzymes, like germin-like oxalate oxidases and amine oxidases, in plant defence response is demonstrated. The involvement of protoplasmic ROS-generating systems is also indicated.  相似文献   

4.
Inhibitory effects of flavonoids on plant alternative respiration were investigated using isolated mitochondria of Vigna radiata seedlings. The antioxidant flavonoids quercetin and myricetin effectively inhibited alternative respiration. We suggest that radical scavenging activity is involved in the inhibitory mechanism.  相似文献   

5.
This study investigates whether ozone could confer protection from hepatic ischemia reperfusion by modifying the accumulation of adenosine and xanthine during ischemia. A significant increase in both adenosine and xanthine accumulation was observed as a consequence of ATP degradation during hepatic ischemia. Adenosine exerts a protective effect on hepatic ischemia reperfusion injury since the elimination of endogenous adenosine accumulation with adenosine deaminase increased the hepatic injury associated with this process. On the other hand, the high xanthine levels observed after ischemia could exert deleterious effects during reperfusion due to reactive oxygen species generation from xanthine oxidase. The administration of allopurinol, an inhibitor of xanthine oxidase, attenuated the increase in reactive oxygen species and transaminase levels observed after hepatic reperfusion. Ozone treatment in liver maintained adenosine levels similar to those found after ischemia but led to a marked reduction in xanthine accumulation. In order to evaluate the role of both adenosine and xanthine, we tried to modify the protection confered by ozone, by modifying the concentrations of adenosine and xanthine. The metabolization of endogenous adenosine after ischemia abolished the protective effect conferred by ozone. When xanthine was administered previous to ozone treatment, the protection conferred by adenosine disappeared, showing both postischemic reactive oxygen species and transaminase levels similar to those found after hepatic ischemia reperfusion. Ozone would confer protection against the hepatic ischemia reperfusion injury by the accumulation of adenosine that in turns benefits the liver and by blocking the xanthine/xanthine oxidase pathway for reactive oxygen species generation.  相似文献   

6.
Luminol chemiluminescence was used to evaluate the scavenging of superoxide, hydroxyl and alkoxy radicals by four antioxidants: dipyridamole, diethyldithiocarbamic acid, (+)catechin, and ascorbic acid. Different concentrations of these compounds were compared with well-known oxygen radical scavengers in their capacity to inhibit the chemiluminescence produced in the reaction between luminol and specific oxygen radicals. Hydroxyl radicals were generated using the Fenton reaction and these produced chemiluminescence which was inhibited by diethyldithiocarbamate. Alkoxy radicals were generated using the reaction of tert-butyl hydroperoxide and ferrous ion and produced chemiluminescence which was inhibited equally by all of the compounds tested. For the determination of superoxide scavengers we describe a new, simple, economic, and rapid chemiluminescence method consisting of the reaction between luminol and horseradish peroxidase (HRP). With this method it was found that 40 nmol/l dipyridamole, 0.18 μmol/l ascorbic acid, 0.23 μmol/l (+)catechin, and 3 μmol/l diethyldithiocarbamic acid are equivalent to 3.9 ng/ml superoxide dismutase (specific scavenger of superoxide) in causing the same degree of chemiluminescence inhibition. These results not only indicated that the antioxidative properties of these compounds showed different degrees of effectiveness against a particular radical but also that they may exert their action against more than one radical.  相似文献   

7.
《Free radical research》2013,47(9):1095-1099
Abstract

Non-steroidal anti-inflammatory drugs (NSAIDs) have been implemented in clinical settings for a long time for their anti-inflammatory effects. With the number of NSAID users increasing, gastroenterological physicians and researchers have worked hard to prevent and treat NSAID-induced gastric mucosal injury, an effort that has for the large part being successful. However, the struggle against NSAID-induced mucosal damage has taken on a new urgency due to the discovery of NSAID-induced small intestinal mucosal injury. Although the main mechanism by which NSAIDs induce small intestinal mucosal injury has been thought to depend on the inhibitory effect of NSAIDs on cyclooxygenase (COX) activity, recent studies have revealed the importance of mitochondria-derived reactive oxygen species (ROS) production, which occurs independently of COX-inhibition. ROS production is an especially important factor in the increase of small intestinal epithelial cell permeability, an early stage in the process of small intestinal mucosal injury. By clarifying the precise mechanism, together with its clinical features using novel endoscopy, effective strategies for preventing NSAID-induced small intestinal damage, especially targeting mitochondria-derived ROS production, may be developed.  相似文献   

8.
Elevated levels of extracellular nucleotides are present at sites of inflammation, platelet degranulation and cellular damage or lysis. These extracellular nucleotides can lead to the activation of purinergic (nucleotide) receptors on various leukocytes, including monocytes, macrophages, eosinophils, and neutrophils. In turn, nucleotide receptor activation has been linked to increased cellular production and release of multiple inflammatory mediators, including superoxide anion, nitric oxide and other reactive oxygen species (ROS). In the present review, we will summarize the evidence that extracellular nucleotides can facilitate the generation of multiple ROS by leukocytes. In addition, we will discuss several potential mechanisms by which nucleotide-enhanced ROS production may occur. Delineation of these mechanisms is important for understanding the processes associated with nucleotide-induced antimicrobial activities, cell signalling, apoptosis, and pathology. This work was supported by National Institutes of Health Grants HL56396 and AI50500. The first author was supported by the Hematology Training Program NIH 5 T32 HL07899 at the University of Wisconsin.  相似文献   

9.
There is evidence for increased levels of circulating reactive oxygen species (ROS) in diabetics, as indirectly inferred by the findings of increased lipid peroxidation and decreased antioxidant status. Direct measurements of intracellular generation of ROS using fluorescent dyes also demonstrate an association of oxidative stress with diabetes. Although phenolic compounds attenuate oxidative stress-related tissue damage, there are concerns over toxicity of synthetic phenolic antioxidants and this has considerably stimulated interest in investigating the role of natural phenolics in medicinal applications. Curcumin (the primary active principle in turmeric,Curcuma longa Linn.) has been claimed to represent a potential antioxidant and antiinflammatory agent with phytonutrient and bioprotective properties. However there are lack of molecular studies to demonstrate its cellular action and potential molecular targets. In this study the antioxidant effect of curcumin as a function of changes in cellular ROS generation was tested. Our results clearly demonstrate that curcumin abolished both phorbol-12 myristate-13 acetate (PMA) and thapsigargin-induced ROS generation in cells from control and diabetic subjects. The pattern of these ROS inhibitory effects as a function of dose-dependency suggests that curcumin mechanistically interferes with protein kinase C (PKC) and calcium regulation. Simultaneous measurements of ROS and Ca2+ influx suggest that a rise in cytosolic Ca2+ may be a trigger for increased ROS generation. We suggest that the antioxidant and antiangeogenic actions of curcumin, as a mechanism of inhibition of Ca2+ entry and PKC activity, should be further exploited to develop suitable and novel drugs for the treatment of diabetic retinopathy and other diabetic complications.  相似文献   

10.
低氧激活巨噬细胞内NF-κB 信号转导通路的机制   总被引:3,自引:0,他引:3  
Zhang CP  Xie YZ  Chen P  Hong X  Xiao ZH  Ma Y  Lu YD 《生理学报》2004,56(4):515-520
  相似文献   

11.
《Free radical research》2013,47(12):1240-1247
The biological activities of C60-bis(N,N-dimethylpyrrolidinium iodide), a water-soluble cationic fullerene derivative, on human promyeloleukaemia (HL-60) cells were investigated. The pyrrolidinium fullerene derivative showed cytotoxicity in HL-60 cells. The characteristics of apoptosis, such as DNA fragmentation and condensation of chromatin in HL-60 cells, were observed by exposure to the pyrrolidinium fullerene derivative. Caspase-3 and -8 were activated and cytochrome c was also released from mitochondria. The generation of reactive oxygen species (ROS) by the pyrrolidinium fullerene derivative was observed by DCFH-DA, a fluorescence probe for the detection of ROS. Pre-treatment with α-tocopherol suppressed cell death and intracellular oxidative stress caused by the pyrrolidinium fullerene derivative. The apoptotic cell death induced by the pyrrolidinium fullerene derivative was suggested to be mediated by ROS generated by the pyrrolidinium fullerene derivative.  相似文献   

12.
The effect in vivo of salt stress on the activated oxygen metabolism of mitochondria, was studied in leaves from two NaCl-treated cultivars of Pisum sativum L. with different sensitivity to NaCl. In mitochondria from NaCl-sensitive plants, salinity brought about a significant decrease of Mn-SOD (EC 1. 15. 1. 1) Cu, Zn-SOD I (EC 1. 15. 1. 1) and fumarase (EC 4. 2. 1. 2) activities. Conversely, in salt-tolerant plants NaCl treatment produced an increase in the mitochondrial Mn-SOD activity and, to a lesser extent, in fumarase activity. In mitochondria from both salt-treated cultivars, the internal H2O2 concentration remained unchanged. The NADH- and succinate-dependent generation of O2.−radicals by submitochondrial particles and the lipid peroxidation of mitochondrial membranes, increased as a result of salt treatment, and these changes were higher in NaCl-sensitive than in NaCl-tolerant plants. Accordingly, the enhanced rates of superoxide production by mitochondria from salt-sensitive plants were concomitant with a strong decrease in the mitochondrial Mn-SOD activity, whereas NaCl-tolerant plants appear to have a protection mechanism against salt-induced increased O2.− production by means of the induction of the mitochondrial Mn-SOD activity. These results indicate that in the subcellular toxicity of NaCl in pea plants, at the level of mitochondria, an oxidative stress mechanism mediated by superoxide radicals is involved, and also imply a function for mitochondrial Mn-SOD in the molecular mechanisms of plant tolerance to NaCl.  相似文献   

13.
Lon protease is a multifunction protein and operates in protein quality control and stress response pathways in mitochondria. Human Lon is upregulated under oxidative and hypoxic stresses that represent the stress phenotypes of cancer. However, little literature undertakes comprehensive and detailed investigations on the tumorigenic role of Lon. Overexpression of Lon promotes cell proliferation, apoptotic resistance to stresses, and transformation. Furthermore, Lon overexpression induces the production of mitochondrial reactive oxygen species (ROS) that result from Lon-mediated upregulation of NDUFS8, a mitochondrial Fe-S protein in complex I of electron transport chain. Increased level of mitochondrial ROS promotes cell proliferation, cell survival, cell migration, and epithelial–mesenchymal transition through mitogen-activated protein kinase (MAPK) and Ras-ERK activation. Overall, the present report for the first time demonstrates the role of Lon overexpression in tumorigenesis. Lon overexpression gives an apoptotic resistance to stresses and induces mitochondrial ROS production through Complex I as signaling molecules to activate Ras and MAPK signaling, giving the survival advantages and adaptation to cancer cells. Finally, in silico and immunohistochemistry analysis showed that Lon is overexpressed specifically in various types of cancer tissue including oral cancer.  相似文献   

14.
Baker MA  Krutskikh A  Aitken RJ 《Protoplasma》2003,221(1-2):145-151
Summary.  Spermatozoa were the first cell type suggested to generate reactive oxygen species. However, a lack of standardization in sperm preparation techniques and the obfuscating impact of contaminating cell types in human ejaculates have made it difficult to confirm that mammalian germ cells do, in fact, make such reactive metabolites. By identifying, on a molecular level, those entities involved in reactive oxygen species generation and demonstrating their presence in spermatozoa, the role of redox chemistry in the control of sperm function can be elucidated. Two major proteins have apparently been identified in this context, namely, NOX5, a calcium-activated NADPH oxidase, and nitric oxide synthase. Understanding the involvement of these enzymes in sperm physiology is essential if we are to understand the causes of oxidative stress in the male germ line. Received May 2, 2002; accepted July 26, 2002; published online May 21, 2003 RID="*" ID="*" Correspondence and reprints: Discipline of Biological Sciences, University of Newcastle, Callaghan, NSW 2308, Australia.  相似文献   

15.
* Cadmium (Cd(2+)) is an environmental pollutant that causes increased reactive oxygen species (ROS) production. To determine the site of ROS production, the effect of Cd(2+) on ROS production was studied in isolated soybean (Glycine max) plasma membranes, potato (Solanum tuberosum) tuber mitochondria and roots of intact seedlings of soybean or cucumber (Cucumis sativus). * The effects of Cd(2+) on the kinetics of superoxide (O2*-), hydrogen peroxide (H(2)O(2)) and hydroxyl radical ((*OH) generation were followed using absorption, fluorescence and spin-trapping electron paramagnetic resonance spectroscopy. * In isolated plasma membranes, Cd(2+) inhibited O2*- production. This inhibition was reversed by calcium (Ca(2+)) and magnesium (Mg(2+)). In isolated mitochondria, Cd(2+) increased and H(2)O(2) production. In intact roots, Cd(2+) stimulated H(2)O(2) production whereas it inhibited O2*- and (*)OH production in a Ca(2+)-reversible manner. * Cd(2+) can be used to distinguish between ROS originating from mitochondria and from the plasma membrane. This is achieved by measuring different ROS individually. The immediate (相似文献   

16.
Reactive oxygen species (ROS) are known to play an important role in glutamate-induced neuronal cell death. In the present study, we examined whether NADPH oxidase serves as a source of ROS production and plays a role in glutamate-induced cell death in SH-SY5Y human neuroblastoma cells. Stimulation of the cells with glutamate (100 mM) induced apoptotic cell death and increase in the level of ROS, and these effects of glutamate were significantly suppressed by the inhibitors of the NADPH oxidase, diphenylene iodonium, apocynin, and neopterine. In addition, RT-PCR revealed that SH-SY5Y cells expressed mRNA of gp91phox, p22phox and cytosolic p47phox, p67phox and p40phox, the components of the plasma membrane NADPH oxidase. Treatment with glutamate also resulted in activation and translocation of Rac1 to the plasma membrane. Moreover, the expression of Rac1N17, a dominant negative mutant of Rac1, significantly blocked the glutamate-induced ROS generation and cell death. Collectively, these results suggest that the plasma membrane-bound NADPH oxidase complex may play an essential role in the glutamate-induced apoptotic cell death through increased production of ROS.  相似文献   

17.
Inhalation of residual oil fly ash (ROFA) increases pulmonary morbidity in exposed workers. We examined the role of reactive oxygen species (ROS) in ROFA-induced lung injury. ROFA was collected from a precipitator at Boston Edison Co., Everett, MA, USA. ROFA (ROFA-total) was suspended in saline, incubated for 24 h at 37 degrees C, centrifuged, and separated into its soluble (ROFA-sol.) and insoluble (ROFA-insol.) fractions. Sprague-Dawley rats were intratracheally instilled with saline or ROFA-total or ROFA-sol. or ROFA-insol. (1 mg/100 g body wt.). Lung tissue and bronchoalveolar lavage cells were harvested at 4, 24, and 72 h after instillation. Chemiluminescence (CL) of recovered cells was measured as an index of ROS production, and tissue-lipid-peroxidation was assessed to determine oxidative injury. Significant amounts of Al, Fe, and Ni were present in ROFA-sol., whereas ROFA-insol. contained Fe, V, and Al. Using electron spin resonance (ESR), significantly more hydroxyl radicals were measured in ROFA-sol. as compared to ROFA-insol. None of the ROFA samples had an effect on CL or lipid peroxidation at 4 h. Treatment with ROFA-total and ROFA-insol. caused significant increases in both CL (at 24 h) and lipid peroxidation (at 24 and 72 h) when compared to saline control value. ROFA-sol. significantly reduced CL production at 72 h after treatment and had no effect on lipid peroxidation at any time point. In summary, ROFA, particularly its soluble fraction, generated a metal-dependent hydroxyl radical as measured by a cell-free ESR assay. However, cellular oxidant production and tissue injury were observed mostly with the ROFA-total and ROFA-insol. particulate forms. ROS generated by ROFA-sol. as measured by ESR appear not to play a major role in the lung injury caused after ROFA exposure.  相似文献   

18.
19.
Mitochondrial uptake of calcium in excitotoxicity is associated with subsequent increase in reactive oxygen species (ROS) generation and delayed cellular calcium deregulation in ischemic and neurodegenerative insults. The mechanisms linking mitochondrial calcium uptake and ROS production remain unknown but activation of the mitochondrial permeability transition (mPT) may be one such mechanism. In the present study, calcium increased ROS generation in isolated rodent brain and human liver mitochondria undergoing mPT despite an associated loss of membrane potential, NADH and respiration. Unspecific permeabilization of the inner mitochondrial membrane by alamethicin likewise increased ROS independently of calcium, and the ROS increase was further potentiated if NAD(H) was added to the system. Importantly, calcium per se did not induce a ROS increase unless mPT was triggered. Twenty-one cyclosporin A analogs were evaluated for inhibition of calcium-induced ROS and their efficacy clearly paralleled their potency of inhibiting mPT-mediated mitochondrial swelling. We conclude that while intact respiring mitochondria possess powerful antioxidant capability, mPT induces a dysregulated oxidative state with loss of GSH- and NADPH-dependent ROS detoxification. We propose that mPT is a significant cause of pathological ROS generation in excitotoxic cell death.  相似文献   

20.
《Free radical research》2013,47(9):1033-1039
Abstract

This study aimed to examine the roles of reactive oxygen species (ROS) in cisplatin treatment of human prostate cancer cells; hormone-sensitive LNCaP and hormone-refractory PC3 and DU145 cells. Intracellular levels of ROS and H2O2 were measured and visualized using specific fluorescent probes. NADPH oxidase (NOX) activity was detected by lucigenin chemiluminescence assay. Expression levels of NOX isoforms were determined by semi-quantitative RT-PCR. Cisplatin treatment increased the intracellular levels of ROS and H2O2 in three prostate cancer cell lines. The increase was transient and robust in hormone-sensitive LNCaP cells compared with hormone-refractory PC3 and DU145 cells. Consistent with these findings, the NOX activity induced by cisplatin was higher in LNCaP cells than in PC3 and DU145 cells. Expression pattern of NOX isoforms varied among three cell lines and the NOX activity was independent of NOX expression. Taken together, we have shown that cisplatin induces production of ROS and H2O2 via NOX activation in human prostate cancer cell lines, which is most prominent in hormone-sensitive LNCaP cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号